Skip to main content
. 2019 Dec 5;21(6):2052–2065. doi: 10.1093/bib/bbz126

Table 1.

Overview of the DS analysis methods used in the evaluation

Method Version Programming language used Reference sequence used Approach Annotation Experimental designs supported Reference
Cufflinks/cuffdiff2 2.2.1 C++ Genome isoform-based Yes and de novo Two groups [16]
DiffSplice 0.1.2beta C++ No isoform-based Ab initio Two groups + blocking (1 factor) [11]
DEXSeq 1.16.10 R/Bioconductor Genome exon-based Yes Complex designs [18]
edgeR 3.12.1 R/Bioconductor Genome exon-based Yes Complex designs [19]
JunctionSeq 1.3.4 R/Bioconductor Genome exon-based Yes and de novo Complex designs [20]
limma 3.26.9 R/Bioconductor Genome exon-based Yes Complex designs [21]
dSpliceType 2.0.0 Java Genome event-based Yes Two groups [22]
MAJIQ 2.0 Python Genome event-based Yes and de novo Two groups [23]
rMATS 3.2.2.beta/3.2.5 Python Genome event-based Yes Two groups, paired samples [24]
SUPPA 2.0.0 Python Transcriptome event-based Yes Two groups, paired samples [25]
SUPPA2 2.2.1 Python Transcriptome event-based Yes Two groups, paired samples [26]