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Abstract

Craniofacial syndromes often involve skeletal defects of the head. Studying the development of the 

chondrocranium (the part of the endoskeleton that protects the brain and other sense organs) is 

crucial to understanding genotype-phenotype relationships and early detection of skeletal 

malformation. Our goal is to segment craniofacial cartilages in 3D micro-CT images of embryonic 

mice stained with phosphotungstic acid. However, due to high image resolution, complex object 

structures, and low contrast, delineating fine-grained structures in these images is very 

challenging, even manually. Specifically, only experts can differentiate cartilages, and it is 

unrealistic to manually label whole volumes for deep learning model training. We propose a new 

framework to progressively segment cartilages in high-resolution 3D micro-CT images using 

extremely sparse annotation (e.g., annotating only a few selected slices in a volume). Our model 

consists of a lightweight fully convolutional network (FCN) to accelerate the training speed and 

generate pseudo labels (PLs) for unlabeled slices. Meanwhile, we take into account the reliability 

of PLs using a bootstrap ensemble based uncertainty quantification method. Further, our 

framework gradually learns from the PLs with the guidance of the uncertainty estimation via self-

training. Experiments show that our method achieves high segmentation accuracy compared to 

prior arts and obtains performance gains by iterative self-training.
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1 Introduction

Approximately 1% of babies born with congenital anomalies have syndromes including 

skull abnormalities [13]. Anomalies of the skull invariably require treatments and care, 

imposing high financial and emotional burdens on patients and their families. Although 

prenatal development data are not available for study in humans, the deep conservation of 
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mammalian developmental systems in evolution means that laboratory mice give access to 

embryonic tissues that can reveal critical molecular and structural components of early skull 

development [3, 18]. The precise delineation of 3D chondrocranial anatomy is fundamental 

to understanding dermatocranium development, provides important information to the 

pathophysiology of numerous craniofacial anomalies, and reveals potential avenues for 

developing novel therapeutics. An embryonic mouse is tiny (∼2 cm3), and thus we dissect 

and reconstruct the chondrocranium from 3D micro-computed tomography (micro-CT) 

images of specially stained mice. However, delineating fine-grained cartilaginous structures 

in these images is very challenging, even manually (e.g., see Fig. 1).

Although deep learning has achieved great success in biomedical image segmentation [11, 

12, 19, 20, 22], there are three main challenges when applying existing methods to cartilage 

segmentation in our high-resolution micro-CT images. (1) The topology variations of 

craniofacial cartilages are very large in the anterior, intermediate, and posterior of the skull 

(as shown in Fig. 1(a)). Known methods for segmenting articular cartilages in knees [2, 17] 

only deal with relatively homogeneous structures. (2) Such methods deal with images of 

much lower resolutions (e.g., 200×5122), and simple scaling-up would precipitate huge 

computation requirements. Micro-CT scanners work at the level of one micron (i.e., 1μm), 

and a typical scan of ours is of size 1500×20002. In Fig. 1(c), the cropped sub-region is of 

size 4002, and the region-of-interest (ROI) is only 5 pixels thick. (3) More importantly, only 

experts can differentiate cartilages, and it is unrealistic to manually label whole volumes for 

training fully convolution networks (FCNs) [12]. While some semi-supervised methods [21, 

23] were studied very recently, how to acquire and make the most out of very sparse 

annotation is seldom explored, especially for real-world complex cartilage segmentation 

tasks.

To address these challenges, we propose a new framework that utilizes FCNs and 

uncertainty-guided self-training to gradually boost the segmentation accuracy. We start with 

extremely sparsely annotated 2D slices and train an FCN to predict pseudo labels (PLs) for 

unseen slices in the training volumes and the associated uncertainty map, which quantifies 

pixelwise prediction confidence. Guided by the uncertainty, we iteratively train the FCN 

with PLs and improve the generalization ability of FCN in unseen volumes. Although the 

above process seems straightforward, we must overcome three difficulties. (1) The FCN 

should have a sufficiently large receptive field to accommodate such high-resolution images 

yet needs to be lightweight for efficient training and inference due to the large volumes. (2) 

Bayesian-based uncertainty quantification requires a linear increase of either space or time 

during inference. We integrate FCNs into a bootstrap ensemble based uncertainty 

quantification scheme and devise a K-head FCN to balance efficiency and efficacy. (3) The 

generated PLs contain noises. We consider the quality of PLs and propose an uncertainty-

guided self-training scheme to further refine segmentation results.

Experiments show that our proposed framework achieves an average Dice of 78.98% in 

segmentation compared to prior arts and obtains performance gains by iterative self-training 

(from 78.98% to 83.16%).
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2 Method

As shown in Fig. 2, our proposed framework contains a new FCN, which can generate PLs 

and uncertainty estimation at the same time, and an iterative uncertainty-guided self-training 

strategy to boost the segmentation results.

2.1 K-Head FCN

Initial Labeling and PL Generation.—We consider two sets of 3D data, A = Ai i = 1
L

and ℬ = ℬi i = 1
U , for training and testing respectively, where each Ai (or ℬi) is a 3D 

volume and L (or U) is the number of volumes in A (or ℬ). Each 3D volume can be viewed 

as a series of 2D slices, i.e., Ai = {Ai
j}j = 1

iQ
, where iQ is the number of slices in Ai. To begin 

with, experts chose representative slices in each Ai from the anterior, intermediate, and 

posterior of the skull and annotated them at the pixel level. Due to the high resolution of our 

micro-CT images, the annotation ratio is rather sparse (e.g., 25 out of 1600 slices). Thus, 

each Ai can be divided into two subsets Ali = {li
j}j = 1

iP
 and Aui = {ui

j}j = 1
iR

, where each slice 

li
j has its associate label mi

j, and iQ > iR ≫ iP. Conventionally, using such sparse annotation, 

a trained FCN lacks generalization ability to the unseen volumes B. Hence, a key challenge 

is how to make the most out of the labeled slices. We will show that an FCN can delineate 

ROIs in unseen slices of the training volumes (i.e., Aui) with very sparsely labeled slices. 

For this, we propose to utilize these true labels (TLs) and generate PLs to expand the 

training data.

Uncertainty Quantification.—Since FCN here is not trained by standard protocol, its 

predictions may be unreliable and noisy. Thus, we need to consider the reliability of the PLs 

(which may otherwise lead to meaningless guidance). Bayesian methods [7] provided a 

straightforward way to measure uncertainty quantitatively by utilizing Monte Carlo 

sampling in forward propagation to generate multiple predictions. Prohibitively, the 

computational cost grows linearly (either time or space). Since our data are large volumes, 

such cost is unbearable. To avoid this issue, we need to design a method that is both time- 

and space-efficient. Below we illustrate how to design a new FCN for this purpose.

There are two main types of uncertainty in Bayesian modelling [8, 16]: epistemic 
uncertainty captures uncertainty in the model (i.e., the model parameters are poorly 

determined due to the lack of data/knowledge); aleatoric uncertainty captures genuine 

stochasticity in the data (e.g., inherent noises). Without loss of generality, let fθ(x) be the 

output of a neural network, where θ is the parameters and x is the input. For segmentation 

tasks, following the practice in [8], we define pixelwise likelihood by squashing the model 

output through a softmax function S : p y ∣ fθ(x), σ2 = S 1
σ2fθ(x) . The magnitude of σ 

determines how ‘uniform’ (flat) the discrete distribution is. The log likelihood for the output 

Zheng et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is: log p y = c ∣ fθ(x), σ2 = 1
σ2fθ

c(x) − log∑c′exp 1
σ2fθ

c′(x) = 1
σ2 log

exp fθ
c(x)

∑c′ exp fθ
c′(x)

− log
∑c′ exp 1

σ2fθ
c′(x)

∑c′ exp fθ
c′(x)

1
σ2

≈ 1
σ2 logS fθ(x) c − 1

2 logσ2

, where fθ
c(x)

is the c-th class of output fθ(x), and we use the explicit simplifying assumption 

∑c′exp fθ
c′(x)

1
σ2 ≈ 1

σ ∑c′exp 1
σ2fθ

c′(x) . The objective is to minimize the loss given by the 

negative log likelihood:

ℒUC θ, σ2 = − 1
N ∑

i

N
∑
m

M
1m = clog p yi = c ∣ fθ xi , σ2 , (1)

where N is the number of training samples and 1m = c is the one-hot vector of class c. In 

practice, we make the network predict the log variance s := logσ2 for numerical stability. 

Now, the aleatoric uncertainty is estimated by e−s, and we can quantify the epistemic 

uncertainty by the predictive variance by 1
K ∑k

K yk
2 − 1

K ∑k
K yk

2
, where yk = fθ(x) is the k-th 

sample from the output distribution.

K-Head FCN.—To sample K samples from the output distribution, we adopt the bootstrap 

method into the FCN design. A naïve way would be to maintain a set of K networks 

{fθk}k = 1
K  independently on K different bootstrapped subsets (i.e., {Dk}k = 1

K  of the whole 

dataset D and treat each network fθk as independent samples from the weight distribution. 

However, it is computationally expensive, especially when each neural net is large and deep. 

Hence, we propose a single network that consists of a shared backbone architecture with K 
lightweight bootstrapped heads branching on/off independently. The shared network learns a 

joint feature representation across all the data, while each head is trained only on its 

bootstrapped sub-sample of the data. The training and inference of this type of bootstrap can 

be conducted in a single forward/backward pass, thus saving both time and space. Besides, 

in contrast to previous methods where σ2 is assumed to be constant for all inputs, we 

estimate it directly as an output of the network [7, 16]. Thus, our proposed network consists 

of a total of K + 1 branches—K heads corresponding to the segmentation prediction map 

and an extra head corresponding to σ2. In all the experiments, K is set as 5, and the input 

image size is 512 × 512.

Figure 3 shows the detailed structure of our new K-head FCN. There are 7 residual blocks 

(RBs) and max-pooling operations in the encoding-path to deliver larger reception fields, 

each RB containing 2 cascaded residual units as in ResNet [6]. To save parameters, we 

maintain the number of channels in each residual unit and a similar number of feature 

channels at the last 4 scales. Rich contextual and semantic information is extracted in 

shallower and deeper scales in the encoding-path and is up-sampled to maintain the same 

size for the input and output and then concatenated to generate the final prediction. The 

output layer splits near the end of the model for two reasons: (1) ease the training difficulty 
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and improve the convergence speed; (2) incur minimal computation resource increases (both 

time and space) in training and inference. To train the network, we randomly choose one 

head in each iteration and compute the cross-entropy loss ℒCE. It is combined with the 

uncertainty loss ℒUC to update the parameters in the chosen head branch and the shared 

backbone only (i.e., freezing the other K − 1 head branches). Specifically, ℒ = ℒCE + 0.04

ℒUC.

2.2 Iterative Uncertainty-Guided Self-Training

Since both Ali and Aui come from the same volume Ai and are based on the assumption that 

the manifolds of the seen/unseen slices (of Ai) are smooth in high dimensions [15], our 

generated PLs bridge the annotation gap. However, the K predictions, {mi
j, k}k = 1

K
, obtained 

from the output distribution for each ui
j ∈ Aui could be unreliable and noisy. Thus, we 

propose an uncertainty-guided scheme to reweight PLs and rule out unreliable (highly 

uncertain) pixels in subsequent training. Specifically, we calculate the voxel-level cross-

entropy loss weighted by the epistemic uncertainty σi
j for 

ui
j:ℒCE(mi

j, mi
j) =

∑ve−σvℒce(mv, mv)

∑ve−σv
, where mi

j is the prediction at the current iteration and 

mi
j = ∑k = 1

K mi
j, k; mv and mv are the values of the v-th pixel (for simplicity, we omit i and j); 

σv is the sum of normalized epistemic and aleatoric uncertainties at the v-th pixel; ℒce is the 

cross-entropy error at each pixel. Note that we do not choose a hard threshold to convert the 

average probability map mi
j to a binary mask, as inspired by the “label smoothing” technique 

[14] which may help prevent the network from becoming over-confident and improve 

generalization ability.

With the expansion of the training set (TLs ∪ PLs), our FCN can distill more knowledge 

about the data (e.g., topological structure, intensity variances), thus becoming more robust 

and generalizing better to unseen data ℬ. However, due to the extreme sparsity of annotation 

at the very beginning, not all the generated PLs are evenly used (i.e., highly uncertain and 

assigned with low weights). Hence, we propose to conduct this process iteratively.

Overall, with our iterative uncertainty-guided self-training scheme, we can further refine the 

PLs and FCN at the same time. In practice, it needs 2 or 3 rounds, but we do not have to 

train from scratch, incurring not too much cost.

3 Experiments and Results

Data Acquisition.

Mice were produced, sacrificed, and processed in compliance with animal welfare 

guidelines approved by the Pennsylvania State University (PSU). Embryos were stained with 

phosphotungstic acid (PTA), as described in [10]. Data were acquired by the PSU Center for 

Quantitative Imaging using the General Electric v|tom|x L300 nano/micro-CT system with a 

180-kV nanofocus tube and were then reconstructed into micro-CT volumes with a resulting 
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average voxel size of 5μm and volume size of 1500 × 20002. Seven volumes are divided into 

the training set A = {Ai}i = 1
4  and test set ℬ = {ℬi}i = 1

3 . Only a very small subset of slices in 

each Ai is labeled for training (denoted as Ali) and the rest unseen slices Aui and ℬ are used 

for the test. Four scientists with extensive experience in the study of embryonic bones/

cartilages were involved in image annotations. They first annotated slices in the 2D plane 

and then refined the whole annotation by considering 3D information of the neighboring 

slices.

Evaluation.

In the 3D image regions not considered by the experts, we select 11 3D subregions (7 from 

ℬ and 4 from Aui), each of an average size 30×3002 and containing at least one piece of 

cartilages. These subregions are chosen for their representativeness, i.e., they cover all the 

typical types of cartilages (e.g., nasal capsule, Meckel’s cartilage, lateral wall, braincase 

floor, etc). Each subregion is manually labeled by experts as ground truth. The segmentation 

accuracy is measured by Dice-Sørensen Coefficient (DSC).

Implementation Details.

All our networks are implemented with TensorFlow [1], initialized by the strategy in [5], and 

trained with the Adam optimizer [9] (with β1 = 0.9, β2 = 0.999, and ϵ = 1e-10). We adopt 

the “poly” learning rate policy Lr × 1 − iter
# iter

0.9
, where the initial rate Lr = 5e-4 and the 

max iteration number is set as 60k. To leverage the limited training data and reduce 

overfitting, we augment the training data with standard operations (e.g., random crop, flip, 

rotation in 90°, 180°, and 270°). Due to large intensity variance among different images, all 

images are normalized to have zero mean and unit variance.

Main Results.

The results are summarized in Table 1. To our best knowledge, there is no directly related 

work on cartilage segmentation from embryonic tissues. We compare our new framework 

with the following methods. (1) A previous work which utilizes U-Net [19] to automatically 

segment knee cartilages [2]. We also try another robust FCN model DCN [4]. For a fair 

comparison, we scale up U-Net [19] and DCN [4] to accommodate images of size 5122 as 

input and match with the number of parameters of our K-head FCN (denoted as U-Net* and 

DCN*). (2) A semi-supervised method that generates PLs and conducts self-training (i.e., 1-

head FCN-R3).

First, compared with known FCN-based methods, our K-head FCN yields better 

performance for cartilages in different positions. We attribute this to its deeper structures and 

multi-scale extracted feature fusion design, which leads to larger receptive fields and richer 

spatial and semantic features. Hence, our backbone model can capture significant topology 

variances in skull cartilages (e.g., relatively small but thick nasal parts, and large but thin 

shell-like cranial base and vault). Second, to show that our K-head FCN is comparable with 

Monte Carlo sampling based Bayesian methods, we implement 1-head FCN and conduct 

sampling K times to obtain PLs. Repeating the training process 3 times (denoted as ‘-R3’), 
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we observe that using PLs, K-head FCN-R3 achieves similar performance as 1-head FCN-

R3. However, in each forward pass, we obtain K predictions at once, thus saving ∼ K × the 

time/space costs. Qualitative results are shown in Fig. 4. Third, we further show that under 

the guidance of uncertainty, our new method (K-head FCN-R3-U) attains performance gain 

(from 82.45% to 83.16%). We attribute this to that unreliable PLs are ruled out, and the 

model optimizes under cleaner supervisions.

Discussions.

(1) Iteration Numbers. We measure DSC scores on both unseen slices in the training 

volumes ({Aui}i = 1
L ) and unseen slices in the test volumes ({ℬi}i = 1

U ) during the training of 

“K-head FCN-R3-U” (see Table 1 bottom-left). We notice significant performance gain after 

expanding the training set (i.e., TLs → TLs ∪ PLs, as Iter-1 → Iter-2). Meanwhile, because 

the uncertainty of only a small amount of pixels changes during the whole process, the 

performance gain is not substantial from Iter-2 to Iter-3. (2) Annotation Ratios. As shown in 

Table 1 bottom-right, the final segmentation results can be improved using more annotation, 

but the improvement rate decreases when labeling more slices. (3) Uncertainty Estimation. 

We visualize the samples along with estimated segmentation results and the corresponding 

epistemic and aleatoric uncertainties from the test data in Fig. 5. It is shown that the model is 

less confident (i.e., with a higher uncertainty) on the boundaries and hard mimic regions 

where the epistemic and aleatoric uncertainties are prominent.

4 Conclusions

We presented a new framework for cartilage segmentation in high-resolution 3D micro-CT 

images with very sparse annotation. Our K-head FCN produces segmentation predictions 

and uncertainty estimation simultaneously, and the iterative uncertainty-guided self-training 

strategy gradually refines the segmentation results. Comprehensive experiments showed the 

efficacy of our new method.
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Fig. 1. 
Examples of micro-CT images of stained mice. (a) A raw 3D image and its manual 

annotation. The shape variations are large: the front nasal cartilage is relatively small (i.e., 

3002); the cranial vault is very big (i.e., 900 × 500) but extremely thin like a half-ellipsoid 

surface. (b) A 2D slice from the nasal cartilage (top) and its associated label (bottom); the 

image contrast is low and there are many hard mimics in surrounding areas. (c) Two 2D 

slices from the cranial vault (top) and their associated labels (bottom); the cartilage is very 

thin. Best viewed in color.
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Fig. 2. 
An overview of our proposed framework.
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Fig. 3. 
The network architecture of our proposed method, K-head FCN. The output layer branches 

out to K bootstrap heads and an extra log-variance output.

Zheng et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2020 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Qualitative examples: (a) Raw subregions; (b) ground truth; (c) U-Net* (TL); (d) K-head 

FCN (TL); (e) K-head FCN-R3-U (TL∪PL). (XX) = (trained using XX).
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Fig. 5. 
Visualization of uncertainty. From left to right: a raw image region, ground truth, prediction 

result, estimated epistemic uncertainty, and estimated aleatoric uncertainty. Brighter white 

color means higher uncertainty.
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Table 1.

Segmentation results. Top: DSC (%) comparison of cartilages in the anterior, intermediate, and posterior skull, 

w/annotation ratio of 3.0%. TL: true labels; PL: pseudo labels. Bottom-left: “K-head FCN-R3-U (TL∪PL)” w/

annotation ratio of 3.0%. Bottom-right: “K-head FCN-R3-U (TL∪PL)” w/different annotation ratios.
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