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Abstract

The recent accumulation of cancer genomic data provides an opportunity to understand how a tumor’s genomic
characteristics can affect its responses to drugs. This field, called pharmacogenomics, is a key area in the development of
precision oncology. Deep learning (DL) methodology has emerged as a powerful technique to characterize and learn from
rapidly accumulating pharmacogenomics data. We introduce the fundamentals and typical model architectures of DL. We
review the use of DL in classification of cancers and cancer subtypes (diagnosis and treatment stratification of patients),
prediction of drug response and drug synergy for individual tumors (treatment prioritization for a patient), drug
repositioning and discovery and the study of mechanism/mode of action of treatments. For each topic, we summarize
current genomics and pharmacogenomics data resources such as pan-cancer genomics data for cancer cell lines (CCLs) and
tumors, and systematic pharmacologic screens of CCLs. By revisiting the published literature, including our in-house
analyses, we demonstrate the unprecedented capability of DL enabled by rapid accumulation of data resources to decipher
complex drug response patterns, thus potentially improving cancer medicine. Overall, this review provides an in-depth
summary of state-of-the-art DL methods and up-to-date pharmacogenomics resources and future opportunities and
challenges to realize the goal of precision oncology.
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Introduction
Advances in high-throughput technologies have led to a
rapid accumulation of different types of cancer-related omics
data, such as tumor mutations, transcriptomes, methylomes,
proteomes and microbiomes. These enormous data resources
have rapidly transformed translational research and clinical
practice in cancer diagnosis and management. As a result,
tumors are now routinely profiled for DNA and RNA alterations
and are matched with therapeutic options, making precision
oncology a reality for some patients [1–4]. These early successes
demonstrate the potential of genomics to help address
remaining formidable clinical challenges, such as predicting and
preemptively preventing drug resistance. The first systematic
pharmacogenomic study of cancer was carried out by the
National Cancer Institute (NCI) that molecularly profiled and
tested drug response of 60 human cancer cell lines (CCLs), known
as the NCI-60 panel [5, 6]. The data unveiled links between
high-dimensional omics to mechanisms of drug sensitivity
and resistance [5–9]. Using genomic data to make discoveries
requires extracting a statistically meaningful pattern from tens
of thousands of features. For instance, a single RNA sequencing
experiment can generate expression values for over 50 000
entities, including coding and non-coding genes. This high-
dimensional structure usually requires a significant sample
size for providing adequate statistical power, an effort typically
beyond the capacity of a single research lab. Fortunately,
consortium efforts such as The Cancer Genome Atlas (TCGA)
[10–14] and the Cancer Cell Line Encyclopedia (CCLE) [15] have
spearheaded models where large amounts of data are generated
and shared using standard protocols. These resources range
from characterization of CCLs, primary and metastatic tumors
to probing cellular vulnerabilities of CCLs, creating a diverse
portfolio for integrative analyses [16–18].

Machine learning (ML) approaches have been used to learn
hidden patterns behind genomic data related to cancer. Unlike
conventional statistical methods that analyze data based on
assumptions of data distributions, ML methods rely on prede-
fined ‘learning models’ or learning the data models (or data
representation) de novo from large, complex and heterogeneous
genomic data [19]. Among ML methods, deep learning (DL) archi-
tecture commonly refers to an artificial neural network (ANN)
with multiple hidden layers. DL can model complex non-linear
relationships and is widely used in image and voice process-
ing, speech recognition, natural language processing and com-
plex data modeling. The use of DL to analyze genomic data
is still in its early phase, mostly for investigating nucleic acid
sequences and the binding proteins [20–23], dimension reduc-
tion in single-cell RNA-seq analysis [24, 25], tumor classification
[26, 27] or predicting survival outcomes [28–30]. DL algorithms
have also been used to predict drug responses [31, 32] and drug
synergy [33].

Reviews of general DL applications in bioinformatics and
computational biology, DNA/RNA sequence analyses (genetic
variations and regulatory effects) and general pharmacology
have been published (see selected reviews in Table 1). However,
a comprehensive review focused on genomic aspects of DL
applications in cancer pharmacogenomics (i.e., gene mutations,
gene expression, etc.) is still lacking (Figure 1A). Here, we
systematically surveyed data resources of genomics and
pharmacogenomics and their corresponding DL applications
(either published or our in-house analyses) for critical pharma-
cogenomics topics. Since current cancer therapeutics and trials
focus on a specific cancer type/subtype, or genomic alterations

Table 1. Selected reviews of DL in pharmacologic research

Year Topics References

General DL and bioinformatics
2015 DL fundamentals [19]
2016 DL in bioinformatics [146]
2016 DL in computational biology [38]

DNA/RNA sequence analyses
2018 Genetic variations and regulatory networks [40]
2019 Genetic variations on gene regulatory

mechanisms
[147]

Pharmacology and healthcare
2018 DL for healthcare [39]
2018 Genetic variations, patient stratification by

medical records and drug target discovery
[148]

2019 ML and DL for drug discovery [149]
Chemoinformatics for drug design
2016 ML and DL studies on various pharmaceutical

topics (solubility, toxicity, etc.)
[73]

2018 DL models for drug design [74]
2018 Chemical descriptors and tools/databases [76]
2018 Chemical fingerprints and descriptors for

drug design
[75]

independent of cancer type (also known as ‘genome-driven
oncology’) [34], such as NCI Molecular Analysis for Therapy
Choice (NCI-MATCH) trial [35], here we discuss the use of DL
for

• cancer type/subtype classification and
• predictions of drug response and synergy based on cancer

genomic data.

Accurate classifications of cancer types or subtypes facilitate
understanding of disease processes and possible identification
of treatment targets and thus enable discovery of drugs that
target a specific class of cancers. However, identifying the best
drug(s) requires understanding of tumor genomics, regardless of
the cancer type. In light of novel therapeutics and drug mecha-
nisms, here we also comprehensively survey

• drug repositioning and discovery that incorporate chemoin-
formatics descriptors and/or fingerprints of drugs and

• resources to analyze drugs’ mechanisms and modes of
action.

Figure 1B illustrates the goals of this review. Specifically, we aim
to provide a reference of resources for investigators entering the
field of pharmacogenomics and highlight the potential of DL to
enrich the discipline of pharmacogenomics and to accelerate the
pursuit of precision oncology.

Fundamentals of DL
Conventional ANNs and DL models

ANN is one of the most powerful and classic ML methods
that imitate humans’ brain functioning and decision-making
through multiple layers of interconnected nodes. These nodes
are linked via algebraic equations to create stacked layers of
neurons termed hidden layers [36]. Information flows from the
input layer through a hidden layer and activates some nodes
in the hidden layer. ANN model parameters are determined by
a learning process, usually through back propagation. ANNs
achieve ideal performance if the data provided for training



2068 Chiu et al.

Figure 1. Pharmacogenomics in cancer and overview of this review. (A) Cancer pharmacogenomics and DL. Cancer pharmacogenomics has three interconnected key

components: genomics, drugs and patient outcomes and responses. Emerging large data resources are enabling DL-based study of cancer pharmacogenomics and the

achievement of precision oncology. (B) Overview of the study. The study sought to comprehensively review data resources of cancer genomics and pharmacogenomics

and demonstrate how DL learning can be applied to achieve several major goals of pharmacogenomics and precision oncology.

have relatively recognizable internal patterns and large sample
sizes. Compared to other classic ML methods, ANNs increase the
search space for adjustable parameters and omit assumptions
of data models such as linearity and variable independence.
Typical ANN models have limited number of hidden layers due
to computational complexity and limited training samples.

With the methodological and technological advances in the
past two decades, efficient training of deep ANNs with multiple
hidden layers, or DL, has become possible. The depth of DL
and new model architectures further increases the search space
to capture intricate patterns and data representations much
better than conventional ANNs (reviewed in [19]). Furthermore,
the multi-layered design enables many flexible and diverse DL
architectures to tackle different optimization tasks. Here we
introduce several core layers of DL and combinations of core
layers into typical DL models.

Core DL layers

DL-based research reviewed here typically use architectures that
can be broken down to three core layers (Figure 2A):

• ‘Dense layers’, also known as fully connected layers, are the
simplest form of DL layer that connects every neuron of a
layer to every neuron of another layer.

• ‘Convolutional layers’ slide multiple learnable filters (kernels;
representing patterns) through an image-like input to calcu-
late cross-correlations between each filter and sections of the
input and determine whether patterns exist locally in the
image. After optimization, each filter typically recognizes a
local data pattern.

• ‘Output layers’ generate the output of a DL with desired
numerical properties. Based on the prediction goal, output
layers (or prediction layers) can take different activation func-
tions to yield outputs with desired numerical properties.
These include ‘softmax’, to yield positive values for out-
put neurons that sum up to 1 such that it can be inter-
preted as prediction probabilities (e.g., cancer types); ‘lin-
ear’ activation, to generate an unbounded continuous value

[e.g., log-transformed half-maximal inhibitory concentration
(IC50)]; ‘ReLU’ (rectified linear unit) activation, which is sim-
ilar to ‘linear’ activation but truncates negative values (to
zeros; e.g., IC50); and ‘sigmoid’ which yields a logistic output
between 0 and 1.

Combining core layers into typical DL architectures

Core layers are building blocks of DL models with supervised,
semi-supervised or unsupervised designs. Supervised models
find the mapping process of labeled datasets (i.e., data with
ground truth), while unsupervised methods work on unlabeled
datasets to unveil properties of the data. Semi-supervised meth-
ods address situations where only a small portion of dataset
is labeled. Various DL models in these three classes are being
developed for different purposes with biological datasets. Here
we introduce several typical architectures frequently applied to
genomic and/or pharmacogenomic data.

• ‘Deep feedforward neural networks’ (DNNs) are the simplest
yet powerful DL architecture that is composed of multiple
fully connected layers and an output layer (Figure 2B). DNNs
can be easily configured to perform simple prediction and
regression tasks.

• ‘Autoencoders’ (AEs) are unsupervised DL models that learn
the most informative representation (compression) of the
input data. Their goal is to find an identity function that
compresses inputs into shorter coding vectors and recon-
structs the original data from the coding vectors [37]. As
shown in Figure 2B, a typical AE is composed of a dimension-
reducing encoder network and a dimension-reconstructing
decoder network. As a result, outputs of the bottleneck layer
that captures crucial information regarding input data can be
used for different purposes, such as sample classification and
noise reduction.

• ‘Convolutional neural networks’ (CNNs) are one of the most
powerful breakthroughs in DL and have been adapted to
many data intensive fields, such as computer vision and nat-
ural language processing. CNNs employ convolution layers
that learn local patterns underlying images or sequences for
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Figure 2. Core DL layers and typical model architectures for pharmacogenomics studies. (A) Core DL layers. (B) Combinations of core layers into the simplest form of a

DL model (DNN), dimension-reducing network (AE) and DL learning patterns from inputs (CNN).

recognition or prediction (Figure 2B). In medical informat-
ics and bioinformatics researches, CNNs have been applied
to computer-aided diagnosis and sequence-based analysis,
such as motif discovery and variant analysis, as reviewed
in [38–40]. When analyzing high-dimensional genomics data
related to pharmacogenomics, this powerful model has only
very recently been applied to the prediction of cancer types—
but as far as we know, not yet to other tasks.

In the following sections, we review state-of-the-art applications
of DNNs, AEs and CNNs to address important pharmacogenomic
topics and further challenges and opportunities.

Classifying cancer types and subtypes using
genomics profiles
Data resources

With advances in high-throughput sequencing and efforts of
international consortia, several large-scale datasets of pan-
cancer cancer genomics have made tremendous contributions to
our understanding of cancer heterogeneity. Table 2 summarizes
the most representative data resources. In the past decade, the
pan-cancer atlas generated by TCGA has covered almost all types
of DNA- and RNA-derived genomics data for 33 kinds of adult

cancers, based on over 11 000 pairs of tumor and normal tissues.
Harmonized data can be easily accessed through the Genomic
Data Commons (GDC) web portal or the R/Bioconductor package
TCGAbiolinks [41] (Table 2). Using TCGA data, a recent collection
of studies published by the Cell Press comprehensively cataloged
cell-of-origin patterns, oncogenic processes and oncogenic
signaling pathways in a pan-cancer setting, as reviewed in
[42]; papers are accessible at https://www.cell.com/pb-assets/
consortium/pancanceratlas/pancani3/index.html. In addition,
a group at the University of Michigan Comprehensive Cancer
Center sequenced tumor samples from 500 adult patients with
30 types of cancers who had metastases in 22 different organs
(the MET500 cohort) [43].

For childhood cancers, the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) project
has so far comprehensively profiled ∼1700 pediatric tumors
(including leukemia, Wilms tumor, neuroblastoma and osteosar-
coma) [44]. Another European project, the Pediatric Pan-
Cancer (PedPanCan) study, has analyzed genetic alterations
of ∼1000 samples of 24 molecular types of cancers [45]. The
St. Jude PeCan Data Portal (https://pecan.stjude.cloud/home)
provides interactive visualizations of pediatric cancer mutations
identified by these resources.

Efforts have been devoted to curate and process these
datasets into large data resources. For instance, the International

https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://www.cell.com/pb-assets/consortium/pancanceratlas/pancani3/index.html
https://pecan.stjude.cloud/home
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Table 2. Resources for pan-cancer genomics profiles and tools

Resource Data type Profiling
platform

Sample size Description Link References

Adult cancers
TCGA (The Cancer
Genome Atlas)

Clin, CNA, GEX,
Methyl, miEX,
SNV

Microarray,
NGS

∼11 300 Mostly primary tumors of 33
cancers

Individual cancers:
https://portal.gdc.
cancer.gov/
Merged pan-cancer
data: https://gdc.
cancer.gov/
node/905/
Also downloadable
by an
R/Bioconductor
package
TCGAbiolinks [41]

[150]

MET500 CNA, SNV NGS 500 Metastatic tumors of 30
cancers

https://met500.path.
med.umich.edu/

[43]

Pediatric cancers
TARGET
(Therapeutically
Applicable
Research to
Generate Effective
Treatments)

Clin, GEX, miEX,
SNV

NGS ∼3200 (according
to the GDC Data
Portal accessed
in May 2018)

6 pediatric cancers (according
to the GDC Data Portal
accessed in May 2018)

https://portal.gdc.
cancer.gov/
Also downloaded
by an
R/Bioconductor
package
TCGAbiolinks [41]

[44]

PedPanCan
(Pediatric
Pan-Cancer study)

SNV NGS 961 24 pediatric cancers http://www.
pedpancan.com

[45]

Cancer cell lines
CCLE (Cancer Cell
Line Encyclopedia)

CNA, GEX, RPPA,
SNV

Microarray,
NGS

∼1500 https://portals.
broadinstitute.org/
ccle
Also accessible
through the Cancer
Dependency Map
(DepMap): https://
depmap.org/portal/

[15, 151]

Curations
ICGC (International
Cancer Genome
Consortium)

Clin, CNA, GEX,
Methyl, miEX,
SNV

Curation ∼24 000 Curation of 80+ international
cancer projects, including
TCGA and TARGET

http://icgc.org/ [46]

COSMIC (Catalogue
of Somatic
Mutations in
Cancer)

CNA, SNV Curation Summarization of
cancer-related mutations
across 32 000+ tumors and
cancer cells curated from
25 000 papers

https://cancer.
sanger.ac.uk/
cosmic

[48]

Pan-cancer data visualization
TumorMap 2D maps Curation Visualization of TCGA, TARGET,

etc.
https://tumormap.

ucsc.edu/
[47]

Gene signatures and biological pathways
MSigDB (Molecular
Signatures
Database

Genes sets Curation ∼17 800 gene sets Genes sets of cytobands,
curations, motifs,
computation, Gene
Ontologies, oncogenic
signatures and immunology

http://software.
broadinstitute.org/
gsea/msigdb/index.
jsp

[52–54]

Pathway Commons Biological
pathways

Curation 4000+ pathways Collection of biological
pathways from 20+
databases, including KEGG
and Reactome

https://www.
pathwaycommons.
org/

[152]

NDEx (Network Data
Exchange)

Biological
networks

Curation Interactive database that
allows users to query,
visualize, upload, share and
distribute biological networks

www.ndexbio.org/ [153]

Normal tissues
GTEx
(Genotype-Tissue
Expression)

GEX NGS ∼11 700 Expression profiles of 53
non-diseased tissues across
∼1000 individuals that can be
used as normal controls for
cancer studies

https://gtexportal.
org/home/

[154, 155]

Clin, clinical data; CNA, copy number alteration; GEX, gene expression; Methyl, methylation; miEX, miRNA expression; NGS, next-generation sequencing; RPPA, reverse
phase protein array; SNV, single nucleotide variant.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/node/905/
https://gdc.cancer.gov/node/905/
https://gdc.cancer.gov/node/905/
https://met500.path.med.umich.edu/
https://met500.path.med.umich.edu/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.pedpancan.com
http://www.pedpancan.com
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
https://depmap.org/portal/
https://depmap.org/portal/
http://icgc.org/
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://tumormap.ucsc.edu/
https://tumormap.ucsc.edu/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://www.pathwaycommons.org/
https://www.pathwaycommons.org/
https://www.pathwaycommons.org/
www.ndexbio.org/
https://gtexportal.org/home/
https://gtexportal.org/home/
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Cancer Genome Consortium (ICGC) [46] has collected and
provided a data portal for profiles of more than 24 000 tumors
from over 80 large cancer projects, including TCGA and TARGET.
Using dimension reduction methods of t-distributed stochastic
neighbor embedding (t-SNE) and principal component analysis
(PCA), the UCSC Genomics Institute developed an interactive
browser, called the TumorMap, that visualizes two-dimensional
clusters of TCGA and TARGET samples and allows users to
map and explore their samples on these maps [47]. In addition,
the Catalogue of Somatic Mutations in Cancer (COSMIC) is the
world’s largest database of somatic mutations and variants [copy
number alterations (CNAs) and differentially expressed genes,
etc.] of human cancers [48].

Taken together, these integrative pan-cancer datasets have
unveiled a comprehensive landscape of adult and pediatric can-
cers that is huge enough for DL-based studies. In the next
section, we survey a collection of published AE-based models
for dimension reduction/visualization and different CNN con-
figurations for classification of cancer types using pan-cancer
gene expression data. For a comprehensive evaluation, we also
implemented several regular and specific AE-based models for
classifying cancer types.

Dimension reduction of gene expression profiles by
AEs and biological knowledge-regularized AEs

AEs are well suited to learn data representation and perform
dimension reduction of complex data. In genomics, AEs have
been successfully used to cluster single-cell RNA-seq data that
typically include up to 10 000 samples [24, 25]. Apart from AEs
made of dense layers, the hierarchy of Gene Ontology (GO) has
been used to regularize AEs, so that neurons represented GO
terms and edges between neurons were configured according
to hierarchical associations between corresponding GOs [49].
The model, named DCell, was applied to model the functional
hierarchy of a cell. Such a model is also called a ‘visible’ neural
network (VNN), as opposed to so-called ‘black-box’ DL, for the
output of each neuron represents the activation state of a GO
term and can be easily visualized and interpreted.

To demonstrate the application of this approach to pan-
cancer gene expression profiles with relatively limited sample
sizes, we tested several differently configured AEs for dimension
reduction of TCGA data [fully connected AE (FC-AE1); architec-
ture in Figure 3A]. Transcripts per million values of 15 931 genes
in 8070 tumors (17 different cancer types with a sample size
≥200) were downloaded from the TumorMap. We ran a hyper-
parameter optimization method called hyperas [50] to determine
the optimal AE architecture (number of neurons at each layer,
15 931, 1000, 500, 1000 and 15 931; Figure 3A). Samples were
randomly split by 90% and 10% for training and validation,
respectively, to control overfitting. We also adopted the early
stopping strategy to stop the training when the validation loss
did not further improve. To illustrate the information captured
by this classic AE, we used t-SNE to visualize the output of each
layer and compared it to classical methods, including PCA and
non-negative matrix factorization (NNMF). The three methods
performed comparably well in preserving inter-cancer differ-
ences underlying gene expression profiles, even though the
dimensions were reduced by 96.9% (Figure 3A and B). We also
compared the results to our recently proposed Gene Superset AE
(GSAE) model, which incorporated prior knowledge of gene sets
and biological pathways [51]. Briefly, GSAE regularizes an AE by
known gene–gene interactions curated in the Molecular Signa-
tures Database (MSigDB) [52–54], i.e., input genes involved in a

pathway or a similar function are linked to a node at the second
(gene-set) layer (Figure 3C). Such regularization extracts biolog-
ically meaningful data from high-throughput genomic profiles
and greatly improves the convergence and efficiency of AEs
[51]. Applying a default GSAE (15 931 genes – 2334 gene sets
– 200 gene supersets – 2334 reconstructed gene sets – 15 931
reconstructed genes) to the pan-cancer data, we showed that
the built-in regularization constraint preserved the represen-
tation of high-dimensional expression profiles (Figure 3C). We
utilized the Davies-Bouldin index (DB index) [55] and the average
ratio between mean intra-cluster distances to mean inter-cluster
distances across cancer classes [distance ratio (DR) index] to
quantify the richness of information captured by these dimen-
sion reduction methods by comparing intra- and inter-cancer
distances. A small index value represents high intra-cancer sim-
ilarity. The 500 bottleneck nodes of FC-AE1 (Figure 3A) and the
200 gene superset nodes of GSAE (Figure 3C) captured richer
cancer type specific information than the top 500 components
identified by PCA and NNMF (Figure 3B; DB index, 1.80 and 1.89
versus 2.23 and 3.05; DR index, 0.46 and 0.52 versus 0.71 and 0.85).
However, computation time of PCA and NNMF (2.3 and 1.2 CPU
hours using MATLAB functions) was shorter than AE (5.4 CPU
hours using the CPU version of TensorFlow, or <5 minutes with
a 96× CPU-core server). Similar to DCell, GSAE is essentially a
VNN model, as scores of its gene-set nodes directly indicate the
activation or repression of pathways/functions. At the layer of
gene-superset nodes, we can observe the interactions between
functions and their contribution to each cancer type [51].

Classification of cancer types and subtypes by
regularized AEs

We then tested whether the representations learned by fully
connected AE and GSAE could be used to classify cancer primary
or metastatic status. For this purpose, the bottleneck layer of
each AE was connected to a 17-neuron prediction layer with a
softmax activation, so that each input sample was classified to
one of the 17 cancer types (GSAE classifier; Figure 3D). Here we
analyzed two fully connected AEs, one optimized by hyperas
(FC-AE1 classifier) and the other obtained by introducing full
connections between neurons configured identically to GSAE
(FC-AE2 classifier; Figure 3D). We performed a 10-fold cross-
validation to test each model. In each iteration, 80% of samples
were used to train a model with 10% validation to enable early
stopping; the remaining 10% were used to test classification
accuracy. Here the accuracy was measured by the number of
samples that were classified to the correct cancer type divided by
the total number of samples. The two fully connected AEs could
not be successfully trained for most of the 10 iterations (accuracy,
9.4% and 8.7%; Figure 3E), largely due to the large numbers of
weights to be estimated (16.4 and 37.7 million in the FC-AE1
and FC-AE2 classifiers, respectively). Regularization introduced
by GSAE markedly reduced the number of weights to 0.65 million
and improved the classification accuracy to 96.8% (Figure 3E),
suggesting the necessity of incorporating biological knowledge
to improve the efficiency of learning.

We also tested the ability of AE to classify the primary site
of metastatic tumors. Since most metastatic tumors profiled by
TCGA were derived from skin cutaneous melanoma (SKCM; 366
out of 388, or 94.3%), we constructed two models to eliminate
potential biases, one classifying all metastatic samples and the
other for non-SKCM samples only. The metastatic samples to be
classified were excluded from model training. As a result, the
GSAE-based network accurately classified the primary sites of
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Figure 3. Classifying cancer types using pan-cancer gene expression data. (A) Dimension reduction by fully connected AEs (FC-AE) of 17 cancer types. (B) Dimension

reduction by PCA and NNMF. (C) Architecture of GSAE that incorporates curated gene sets into an AE and t-SNE visualization of outputs at each layer. (D) Architectures

of models classifying cancer types of primary and metastatic tumors by linking the bottleneck layer of AEs to a classification layer. Performance of a GSAE classifier

was compared to two AEs, an FC-AE1 classifier with hyperparameter optimization (as shown in A) and an FC-AE2 classifier that introduced full connections to the

GSAE classifier. (E) Performance of AE and CNN-based classifiers of cancer types. Performance of FC-AE1, FC-AE2 and GSAE was assessed by our in-house analysis of

17 largest cancer types using 10-fold cross validation. Performance of 1Drand and 2Drand was reported by [58] on all 33 cancer types by 5-fold cross validation; 2Dchrom
was evaluated by [59] on all 33 cancer types by a 10-fold cross validation, where subscript ‘chrom’ denotes genes ordered by chromosomal position and ‘rand’ for genes

randomly ordered. (F) Architectures of different embedding methods of gene expression data and CNN models for classifying cancers proposed by [58] and [59].
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these tumors (accuracy, 89.4% for all metastatic samples and
86.4% for the samples excluding SKCM; Figure 3E). Besides the
classification of cancer types, Danaee et al. [56] classified tumors
versus normal RNA-seq samples by applying a support vector
machine (SVM) or simple neural network to the bottleneck-layer
outputs of stacked denoising AEs (accuracy, 97.0–98.3%).

Applying an analog network of the GSAE classifier in breast
cancer, our recent study also performed four breast cancer sub-
type classification (basal, Her2, luminal A and luminal B) with
an overall accuracy of 88.8% and highly comparable sensitivity
and specificity (sensitivity for each subtype, 0.84–0.96; speci-
ficity, 0.91–1.00) [51]. Here the subtypes were assessed by the
PAM50 gene signature [57] using TCGA RNA-seq data [11]. The
results demonstrated a potential application of such a model to
classification tasks much more challenging than cancer types.

Classification of cancer types by CNNs

CNNs are recently adopted to classify cancers using gene expres-
sion profiles. To generate ‘pseudo-images’ for CNN models to
learn from, two studies embedded pre-filtered genes (typically
around 10 000) onto one- or two-dimensional maps by random
[58] or chromosomal orders [59] and colored each element (or
gene) according to abundance of expression (Figure 3F). Thus,
expression data of each tumor were converted to an ‘expression
image’ and fed into a CNN model. These image embedding
methods achieved very similar performance using TCGA data
even when used by different CNN models composed of 1–3 con-
volutional layers (accuracy from cross-validations, 94.9–95.6%;
Figure 3E), comparable to regularized AE-based classification.
Comparably, using DNA methylation profiles, a recent study
evaluated several CNN model configurations and achieved 84.3–
92.9% accuracy of classifying 33 cancer types [60]. Altogether,
published and our in-house analyses demonstrate the capability
of dimension-reducing DL, including AEs regularized by biolog-
ical knowledge and CNNs, in learning representations of high-
dimensional gene expression and other omics data that capture
rich information for classifying cancers. We note that TCGA is
by far the largest harmonized dataset of cancer genomics. Thus,
the aforementioned published and our in-house models were
mostly tested using hold-out and/or cross-validations of the
TCGA dataset, not in independent datasets where patient selec-
tion, clinical parameters annotation and sample preparation
may vary drastically. Future works that comprehensively incor-
porate data resources of Table 2 to implement a more robust DL
model and a comprehensive evaluation are warranted.

Predicting drug response and drug
synergy of cancer
Data resources and ML methods

CCLE is one of the earliest attempts to conduct systematic high-
throughput screening of anti-cancer compounds [15] (Table 3). A
total of 504 CCLs were treated with 24 drugs. A dose-response
curve was generated for each CCL–drug pair by measuring cel-
lular response (from 0 to 1) across treatment concentrations.
Drug sensitivity was measured by the IC50 and area under the
curve (AUC). Recently, the Genomics of Drug Sensitivity in Cancer
(GDSC) project assayed ∼1000 CCLs for their response to 265 anti-
cancer drugs [61, 62].

In search of an algorithm for predicting drug sensitivity
based on cancer genomics, a collaboration between the NCI
and the Dialogue on Reverse Engineering Assessment and
Methods (DREAM) project launched a community challenge in

2012 (DREAM7 Challenge). Eventually 44 ML algorithms were
evaluated [63]. Each algorithm was trained on response data
of 28 drugs in 35 breast CCLs and tested in 18 independent
CCLs. Prediction performance was evaluated by a weighted,
probabilistic c-index (wpc-index) that measures the similarity
between predicted and real ranks of CCLs responding to a
drug (drug-centric design). The wpc-index was shown to be
highly concordant to the Spearman correlation coefficient ρ

[63]. The best-performing algorithm integrated multi-omics and
incorporated biological pathways by a non-linear regression
model that outperformed all other kernel and regression-
based methods. The group reached a consensus that gene
expression data have the highest prediction power compared
to other single-omics methods, but prediction performance
increases when multiple omics data are integrated [63]. Similarly,
later ML methods used the GDSC data [61, 62] to identify
logic optimization of pairs of alterations (AND/OR operations)
predictive of IC50; incorporating different types of genomics
data into elastic net regression or random forests models
achieved better performance [61]. A network-based method
further incorporated the GDSC data, human protein–protein
interactome and gene modules derived from mutation and gene
expression profiles of TCGA, to prioritize anti-cancer drugs [64].

The heterogeneity of cancer enables the development of
resistance to a single drug. Researchers, thus, have studied the
synergistic effects of two drugs on cancer cells. The same NCI-
DREAM project, DREAM7 Challenge, also issued a challenge to
predict the activity of pairs of drugs in 2012 [65]. The challenge
evaluated a total of 32 learning algorithms, mostly focused on
the similarity/dissimilarity among drugs, using experimentally
verified synergistic effects of 91 pairs of drugs against the OCI-
LY3 human diffuse large B-cell lymphoma cell line (Table 3).
Although the accuracy of these methods was not optimal (largely
due to the limited sample size), the challenge demonstrated
early promise for predicting drug synergy by ML methods.

Recently, the OncoPolyPharmacology Screen tested cell via-
bilities for 583 drug combinations of 38 drugs in 39 CCLs [66]. In
addition, a benchmark dataset was recently derived by the NCI-
ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combina-
tions) project on over 5000 pairs of approved anti-cancer drugs
against 60 well-characterized (NCI-60) CCLs [67]. These resources
have stimulated recent developments in DL methods to predict
drug synergy incorporating genomic data from cancer cells and
chemical properties of drugs.

DL models for predicting drug responses of cancer cells
and tumors

Different DL models have been designed to analyze genomics
profiles of CCLs and to predict response to anti-cancer drugs:
one type of DL model predicted CCL–single drug relationships
using genomics of CCLs and molecular descriptor/fingerprint
describing the drug (Figure 4A, left), and the other simultane-
ously predicted responses to multiple drugs in CCLs without
fingerprinting drugs (Figure 4A, right). Chemical fingerprints are
reviewed later in the section ‘Chemoinformatics-facilitated DL
models for drug repositioning and discovery.’ Given the same
drug screening data, the former type of DL uses NCCL × NDrug

samples, while the latter can be trained on only NCCL samples.
Thus, they require very different training strategies to achieve
optimal performance.

Cancer Drug Response profile scan (CDRscan) is a repre-
sentative model of the first type of DL models [31]. It is one
of the earliest approaches to integrate compound fingerprints
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Table 3. Resources for drug response and drug synergy

Resource Measurement of
response

Number of
treatments

Number of cell
lines

Link References

Drug response
CCLE (Cancer Cell Line

Encyclopedia)
IC50 and AUC 24 drugs 504 https://portals.

broadinstitute.org/ccle/
data

[15]

GDSC (Genomics of Drug Sensitivity
in Cancer)

IC50 and AUC 265 drugs 991 Supplemental information
of [61]; also accessible
through the DepMap:
https://depmap.org/portal/

[61, 62]

Drug synergy
NCI-DREAM (Dialogue on Reverse

Engineering Assessment and
Methods)

IC20 and ranks 91 pairs
(13 drugs)

1 (OCI-LY3 cell
line)

https://www.synapse.org/
NCI_DREAM

[65]

OncoPolyPharmacology Screen VHSA and VBliss
scores

583 pairs
(38 drugs)

39 Supplemental information
of [66]

[66]

NCI-ALMANAC (National Cancer
Institute-A Large Matrix of
Anti-Neoplastic Agent
Combinations)

NCI ComboScore 5232 pairs
(104 drugs)

60 (NCI-60 panel) https://dtp.cancer.gov/
ncialmanac/

[67]

AUC, area under the dose response curve; IC20, concentration of drugs needed to kill 20% of cancer cells.

Figure 4. DL models for predicting drug response and synergy. (A) Models for predicting drug sensitivity of a single drug and simultaneous comparisons of multiple

drugs. The former model is composed of subnetworks learning from a sample’s genomics profile and chemical descriptor/fingerprint of a drug and yields a drug

response score. The latter takes only genomics profiles of samples as input. Each node at the output layer predicts response to a drug. (B) Model for predicting drug

synergy. The model learns from genomics of a sample and descriptors/fingerprints of two drugs and outputs a synergy score.

with genomic profiles using a DL model. In CDRscan, a model
was proposed that combined mutation status of a CCL (28 328
positions in 567 cancer genes extracted from COSMIC) and PaDEL
fingerprints of a drug (with 3072 binary features) to yield an
IC50 value. CDRscan was trained using 152 594 instances com-
posed of 787 CCLs and 244 anticancer drugs using GDSC data. It
achieved much higher prediction performance (mean coefficient
of determination R2, 0.84) than conventional ML methods, such
as random forest and SVM (R2, 0.70 and 0.56) [31].

While the second type of DL design can simultaneously
predict the IC50 of many drugs, it is trained on a much
smaller sample size and thus requires a specialized training
strategy. We recently proposed a method called DeepDR
(Deep learning for Drug Response) [32] that learned from
mutation status (18 281 genes) and gene expression profiles

(15 363 genes) of 622 CCLs to simultaneously predict IC50 values
of 265 anti-cancer drugs screened by GDSC. DeepDR has three
sub-networks: an encoder (dimension-reducing) network for
data representation of mutations, a similar encoder network
for expression data and a prediction network that concatenates
outputs of the two encoders and yields 265 IC50 values (Figure 4A,
right panel). To facilitate model capability and convergence,
we designed a transfer learning scheme between CCLs and
tumors with a large number of samples. An AE was trained
for each type of genomics data using ∼8000 tumors from
TCGA to effectively embed tumor-specific characterization
into the AE. Parameters (numbers of neurons, edges and
weights) of the encoder sub-network were applied to initialize
the corresponding encoder network of DeepDR. The entire
DeepDR model (including the encoders) was then re-trained

https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data
https://depmap.org/portal/
https://www.synapse.org/NCI_DREAM
https://www.synapse.org/NCI_DREAM
https://dtp.cancer.gov/ncialmanac/
https://dtp.cancer.gov/ncialmanac/
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using drug screening data from CCLs to optimize predicted
drug response. Such a transfer learning design achieved a better
prediction performance (CCL-centric Pearson and Spearman ρ

of 0.74–0.95 and 0.70–0.92) than a model of similar architecture
without transferring data from tumors, as well as linear
regression and SVM [32]. Furthermore, this design enabled a
biologically meaningful application of the DeepDR model to
predict tumors. Application of DeepDR to TCGA data confirmed
well-known drug targets (such as epidermal growth factor
receptor inhibitors in non-small cell lung cancer and tamoxifen
in estrogen receptor-positive breast tumors) and identified novel
drugs for further investigation. Alternatively, Matlock et al. [68]
have proposed a unique stacking model, in which outputs of DL
of individual omics are stacked at the last layer to predict drug
sensitivity.

Performance comparison between DL and ML models

For the prediction of drug sensitivity, DL-based models (CDRscan
and DeepDR) were shown to outperform simple conventional
ML methods, such as linear regression, random forest and SVM,
by training errors and/or correlation coefficients metrics [31,
32]. We note that the datasets, training/testing designs and
performance measures of CDRscan, DeepDR and sophisticated
ML models proposed in the DREAM challenge are quite differ-
ent, impeding a direct and comprehensive comparison of their
performance. CDRscan was trained using 95% of CCL-drug pairs;
virtually all CCLs and drugs were seen by the model during the
training process. With a focus on predicting new samples (i.e.,
unscreened CCLs and tumors) that are foreign to the model,
DeepDR was trained (90% of CCLs) and tested (10%) using two
independent sets of CCLs over all drugs. We re-evaluated the
prediction by a drug-centric measure of performance in order
to compare to the results of the DREAM challenge. The per-
formance of DeepDR (mean Pearson and Spearman ρ across
265 drugs over 64 CCLs, 0.35 and 0.30) was better than all ML
models proposed in the DREAM challenge (resampled Spearman
ρ across 28 drugs over 18 CCLs, −0.02 to 0.22 for 44 models).
Our data demonstrate the power of DL models to learn from
large datasets and warrant further systematic implementation
and evaluation of sophisticated ML methods, as well as model
interpretation and visualization, to better assessing these ML
and DL models.

DL models for predicting drug synergy of cancer cells

DL models have been proposed for drug synergy. They typically
take inputs of genomic data of a CCL and descriptors/finger-
prints of two drugs of interest (Figure 4B). A DNN model, Deep-
Synergy, was proposed and used Open Babel [69] fingerprints of
drugs and gene expression profiles [33]. The model was trained
using the OncoPolyPharmacology data and achieved a Pearson
ρ of 0.73 between predicted and original synergy scores. Deep-
Synergy outperformed many ML methods, including gradient
boosting machines, RF, SVM and elastic nets by metrices of mean
squared error, Pearson ρ, areas under the receiver operating
characteristic curve and precision-recall curve. The AuDNNsyn-
ergy (Deep Neural Network Synergy model with Autoencoders)
model extended the DeepDR model by introducing an addi-
tional genomics profile (CNAs) and molecular fingerprints of
two drugs to the prediction sub-network [70]. The model was
trained using the same dataset as DeepSynergy and achieved
similar correlations of drug combinations (Spearman ρ, 0.56 to

0.81). Alternatively, Xia et al. developed a DL prediction machine
using gene expression, miRNA expression and proteomic fea-
tures, as well as molecular descriptors and fingerprints of two
drugs [71]. The model was trained using a more recent and
larger synergy screen conducted by NCI-ALMANAC and achieved
very high prediction performance (Pearson and Spearman ρ,
0.97 and 0.97).

Chemoinformatics-facilitated DL models for
drug repositioning and discovery
Another area of pharmacogenomics research with potential
for DL application is drug discovery and development [72]. The
application harnesses several strengths of DL to (i) reposition
existing drugs by learning similarities between cancer cells
and between drugs, (ii) improve clinical performance by
identifying synergistic drug combinations and (iii) develop novel
compounds by using quantitative structure–activity relationship
(QSAR) and refining tool compounds to improve therapeutic
index. We note here that QSAR does not consider underlying
molecular characteristics of the cells being treated and the
interaction between genomics and drugs. We include this topic
for it is a very active field in ML and DL that can greatly accelerate
the discovery of novel drugs in the near future. More in-depth
summaries of DL applications in drug design and activity
prediction of ligand–protein interaction can be found in previous
reviews [73–76] (Table 1).

A critical step in integrating compound structures into DL
models is the representation (chemical descriptors) of com-
pounds using numerical features extracted from chemical struc-
tures, similar to those used for compound similarity and activ-
ity comparison studies [77]. Common definitions of chemical
descriptors are (i) molecular weights, bond counts, fragment
counts, etc. (0D and 1D descriptors); (ii) topological descrip-
tors or other graph invariants (2D descriptors); and (iii) geo-
metrical descriptors such as 3D-MoRES [78], and autocorrela-
tion and surface-volume descriptors (3D descriptors). Slightly
more abstract, but easily handleable by computers, are molec-
ular fingerprints: binary strings that represent the presence
or absence of particular substructure keys of a molecule. The
fingerprint (the fixed-length bit-string) contains bits in which
each bit represents the absence (0) or presence (1) of a chemical
characteristic of molecules. Binary bits are also used to encode
discrete variables (similarly for the continuous variables using
their ranges). Since different descriptors or descriptor groups can
be assigned to different locations within the bit-string, differ-
ent fingerprint systems can be established, based on different
dictionary-assisted bit-string assignment, to group particular
functions or fragments within the fingerprint. Table 4 provides
a shortlist of such systems or software packages to generate
chemical fingerprints. For efficiently processing chemical infor-
mation, Simplified Molecular Input Line Entry System (SMILES)
[79] encodes molecular graphs of compounds into a human-
readable line notation of short ASCII (American Standard Code
for Information Interchange) strings. The SMILES notations of
∼96 million compounds can be downloaded from PubChem
[80–83] and processed by most of the aforementioned finger-
print/descriptor software.

ML models incorporating chemoinformatics to predict
drug sensitivity and synergy

It remains challenging to integrate chemical fingerprints into
state-of-the-art high-throughput techniques such as genomics,
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Table 4. Chemoinformatics software to analyze molecular descriptors and fingerprints

Software Descriptions Link References

CDK Open-source modular Java libraries for chemoinformatics https://sourceforge.net/projects/cdk [156]
rcdk R interface to CDK https://cran.r-project.org/web/packages/

rcdk
[157]

ChemmineR Chemoinformatics package for analyzing drug-like small
molecule data in R

https://www.bioconductor.org/packages/
release/bioc/vignettes/ChemmineR/inst/
doc/ChemmineR.html

[158]

Open Babel Support for more than 100 chemical file formats,
fingerprint generation, property determination, similarity
and substructure search, structure generation and
molecular force fields. Available in C++ with Python, Perl,
Java, Ruby, R, etc.

http://openbabel.org [69]

Mordred 1825 descriptors based on RDKit https://github.com/mordred-descriptor [159]
RDKit Major chemoinformatics tool with capability of handling

of molecular data, fingerprints, substructure and
similarity search and many other functions

http://www.rdkit.org

PaDEL 1875 descriptors (1444 1D and 2D descriptors and 431 3D
descriptors) and 12 types of fingerprints (total 16 092 bits)

http://www.yapcwsoft.com/dd/
padeldescriptor/

[160]

KNIME Graphic development environment that has plugins for
chemoinformatics (CDK, RDKit, etc.) and ML modules

https://www.knime.org [161, 162]

PubChem Fingerprints of 881 bits in length for 2D structures ftp://ftp.ncbi.nlm.nih.gov/pubchem/
specifications/pubchem_fingerprints.txt

[80–83]

Descriptions of more chemoinformatics tools can be found in [163, 164].

transcriptomics, proteomics, metabolomics and perhaps high-
dimensional data sources such as medical imaging to predict
drug response. Apart from the aforementioned DL models
(CDRscan [31], DeepSynergy [33] and DL designed for the NCI-
ALMANAC dataset [71]), many network-based ML methods have
been proposed to predict drug sensitivity and synergy (see
a review article [84]). Liu et al. [85] formulated drug-response
prediction as a recommender system—since similar cell lines
and drugs should theoretically exhibit similar responses—and
then used the K most similar neighbors (cell line or drug) to
predict the unknown ones. Zhang et al. [86] proposed a dual-
layer cell line-drug network model, which integrates both cell-
line similarity networks (using gene expression data) and drug
similarity networks (using PaDEL fingerprints), to predict drug
response significantly better than an elastic net model (Pearson
ρ > 0.6 with observed responses for most drugs). Similarly, Wei
et al. [87] used gene expression for cell-line similarity and Open
Babel [69] for drug similarity to build a cell line-drug complex
network, and then inferred drug response with a weighted
prediction model. In addition, Menden et al. [88], in one of
the earliest studies that integrated chemical information from
drugs and molecular information from cellular responses, used
neural networks and random forest regression models to predict
IC50 values of drugs for a given CCL. Recently, Cheng et al. [89]
developed a network-based method for predicting drug synergy
by incorporating both drug target–disease protein and protein–
protein networks. Altogether, these methods demonstrated the
feasibility of incorporating chemical fingerprints of drugs and
network-based integration with large genomics data to facilitate
drug development.

DL models for drug repositioning

Several DL models have been developed to reposition drugs
for their anti-cancer capability. Aliper et al. [90] proposed a
pioneering DL model that took the input of transcriptomic
perturbation signatures of 678 drugs against three CCLs at

two different time points derived by The Library of Inte-
grated Network-based Cellular Signatures (LINCS) [91] (see
‘Resources for investigating mechanisms and modes of action
for treatments’) without using compound fingerprints. The
model achieved superior accuracy of predicting 12 therapeu-
tic categories of Medical Subject Headings over SVM, and
incorporation of pathway information into the DL model
improved the performance even further. Another study applied
a simple DNN to learn low-dimensional representations of the
LINCS transcriptomic dataset and utilized the representations
to identify functionally similar drugs that complemented
structural similarities [92]. Recently, Zeng et al. [93] proposed a
network-based DL model for drug repositioning, named deepDR.
deepDR integrated multiple networks of drug–disease, drug–
side effect, drug–target and drug–drug associations by a multi-
modal AE and then used a variational AE (VAE) to incorporate
known drug–disease pairs and make recommendations of
efficacious drug repositioning. deepDR assessed chemical
similarities between drugs by Open Babel fingerprints [69].
The model was tested using curated databases, including
DrugBank [94], repoDB [95] and the ClinicalTrials.gov database
(https://clinicaltrials.gov/), and deepDR outperformed a broad
panel of ML methods. Though deepDR was not developed
specifically for cancer therapeutics, we expect its application
to cancer datasets can improve discovery and development
of anti-cancer drugs. Besides DL models, readers may refer
to other extensive review articles on conventional ML meth-
ods for drug repositioning [96] and network-based drug
repositioning [97].

DL models for novel drug discovery

Many studies have described drug discovery methods that
formalize chemical information using QSAR models to virtually
screen for novel biologically active compounds [98]. The QSAR
models are trained to learn the relationship between chemical

https://sourceforge.net/projects/cdk
https://cran.r-project.org/web/packages/rcdk
https://cran.r-project.org/web/packages/rcdk
https://www.bioconductor.org/packages/release/bioc/vignettes/ChemmineR/inst/doc/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/vignettes/ChemmineR/inst/doc/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/vignettes/ChemmineR/inst/doc/ChemmineR.html
http://openbabel.org
https://github.com/mordred-descriptor
http://www.rdkit.org
http://www.yapcwsoft.com/dd/padeldescriptor/
http://www.yapcwsoft.com/dd/padeldescriptor/
https://www.knime.org
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
https://clinicaltrials.gov/
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properties (such as structures) and experimentally determined
biological activities (i.e., cellular response) of a compound,
without considering specific molecular characteristics of the
cells being treated. Early QSAR models were developed using
various conventional ML methods, such as SVM [99–101], support
vector regression [102], and a ranking method that directly
optimizes the prioritization of compounds [103]. The earliest
series of DL methods tackling this task utilized recurrent neural
networks (RNNs) for data of a sequential nature, such as natural
language processing [104]. For the task of de novo drug design,
RNNs are typically trained to generate new molecule structures
with desired biochemical properties by iteratively: (i) generating
molecules (e.g., a SMILES code), (ii) scoring molecules based
on desired bioactivity (predicted property of the SMILES code)
and (iii) searching for better molecules (a refined SMILES code)
[105]. RNNs were integrated with dimension-reducing AEs or
VAE for novel molecules that carry desired properties [106, 107].
Lately, reinforcement learning, a technique that is widely used
to fine-tune a DL model by assigning a ‘reward’ signal to the
model during model optimization, is incorporated into many
RNN models to improve the generation of chemical structures
[108–110]. Case studies suggested that 93–95% of the molecules
generated by these methods are chemically valid [108–110].
Besides RNNs, a class of AEs that can generate new samples
by learning the distribution of data, namely adversarial AEs
(AAEs), has been adopted for de novo drug design [82, 111].
A proof-of-concept study trained an AAE model using NCI-
60 data of the MCF7 cell line and identified potential anti-
cancer drugs by screening ∼72 million compounds of the
PubChem [80–83]. Very recently, Zhavoronkov et al. [112] built
a generative tensorial reinforcement learning (GENTRL) model
by incorporating VAE with reinforcement learning to optimize
synthetic feasibility, compound novelty and biological activity
for de novo drug design. GENTRL successfully designed novel
inhibitors of DDR1, a kinase target implied in fibrosis, that were
successfully synthesized, validated in cell-based assays and
showed favorable response in a mouse pharmacokinetics study.
The design, synthesis and experimental validation of these
drugs were completed in 46 days, tremendously shortening the
drug discovery cycle. Altogether, these exciting results point to
the tremendous potential of DL models, especially generative
models, to generate and screen for novel drugs that can be
hardly matched by conventional ML methods, and we expect
they can greatly accelerate cancer drug discovery and devel-
opment. For benchmarking ML and future DL models on drug
discovery, the Pande group at Stanford University established
an open-source DL framework (DeepChem; https://deepchem.
io/) and multiple curated datasets and evaluation matrices in
MoleculeNet [113].

It is worth noting that these promising successes of novel
drug discovery using DL models do not take the genomics of cells
or tumors being treated into consideration. We expect future
research will integrate these drug discovery models with drug
response prediction machines based on genomics profiles, such
as CDRscan and DeepDR, to achieve the goal of personalized drug
discovery.

Resources for investigating mechanisms and
modes of action for treatments
To realize the promise of personalized oncology, pharmaco-
logical research has sought to understand the mechanisms
and modes of action of drugs. The former focuses on the

biochemical binding of a drug to its targeting proteins; the latter
emphasizes the functional changes in cells upon exposure to
a drug. Mechanism-of-action studies focus on how bioactive
compounds interact with a targeting enzyme or receptor in the
cell and produce their pharmacologic effects. Elucidating mech-
anisms of action helps to (i) predict which patients may have
better responses to treatment and (ii) discover novel therapies.

ChEMBL by EMBL-EBI is the largest database of biochemical
activities (∼15 million) with an interactive web interface that
enables users to search by drugs, target proteins and cells or
tissues (Table 5) [114–116]. Other databases focus on the targeted
gene variants and proteins, such as PharmGKB (Pharmacogenet-
ics Knowledge Base) [117], Cancer Therapeutics Response Portal
(CTRP) [118–120], DrugBank [94], Therapeutic Target Database
(TTD) [94], Search Tool for Interacting Chemicals (STITCH) [121]
and OncoKB [122]. OncoKB classifies actionable genes by the
level of evidence, i.e. levels 1 and 4 contain FDA-approved and
biologically proven gene variant–drug pairs, respectively, with
the potential to support optimal treatment decisions. In addition
to gene variants, the CTRP group tested correlations between
basal gene expression levels and the response of 481 compounds
on 860 CCLs measured by both IC50 values and area under the
dose-response curve [118–120].

At the molecular level, the mode of action can be investi-
gated by changes in gene expression profiles associated with
drug treatment, such as the signatures curated in the MSigDB
(Table 5) [52–54]. The LINCS Project uses a customized microar-
ray, called L1000, to profile baseline and post-treatment gene
expression profiles at different time points and doses of treat-
ments with replicates, as an extension of the Connectivity Map
(CMap) project. The LINCS Pilot Phase I completed in 2013 gen-
erated 1.3 million profiles of ∼20 000 chemical (small molecules)
and genetic (shRNAs) perturbations in 76 human CCLs (Table 5)
[91]. To boost the scale and accessibility of LINCS data, the Pro-
duction Phase II is currently generating perturbation signatures
on more CCLs and improving data coordination and integration.
So far, LINCS has generated and provided normalized data on
1.7 million gene expression profiles in a GCTx file format and
created software packages available across multiple platforms
to efficiently store and access the huge datasets [123] (Table 5).
Subramanian et al. [91] applied ML to project and visualize these
perturbation signatures and illuminated the mode of action of
previously unannotated drugs, revealing promising candidates
for clinical trials. Facilitated by the LINCS dataset, a study bench-
marked a variety of ML methods, simple DNNs and graph CNN (a
CNN architecture that learns from network data) for the predic-
tion of primary sites/subtypes and mechanism of actions [124].
Recently, Deep Compound Profiler (DeepCOP) was developed to
predict the perturbation of gene expression by treatments of
small-molecule drugs [125].

Despite the development of such comprehensive resources
on mechanisms and modes of drug action, only a limited
number of DL studies have been carried out using these
emerging resources, partly due to the complexity of response
time points and treatment dosages. For future studies, our
aforementioned dimension reduction models can be used to
learn data representation and functional activation underlying
expressional profiles associated with different perturbations at
different doses and time points. Also, a DL-based incorporation
of perturbation signatures (e.g., LINCS)/mechanism of actions
(ChEMBL) and drug sensitivity (GDSC)/drug synergy (NCI-
ALMANAC) approach may yield insights into the cause of
drug resistance, further improve prediction performance and
ultimately move forward towards precision oncology.

https://deepchem.io/
https://deepchem.io/
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Conclusions and future directions
We have extensively reviewed data resources that facilitate phar-
macogenomic studies and demonstrated how DL methods can
be designed to analyze such data, with the ultimate goal of
informing precision oncology approaches. Most of the work we
have described was based on relatively simpler forms of DL, such
as DNNs and AEs. Two rapidly evolving models, CNN and Gener-
ative Adversarial Network (GAN), have been extensively used for
DNA/RNA sequence analyses [20, 21, 126, 127], but remain very
limited in pharmacogenomics applications except for classifying
cancer types. We expect these two classes of DL will leap forward
when new advances in genomic data embedding method that
systematically converts genomic data into informative images
are achieved.

For the multi-layered nature of DL, it has much higher learn-
ability but lower interpretability than conventional ML methods;
this is the reason why DL machines are often criticized for being
black boxes. Such an issue remains to be addressed before DL
models move to clinical applications and before government reg-
ulation scrutinization [128]. However, as we reviewed in this arti-
cle, visible models, such as DCell and GSAE, address the problem
by embedding prior biological knowledge into model architec-
ture. Biological interpretation (corresponding to the term ‘visu-
alization’ in DL for image analysis) becomes possible by read-
ing the activation states of neurons. Besides, many DL models
have been developed to interpret the knowledge learned by
neural networks by investigating the relationship between input
and output data of a model [129–131] (reviewed in [132]). For
instance, interpretation of a cancer type prediction DL model
by the saliency map [130] allowed a comprehensive search for
potential cancer marker genes and functions [58]. We anticipate
that advances in model interpretation will shed light into the
black box of DL.

Current large-scale screens for drug sensitivity and drug syn-
ergy are mostly performed using cultured CCLs. Although stud-
ies have demonstrated that a broad collection of CCLs resembles
genomic or pathway alterations found in primary tumors [15, 61,
133–135], it has long been questioned whether in vitro models
fully recapitulate primary tumors’ heterogeneity and microen-
vironment for clinically relevant drug response prediction and
drug discovery [136–138]. We expect that the gap between CCLs
and primary tumors can be bridged by transfer learning [139]. As
demonstrated in the DeepDR study, a transfer learning model
sequentially trained on tumor genomics data without any infor-
mation of drug response (unlabeled data) and drug response data
of cell lines (labeled) learned from both datasets and capable
of predicting drug response in tumors as reported in actual
clinical testing [32]. Such a transfer learning scheme may be
further optimized by incorporating data of emerging develop-
ment of patient-derived xenograft-based screens (reviewed in
[140–142]).

The high dimension of genomic features (typically 10 000–
30 000 features) requires huge sample sets to successfully train
a DL model, such as the well-managed TCGA project, yet it is
extremely challenging to collect such datasets in clinical settings
and costly to generate genomic profiles. For instance, the use
of ‘liquid biopsies’ is an emerging tool for minimally invasive
early detection of cancers [143, 144]. While DL was used to
capture cancer-related mutations [145], the lack of a large-scale,
yet carefully designed collection of liquid biopsies limits more
innovative applications. We expect that future breakthroughs in
DL methods will comprehensively incorporate biological knowl-
edge into DL models and address the rapid accumulation of

pharmacogenomics, genomics and biomedical data to pave the
way forward toward precision oncology.

Key Points
• We present a comprehensive review of genomics and

pharmacogenomics data resources that enable DL-
based studies towards the goal of precision oncology.

• DL models, such as AE and CNN-based models, achieved
accurate classifications of cancer types/subtypes by
using gene expression and other omics profiles.

• DL models can accurately predict drug response and
synergy based on cancer genomics and molecular fin-
gerprints of drugs.

• DL models incorporating chemoinformatics descriptors
and/or fingerprints of drugs show early promise for
drug repositioning and discovery.

• DL has the potential to be applied to additional phar-
macogenomic data resources to study the mechanisms
and/or modes of drug action.
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