
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(11):7048-7056 | http://dx.doi.org/10.21037/jtd.2020.04.20

Introduction

Tissue analysis is the current gold standard in the diagnosis 
and management of lung cancer. Obtaining tissue from 
lung cancer is typically achieved by percutaneous computed 
tomography (CT)-guided core needle biopsies for 
peripheral lesions or bronchoscopic sampling for central 
lesions. These biopsies, however, can in some cases be non-
diagnostic, in the event the adjacent reactive lung tissue or 
bronchial wall is sampled. This sampling is also associated 
with complication rates of 38.8% for core biopsy and 
24% for fine needle aspiration (FNA) in a large meta-

analysis of 8,133 procedures (1). In this study, the most 
common complication was pneumothorax followed 
by hemorrhage (1). Some patients will undergo larger 
surgical wedge biopsies or resections of lung cancers as 
both a diagnostic and therapeutic procedure. While 
effective, these invasive procedures are also associated with 
complications (2). Tissue is typically required not only for 
the initial diagnosis but also in the setting of recurrence 
following treatment with a targeted agent. There is a strain 
in tissue requirements to meet the increasing panel of 
sequencing, cytogenetics, and immunohistochemical tests 
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that are required on lung cancer cases (3). Each of these 
tests requires tissue that may have already been exhausted by 
sections and immunohistochemical stains required to make 
the diagnosis and classification of the lung cancer. Given 
the challenges with obtaining tissue and the increasing 
requirements of tissue for molecular testing, there is great 
interest in the use of liquid biopsies in the diagnosis, as well 
as in supporting molecular testing in lung cancer.

Liquid biopsy refers to the use of various body fluids 
including blood, urine (4), pleural fluid (5), cerebral 
spinal fluid (CSF) (6), ascites (7) and others to test for 
circulating elements derived from the tumor. This broad 
definition includes circulating tumor cells (CTC), which 
are rare circulating cells that are typically present at 1–10 
CTC per mL of whole blood in patients with metastatic 
disease (8). CTCs are typically detected by enriching for 
carcinoma cells using epithelial markers such as EpCAM, 
often combined with cytokeratins, and depletion of 
immune cells from the sample, typically using CD45 (9). 
However, this approach is limited by the fact that some 
tumor cells may undergo an epithelial to mesenchymal 
transition during the metastatic process and may no longer 
express epithelial markers resulting in false negative 
results (10). Alternative approaches utilize size, density or 
electrochemical properties to enrich for a broader spectrum 
of possible CTCs (11). Both types of approaches then 
typically rely upon a combination of automated and manual 
image analysis to definitively identify CTCs. CTCs can be 
detected in a subset of patients with early stage resectable 
disease (12). The presence of CTCs has been associated in 
numerous studies with an increased rate of recurrence and 
metastasis (13-15) and hold promise in the early detection 
of lung cancer in high-risk patients (16). However, liquid 
biopsies have increasingly utilized cell-free molecules 
released by the tumor including deoxyribonucleic acid 
(DNA), ribonucleic acid (RNA) (17) and microRNAs (18) 
as tumor-associated biomarkers for diagnosis and to identify 
targetable mutations. These assays have been powered by 
recent technologic advances in next-generation sequencing 
(NGS), which have developed tools that can be employed 
to detect rare tumor-associated molecules amongst the 
normal counterparts present in various fluids. These same 
techniques have been utilized and revolutionized prenatal 
testing and allow for robust non-invasive fetal testing (19). 

Cell-free DNA (cfDNA) present in the blood has been 
widely utilized as a biomarker in numerous applications and 
is thought to be released into the bloodstream following 
cell lysis (19-21). cfDNA has also been shown to be higher 
in cancer patients compared to healthy controls and may 
relate to increased cell lysis and turn over in malignancies 

(20,22). A challenge with cfDNA applications is release of 
genomic DNA from white blood cells present in the whole 
blood that can dilute the tumor derived cfDNA and reduce 
the sensitivity of assays. Rapid processing of the specimens 
with centrifugation is required after sample acquisition 
to remove the white blood cells before significant lysis 
occurs (23). However, this is not always practical or 
feasible in clinical laboratories, many of which will send 
these specimens to specialized reference laboratories. 
Alternatively, there are specialized collection tubes that have 
been designed for cfDNA applications that both stabilize 
the white blood cells to prevent contamination and inhibit 
nucleases to protect the tumor derived cfDNA. They can 
provide sample stability for at least 5 to 7 days when stored 
at temperatures between 4 and 40 ℃ and similar techniques 
have been utilized to obtain circulating DNA from other 
fluids, including urine and CSF (24-27). The amount of 
required plasma is variable based on the downstream assay 
but at a minimum 0.2 to 1 mL of sample is required based 
on the type of extraction utilized (28). Cell-free RNA can 
be more challenging to obtain due to the inherent labile 
nature and susceptibility to degradation by nucleases. While 
cell-free mRNA is detectable, it is often of low abundance 
and challenging to detect in clinical samples (21,29,30). Due 
to the inherent challenges with detecting cell-free mRNA, 
many applications have focused instead on small non-coding 
RNAs including miRNA, which are more stable, abundant, 
and easier to detect in cell-free applications (31).

The circulating cfDNA in the bloodstream is ultimately 
excreted through the urine which can also be utilized as a 
completely non-invasive test for the assessment of tumor 
mutations (32). The rate of mutation detection has been 
shown to be comparable between blood and urine samples 
(in samples meeting a minimum volume of greater than 90 
mL of urine) and combined testing has been shown to be 
an effective means to optimize detection of tumor derived 
mutations in cases with insufficient tissue biopsies (33). 
Cytologic preparations from pleural fluid samples are a 
rich source of DNA for molecular testing (34), additional 
cell free samples (5) and supernatants from the preparation 
of cytology samples have also been utilized (35). The 
central nervous system (CNS) is a clinically important site 
of metastasis in lung cancer and CSF fluid is amenable to 
liquid biopsy testing. One study found mutations in cfDNA 
from CSF samples in 63% of patients with solid tumors 
with CNS metastasis (36) and this technique can also be 
utilized to identify clinically actionable biomarkers and 
resistance mechanisms (36,37). 

Once the cfDNA or other cell-free molecules have been 
obtained, advanced sequencing technologies are utilized to 
detect the rare fraction of tumor associated DNA molecules. 
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Many techniques are available to detect these rare DNA 
elements, however, one of the most common techniques 
currently used in clinical practice is known as digital droplet 
polymerase chain reaction (PCR). This technique allows for 
thousands of independent PCR reactions to be performed 
simultaneously in a single reaction tube within individual 
oil-water droplets present in the liquid that are insulated 
from one another. This allows for even rare DNA molecules 
present in a solution to be amplified and quantified with 
small amounts of input DNA (38). These reactions are 
coupled with a fluorescent reporter system to specific 
mutations present in the DNA. Each droplet is individually 
measured using a microfluidics system to produce a digital 
measure on the quantity of even rare mutant alleles present 
in cfDNA samples (39). These assays are robust and have 
been introduced into clinical workflows to detect specific 
mutations or resistance mutations in tissue samples. These 
tests have been employed in the case of detecting EGFR 
T790M mutations in lung cancer patients as a resistance 
mechanism to first and second-generation tyrosine kinase 
inhibitors (TKIs) (40-42). That said, this assay relies upon 
mutation specific PCR amplification and it is limited to 
the detection of only a few mutations, with each mutation 
requiring a separate PCR reaction. 

cfDNA in lung cancer screening

Annual low dose CT-screening has been shown to result 
in a modest decrease in mortality from lung cancer in high 
risk individuals (43). Liquid biopsy has been suggested to be 
a possible means to screen these high-risk patients without 
exposing them to radiation. However, in patients with early 
pre-clinical tumors, the amount of tumor derived cfDNA 
in the circulation is extremely small and difficult to detect. 
A number of studies have attempted to measure the low 
levels of cfDNA associated with early stage lung cancer but 
have been limited by low sensitivity and specificity (44-46).  
Linear modeling from a large study that correlated 
volumetric data on tumor size with cfDNA estimated that 
to produce a 0.1% allele frequency in cfDNA this would 
require a 10cm3 primary tumor (47). Assuming a sphere 
of tumor, 10 cm3 would correspond to a diameter of 2.67 
cm and correspond to at least a T1c tumor. However, 
as techniques advance, it may be technically feasible to 
accurately measure tumors with lower allele frequencies. 
In a recent study using deep sequencing, cfDNA from the 
tumor was detected in 100% of stage II–IV lung cancers and 
in 50% of stage I lung cancers (45). This will likely improve 
with refinement of current technologies and development 
of new more sensitive methods including measuring intact 

nanoscale extracellular vesicle-derived DNA, which has 
been shown to be more sensitive in detecting early stage 
lung cancer (44). An additional challenge with this testing 
is the unknown genetic profile of the tumor. Lung cancers 
have a heterogeneous genetic profile with few common 
genetics changes that span broadly across lung cancers. 
Furthermore, studies have shown that common mutations 
such as TP53 can be seen in up to 11% of control patients 
without cancer (48). However, as the sensitivities of these 
assays improve, there may be a role for them as ancillary 
tests to identify patients that should undergo additional 
imaging or to help better characterize nodules that are 
indeterminate by imaging or biopsy. 

EGFR testing

The most common targetable driver mutations in lung 
adenocarcinoma occur in the EGFR gene, with 90% of 
the activating mutations accounted for by L858R missense 
mutation and deletions in exon 19. The remaining 10% 
of mutations are made up of less frequent mutations that 
occur in exons 18, 20 and 21 (49). The relatively small 
number of mutations in EGFR allows for the development 
of robust assays that can be performed to detect low 
frequency cfDNA. Liquid biopsy has been successfully 
used as a method to determine the EGFR mutation 
status and correlates well with results from tissue 
biopsies (42,50-52). It has also been used to follow response to  
treatment (52). Many  c fDNA assays al low for the 
quantification of allele frequency, and mutated EGFR 
concentration has been shown to predict progression-
free survival (53). Furthermore, patients have a better 
progression-free survival when activating mutations can 
be detected in both the cfDNA and in the tissue (54). The 
BENEFIT trial was a phase 2 single-arm clinical study that 
explored the detection of EGFR mutations in cfDNA as a 
means to determine response to the TKI gefitinib (55). In 
this study that utilized a large NGS panel, EGFR mutations 
in cfDNA were found in 44% of patients. Of these patients, 
72.1% of patients achieved an objective response to 
treatment with gefitinib (55). The study serially measured 
cfDNA and found that 88% of patients showed clearance 
of EGFR mutations in cfDNA by week 8 and these patients 
had an improved progression-free survival (55). The 
main concern with the use of cfDNA alone is the lack of 
sensitivity for plasma-based genotyping, which has been 
reported to be on the order of 70% compared with direct 
tissue sampling (56). However, some ultrasensitive digital 
droplet PCR assays have improved this to detect down 
to a 0.04% mutant allele frequency with a sensitivity of  
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81.82% (57). It is increasingly understood that tumors 
are not derived from a single clone of cells but rather 
a population of cells that may have distinct molecular 
profiles. Tissue biopsy only samples a small portion of the 
tumor whereas cfDNA is derived from all tumor(s) present 
throughout the individual. A number of studies have shown 
that sampling both cfDNA and sequencing of biopsy 
specimens can sample distinct tumor populations and 
increase the yield of finding driver mutations or resistance 
mechanisms (58,59).

Patients with activating mutations in EGFR treated with 
TKIs will invariably develop resistance to these drugs. 
In patients treated with first- and second-generation 
inhibitors, more than half of the patients will develop 
resistance through secondary T790M mutations, imparting 
a resistance to these inhibitors (60). There are new classes 
of EGFR inhibitors including osimertinib, which can 
effectively treat these patients with T790M mutations (61).  
This has been one of the most useful and popular 
applications of liquid biopsies in lung cancer to date in 
detecting T790M mutations in patients that have developed 
resistance to first or second-generation TKIs (33,62,63). 
Since the majority of patients will develop resistance 
through a single point mutation, the assays can be developed 
to robustly detect a single mutation and do not need to be 
built around detecting multiple mutations in the sample. It 
has also been demonstrated that T790M mutations can be 
detected 2.2 months before clinically progressive disease and 
may have a value in screening patients for recurrence (64).

The clinical landscape is currently in flux as recent 
studies have suggested that osimertinib is more effective as 
a first line agent compared with gefitinib (65). Osimertinib 
is an irreversible inhibitor with minimal activity against the 
wild-type EGFR protein, which limits off-target effects and 
it is well tolerated. Since osimertinib is also active against 
T790M, it excludes this mutation as a possible resistance 
mechanism. As a consequence, T790M testing is not useful 
to determine the mechanism of resistance after osimertinib 
therapy. There is a current debate in the field between 
using osimertinib first line versus reserving it for use after 
treatment failure of first- or second-generation TKIs. 
The value of T790M testing will largely depend on the 
use of osimertinib or similar drugs in the first line versus 
after treatment failure. The resistance mechanism to 3rd 
generation TKIs is more complex and includes mutations 
such as C797S, but much more frequently includes 
activation of signaling cascades that bypass the need for 
EGFR signaling (66). Furthermore, a subset of cases will 
develop resistance through a conversion into a small cell 
lung carcinoma phenotype in which EGFR is no longer 
expressed (67). It is possible to detect the C797S mutation 

as well as mutation in other driver genes which would 
bypass the need for EGFR activity in cfDNA (68); however, 
there is not currently an available assay that can be used 
to detect the transformation into a small cell phenotype. 
Therefore, the determination of resistance mechanisms 
using the currently available tools following 3rd generation 
TKI therapy may require additional tissue sampling. 
Additional tools to sequence multiple genes (69) or even the 
exome (70) are being developed to help better understand 
mechanisms of resistance in cfDNA. 

ALK testing

A small percentage of patients with lung adenocarcinoma 
(1–5%) will have fusions of the ALK1 gene, typically with 
EML4, which results from an inversion of chromosome 2. 
Patients with these fusions can be treated with TKIs such as 
Crizotinib. These fusion events are typically detected using 
immunohistochemistry, fluorescence in situ hybridization 
(FISH), or sequencing-based assays on tissue samples. 
There are a small number of studies that have detected 
ALK fusions in liquid biopsy specimens. One study using a 
set of patients that were known to be ALK-positive utilized 
capture-based NGS to detect DNA fusions between EML4 
and ALK1 (71). While they were able to detect these fusions, 
the sensitivity was low and was especially low for patients 
without metastatic disease. Given the current sequencing 
technologies, this is likely insufficient for primary diagnostic 
purposes. With additional advances in technology, the 
sensitivity will likely improve and may become part of 
the routine workup for lung adenocarcinoma. Similar to 
EGFR, patients with ALK fusions treated with TKIs will 
typically develop resistance to the therapy. A subset of cases 
will develop resistance to inhibitors by additional mutations 
in ALK such as L1196M, G1269A, and F1174L, some 
of which can be targeted by 2nd and 3rd generation ALK 
inhibitors (72,73). These mutations along with common 
bypass resistance mutations can be detected using sensitive 
digital droplet techniques from liquid biopsy specimens and 
may have a role in clinical workflows for patients with ALK-
fusions treated with targeted therapies (74). 

PD-L1 testing and tumor mutational burden 

The introduction of immunotherapy has fundamentally 
changed the management of patients with lung cancer. 
Treatment with immunotherapy has been shown to improve 
the survival of patients with advanced (75) as well as early 
stage tumors with activity in the neoadjuvant setting (76). 
However, not all patients will respond to this treatment and 
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PD-L1 status has been used as a marker to determine those 
patients that will best respond to these treatments (77).  
This requires additional tissue that may have been exhausted 
by the initial molecular tests. Furthermore, PD-L1 status 
has been shown to be variable following additional rounds 
of treatment or radiation (78); however, in many cases 
the tumor is not rebiopsied following treatment and only 
pretreatment biopsies are available. Therefore, liquid biopsy 
is an attractive option as a way to sample the current profile 
of the tumor in an unbiased fashion to determine the current 
PD-L1 status. A number of groups have used technology 
designed to detect CTCs with the addition of antibodies to 
measure PD-L1 expression (79,80). In these studies, CTCs 
could be detected in the majority of cases and there was 
relatively good concordance (up to 93% and specificity of 
100%) with tissue sampling but are challenged with low 
sensitivity at 55% in one study (79,80). Another marker for 
patient response to immunotherapy is the tumor mutational 
burden; this can be detected from cfDNA and in a 
retrospective study predicts response to PD-L1 therapy (81).  
The study utilized a large hybridization-capture assay which 
targeted 1.1 Mb of genomic coding sequence to detect 0.5% 
allele frequency and excluded all germline polymorphisms. 
Using this assay, non-small cell lung cancer tumors with 
>16 mutations identified patients with better progression-
free survival when treated with atezolizumab. However, this 
testing can be too technically challenging and costly with 
current technologies but may emerge as an adjunct to PD-
L1 immunohistochemistry testing to best stratify patients 
that will respond to immunotherapy. 

Other testing

In addition to EGFR, ALK, and PD-L1, current guidelines 
also recommend ROS1 testing for patients with advanced 
lung cancer (3). In larger panels, the guidelines also 
recommend consideration for RET, ERBB2 (HER2), KRAS, 
MET and BRAF testing for patients (3). There are cfDNA 
based assays to detect ROS1 fusions as well as resistance 
mutations; however, as is the case with ALK testing, these 
assays are hampered by low sensitivity for detecting fusions 
in blood samples (82). Rare RET and MET gene alterations 
have been detected in cfDNA of patients with advanced 
cancers in proof of principle studies (83,84). There are 
robust assays for the detection of RAS and BRAF mutations 
in cfDNA, which may be useful in both the initial diagnosis 
and in understanding resistance mechanisms to EGFR or 
ALK targeted therapies (20,42,59,68,74). New technologies 
and assays are being developed to expand cfDNA testing 
beyond single genes to panels of actionable targets, with 

one such panel including testing for 35 genes that is able to 
detect an allele frequency as low as 0.25% (85).

Future perspectives 

There is currently a role for liquid biopsy in patients with 
advanced lung cancer, especially after recurrence following 
treatment with targeted therapies. However, the current 
assays have a relatively low sensitivity in early stage disease. 
With the increasing power of NGS technologies, it will 
soon be possible to detect ultra-low frequency mutations 
present in cfDNA samples from patients with early stage 
cancer. With this increased sequencing power, there will 
likely be a shift towards larger panels to detect alterations 
in multiple oncogenes. Regardless of the power of these 
technologies, it is the opinion of the authors that, for the 
foreseeable future, there will remain a critical role for tissue 
sampling in the diagnosis and management of lung cancer. 
Liquid biopsy testing will increasingly play a supportive 
role, particularly after the initial diagnosis of lung cancer 
to profile the genetics of the cancer, follow response to 
treatment, and better understand resistance mechanisms to 
targeted therapies. 

Conclusions

Liquid biopsy can be used for a number of tests that include 
the detection of CTCs and the measurement of cell-
free genetic material. These tests have been shown to be 
useful in the diagnosis and management of advanced lung 
cancers. Particularly, these assays have been utilized in 
measuring the response to treatment with EGFR inhibitors 
and characterizing resistance mechanisms. There is an 
expanding future for these tests to better define early 
and advanced lung cancers and to help guide treatment 
decisions, all while limiting the need for invasive tissue 
sampling. 
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