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Abstract

Cancer is the second leading cause of death in the United States. To improve cancer prognosis and 

survival rates, a better understanding of multi-level contributory factors associated with cancer 

survival is needed. However, prior research on cancer survival has primarily focused on factors 

from the individual level due to limited availability of integrated datasets. In this study, we sought 

to examine how data integration impacts the performance of cancer survival prediction models. We 

linked data from four different sources and evaluated the performance of Cox proportional hazard 

models for breast, lung, and colorectal cancers under three common data integration scenarios. We 

showed that adding additional contextual-level predictors to survival models through linking 

multiple datasets improved model fit and performance. We also showed that different 

representations of the same variable or concept have differential impacts on model performance. 

When building statistical models for cancer outcomes, it is important to consider cross-level 

predictor interactions.
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Introduction

As the second leading cause of death, cancer is responsible for one in every four deaths in 

the United States.1 It is estimated that there will be approximately 1.7 million new cancer 

cases and 600,000 cancer deaths in the United States in 2017.2 Furthermore, the numbers of 

new cancer cases and deaths per year are on the rise. By 2020, the number of new cancer 

cases is expected to reach approximately 2 million per year.3 Cancer will soon surpass heart 

disease as the leading cause of death in the United States.3 To improve cancer survival rates 

and prognosis, one of the first steps is to improve our understanding of contributory factors 
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associated with cancer survival. Prior research has suggested that cancer survival is 

influenced by multiple factors from multiple levels. At the individual level, cancer survival is 

influenced by not only the cancer type, stage of diagnosis, treatment, patient demographics, 

and health care access but also risky health behaviors such as smoking, alcohol drinking, 

obesity, and physical inactivity. At the contextual level, cancer survival is influenced by 

public policies that affect the health care delivery system which could impact patients’ travel 

distance to the treatment facility and adjuvant cancer treatments.4

Prior epidemiologic research on cancer survival in the United States has primarily focused 

on contributory factors from the individual level due to limited availability of integrated 

datasets.5-17 Most of these analyses used data from a single source or two sources at most, 

such as data from a hospital or a cancer registry. Hospital data used for survival analyses are 

often data obtained from clinical trials or retrospective chart reviews, whereas cancer 

registry data are often data from a population-based cancer registry such as the Surveillance, 

Epidemiology, and End Results (SEER) registry or a state-based cancer registry.18 For 

example, many cancer survival studies used data from the SEER program.5-7,11,15-17 A 

recent study published in the Journal of American Medical Association (JAMA) used the 

SEER data to evaluate racial and ethnic disparities in cancer-specific survival among women 

diagnosed with invasive breast cancer.6 Another study used the SEER data to examine 

prognostic factors for survival among patients with resected early-stage rectal 

adenocarcinoma.17 Although cancer survival studies using registry data usually have much 

larger sample sizes than those using hospital data, these studies often lack information on 

contextual factors that contribute to cancer survival beyond the individual level.

Our current understanding of contributory factors for cancer survival is mostly gained from 

disparate information gathered across many studies, each analyzing a subset of predictors. 

However, it is important to simultaneously examine plausible cancer survival predictors 

from multiple levels (i.e. top-down approach to model building), so that confounding effects 

among predictors can be fully understood.19 In addition, when both individual- and 

contextual-level factors are available, it is possible to test and identify significant cross-level 

predictor interactions, which not only improves model fit but also provides important 

information to inform the design of future interventions. Thus, integrating existing, relevant 

datasets from heterogeneous sources is required to conduct a sound multi-level data analysis 

on cancer survival.

On the other hand, researchers are faced with unique challenges when integrating data from 

different sources since these data can be heterogeneous in terms of syntax, database schema, 

and semantics. For instance, one of the challenges integrating variables from different 

sources is that variables measuring the same concept could have different representations. 

One example is that two measures can be used to define the rurality of a geographic unit 

(e.g. census tract or county): the rural–urban commuting area (RUCA) codes and the 

National Center for Health Statistics (NCHS) urban–rural classification scheme.20,21 Both 

measures are ordinal variables that can classify a geographic unit along the urban–rural 

continuum. However, the RUCA classification has 10 categories at the census tract level, 

whereas NCHS classification has six categories at the county level. Thus, it is necessary to 

decide whether to integrate RUCA and NCHS codes to create a new rurality indicator, or to 
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choose one based on their fit with the study’s conceptual framework or their performance in 

data analysis.

The goal of the study was to examine how data integration impacts the performance of 

cancer survival prediction models. We examined the predictive ability of cancer survival 

models under three common data integration scenarios that researchers often face in data 

analysis. We linked data from four different sources and evaluated discrimination and 

reclassification performance of Cox proportional hazard models for breast, lung, and 

colorectal cancers when (1) additional predictors, especially contextual factors, become 

available through linking multiple datasets; (2) different forms of the same predictor are 

available; and (3) different predictors representing the same concept are available.

Methods

Study setting and data sources

This analysis was based on data of the University of Florida (UF) Health Cancer Center 

Catchment Area (CCCA) from multiple sources. The UF Health CCCA is a region in North 

Florida that included 20 counties: Alachua, Baker, Bradford, Citrus, Clay, Columbia, Dixie, 

Gilchrist, Hamilton, Jefferson, Lafayette, Leon, Levy, Madison, Marion, Putnam, Sumter, 

Suwannee, Taylor, and Union. We obtained data for these 20 counties from six sources: (1) 

the Florida Cancer Data System (FCDS), a statewide population-based cancer registry; (2) 

the FLHealthCHARTS,22 a community health assessment tool created by the Florida 

Department of Health that has data on health indicators such as chronic diseases and injury 

from various sources; (3) the 2000 US Census; (4) the Behavioral Risk Factor Surveillance 

System (BRFSS) of the Centers for Disease Control and Prevention;23 (5) the RUCA codes; 

and (6) the NCHS urban–rural classification scheme.

Patients

We identified adult cancer patients (18 years or older at the time of diagnosis) with primary 

breast, lung, or colorectal cancer from the FCDS. Primary cancer sites were identified using 

International Classification of Diseases for Oncology–3rd edition (ICD-O-3) codes C50.0 

through C50.9 for breast; C34.0 through C34.3, and C34.8 and C34.9 for lung; and C18.0 

through C18.9, and C26.0 for colorectal cancer. We excluded patients diagnosed before 1996 

because health insurance status was not routinely recorded in FCDS before that year. We 

also excluded re-occurring cancer cases of the same anatomic site within 5 years. For breast 

cancer, we only analyzed female breast cancer cases. Data from 50,151 unique cancer 

patients (18,644 breast; 21,552 lung; and 9955 colorectal) diagnosed between 1996 and 

2010 were used for data analysis. We enumerated a few random samples of our data in a 

supplementary file along with a detailed data dictionary for the variables we used. The data 

dictionary also indicated the source database of each predictor.

Data integration and variables

The outcome of the study was survival time (in months) obtained from the FCDS. Survival 

time was defined as the time from the date of cancer diagnosis to the date of death due to 

cancer or the date of last contact. The predictor variables and their sources were summarized 
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in Table 1. We also detailed the predictors of all the models we built in Supplemental 

Appendix A. The FCDS contains individual-level cancer data. The FLHealthCHARTS, 

BRFSS, and NCHS data are at the county level, which express the characteristics of each 

county (e.g. average smoking rate of a county from BRFSS). The US Census and RUCA 

data are at the census tract level. We linked the FCDS data with the FLHealthCHARTS, US 

Census, and BRFSS data by mapping an individual’s residency to a census tract or county 

(i.e. with a county code or a census tract code). For example, if a patient lives in the Alachua 

county, we then pulled in contextual factors such as the average smoking rate of the Alachua 

county from the BRFSS. The individual-level predictors included patients’ demographic, 

tumor, and treatment information obtained from the FCDS. The contextual-level predictors 

included county-level density of primary care physicians obtained from the 

FLHealthCHARTS, the four Social Vulnerability Index (SVI) domain scores and census 

tract rurality status computed from the 2000 US Census data,24 the county-level smoking 

and alcohol consumption rates from the BRFSS, and the area rurality status defined by either 

RUCA or the NCHS urban–rural classification scheme. The four SVI domains included 

socioeconomic status (SES), household composition and disability, minority status and 

language, and housing and transportation.24

Statistical analysis

We assessed the predictive ability of Cox proportional hazard models on cancer–specific 

survival at 5 years under three data integration scenarios.

Data integration scenario A (when additional predictors become available 
through linking multiple datasets).—Under this scenario, we built a series of nested 

Cox models: models A1 to A3. In model A1, we used the individual-level predictors from 

the FCDS only. These predictors included sex, race, age at diagnosis, year of diagnosis, 

stage of diagnosis, treatment received, smoking status, marital status, and health insurance. 

In model A2, we used the integrated dataset and additionally added the contextual predictors 

to model A1. These contextual predictors included the four SVI domain scores from the US 

Census, density of primary care physicians from the FLHealthCHARTS, and county-level 

smoking rate, alcohol consumption rate, and health status from the BRFSS. In model A3, we 

additionally added the interactions between race and the other predictors in model A2. 

Model A3 is the full model, which provided information on the added impact from cross-

level interactions on cancer-specific survival.

Data integration scenario B (when different forms of the same variable are 
available).—Under this scenario, we built four models using four different census tract 

rurality definitions based on the RUCA codes. RUCA codes use measures of population 

density, urbanization, and daily commuting to classify US Census tracts into 10 groups. As 

seen in Table 2, model B1 included a rurality predictor based on the original 10-level RUCA 

definition. Models B2 to B4 included a rurality predictor based on different scientifically 

meaningful groupings of the RUCA codes. For all the models, we included all the 

individual-level factors from the FCDS as other predictors.
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Data integration scenario C (when different variables representing the same 
concept are available).—Under this scenario, we built one model (model C1) using a 

rurality predictor based on the NCHS urban–rural classification scheme and compared this 

model to model B1, which included a rurality predictor based on the RUCA rurality 

definition. According to the NCHS urban–rural classification scheme, the US counties can 

be classified into six groups: large central metropolitan, large fringe metropolitan, medium 

metropolitan, small metropolitan, micropolitan, and non-core. All the individual-level 

factors from the FCDS were also included in model C1 as predictors.

For all prediction models, performance was evaluated using the Akaike information criterion 

(AIC), c-statistic, integrated discrimination improvement (IDI), relative IDI, and continuous 

net reclassification improvement (NRI).25-27 The AIC and c-statistic were computed for all 

models. The IDI and continuous NRI were computed for comparing models 2 and 3 to 

model 1. The c-statistic, IDI, and relative IDI are measures of discrimination, which is a 

model’s ability to distinguish between subjects with and without an event (i.e. cancer-related 

death at 5 years). The c-statistic is the estimated area under the receiver operating 

characteristic (ROC) curve. The IDI equals the difference in discrimination slopes between 

the model with additional predictors and the model without, or the difference in the 

proportion of variance explained by the two different models. The continuous NRI is a 

measure of improvement in reclassification, defined as the sum of two differences in 

proportions resulting from the addition of new predictors: (1) proportion of individuals with 

events who have an increase in predicted risks minus the proportion with a decrease (event 

NRI), and (2) proportion of individuals without events who have a decrease in predicted 

risks minus the proportion with an increase (non-event NRI). The use of c-statistic, IDI, and 

NRI has been extended in the context of survival data. Performance statistics were computed 

using validated SAS macros available from http://ncook.bwh.harvard.edu/sas-macros.html. 

All statistical analyses were performed using SAS, version 9.4 (SAS, Cary, NC, USA).

Results

Patients’ characteristics

We summarized the patients’ characteristics in Table 3. The average age of the patients was 

63.2, 68.8, and 70.2 years for breast, lung, and colorectal cancers, respectively. For lung and 

colorectal cancers, 58.4 and 52.0 percent of the patients were men. In addition, the majority 

of the patients were non-Hispanic Whites (NHWs) for the three cancers analyzed. The 

percentage of NHW patients was 87.8 percent for breast cancer, 91.3 percent for lung 

cancer, and 86.8 percent for colorectal cancer. Regarding stage of diagnosis, most of the 

breast cancer patients (67.8%) were diagnosed at a localized stage. In contrast, only 16.2 

percent and 33.1 percent of the lung and colorectal cancer patients were diagnosed at a 

localized stage. The rate of late-stage cancer diagnosis (i.e. regional or distant cases) was 

27.3, 64.6, and 55.9 percent for breast, lung, and colorectal cancers, respectively. Regarding 

cancer treatment, most of the breast (93.2%) and colorectal (86.5%) cancer patients had 

surgery to remove the tumor, whereas only 24.0 percent of the lung cancer patients had 

cancer-removing surgery.
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The majority of the lung cancer patients smoked cigarettes, with 34.6 and 32.5 percent of 

these patients being former and current smokers. Only 8 percent of the lung cancer patients 

had never smoked cigarette, compared to 45.5 and 39.8 percent of the breast and colorectal 

cancer patients being never smokers. A higher percentage of the breast cancer (24.5%) 

patients had private health insurance, compared to the lung (9.8%) and colorectal (12.2%) 

cancer patients. The lung and colorectal cancer patients were more likely to have Medicare 

or Medicare with supplement compared to the breast cancer patients. The 5-year survival 

rates for the breast, lung, and colorectal cancer patients were 82.6, 17.0, and 58.3 percent, 

respectively.

Scenario A

We summarized the hazard ratios (HRs) from the Cox models in Supplement A. For breast 

cancer, we identified a significant race by health insurance interaction (chi-square = 33.6, p 

< 0.001) in the full model. Compared to NHWs, non-Hispanic Blacks (NHBs) had 

significantly higher hazard when they had Medicaid, private, other type, or no insurance. 

Hispanics had significantly lower hazard than NHWs when they had no insurance. For lung 

cancer, we identified three significant interactions: race by stage of diagnosis (chi-

square=20.9, p = 0.002), race by marital status (chi-square = 18.6, p = 0.001), and race by 

SVI SES (chi-square = 6.31, p = 0.043). There was no difference in hazard between NHWs 

and NHBs when diagnosed with regional or distance lung cancer. However, NHBs had 

significantly higher hazard than NHWs when the diagnoses were localized. Furthermore, 

lower SES meant higher hazard among NHWs, but not among NHBs or Hispanics. For 

colorectal cancer, two interactions were significant: race by stage of diagnosis (chi-square = 

20.7, p = 0.002) and race by marital status (chi-square = 35.1, p < 0.001). NHBs had 

significantly higher hazard than NHWs when diagnosed with regional colorectal cancer.

The performance statistics from Cox models A1 to A3 were summarized in Table 4. The 

AIC decreased across models A1 to A3 for all three cancers, indicating increasingly better 

model fit when adding contextual predictors and interactions to the models. In moving from 

model A1 to model A2, there was almost no change in the c-statistic for all three cancers. 

However, we observed a small yet statistically significant increase in the IDI and relative 

IDI, suggesting a slight increase in the models’ distinguishing ability. The continuous NRI 

was statistically significant for all three cancers. The event NRI was significant for the lung 

cancer model only (event NRI = 0.03; 95% confidence interval (CI): 0.02–0.05), indicating a 

significant increase in the model’s ability to correctly classify individuals who died of cancer 

after 5 years when contextual predictors were added to the model. The non-event NRI was 

statistically significant for all three cancers, suggesting a significant increase in the models’ 

ability to correctly classify individuals who did not die from cancer after 5 years when 

adding contextual predictors. In moving from model A1 to model A3, we observed similar 

trends in the performance statistics. The IDI, relative IDI, and continuous NRIs were all 

larger than those obtained from comparing model A1 to model A2.

Scenario B

The performance statistics from models B1 to B4 were summarized in Table 5. For all three 

cancers, the c-statistic did not differ much across the models. For breast cancer, models B2 
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to B4 had significantly lower IDI, relative IDI, and NRI than model B1, indicating lower 

discrimination and reclassification performance. On the other hand, IDI, relative IDI, and 

NRI stayed unchanged across models B1 to B4 for lung cancer, suggesting using different 

RUCA rurality definitions did not affect model performance. For colorectal cancer, models 

B2 and B3 had significantly lower IDI and relative IDI than model B1, whereas model B4 

did not differ from model B1 in discrimination performance. The continuous NRI did not 

change across the models for colorectal cancer.

Scenario C

The performance statistics comparing models B1 and C1 were also summarized in Table 5. 

Models B1 and C1 had identical c-statistic for all three cancers. For breast cancer, model C1 

had significantly lower IDI, relative IDI, and NRI than model B1, suggesting lower 

discrimination and reclassification performance. However, model performance did not differ 

between the two models for lung and colorectal cancers.

Discussion

In this study, we examined the predictive ability of Cox proportional hazard models under 

three different data integration scenarios for breast, lung, and colorectal cancers. We showed 

that adding additional contextual-level predictors to survival prediction models through 

linking multiple datasets improved model fit and performance (scenario A). We also showed 

that different representations of the same variable (scenario B) or concept (scenario C) have 

differential impacts on the performance of cancer survival models.

Including plausible predictors from multiple levels in statistical models can avoid omitting 

significant determinants of cancer outcomes and therefore maximize validity and predictive 

power.19 In practice, the top-down approach to model building, in which one starts with a 

maximal or full model, including plausible interactions, is favored by many. Although 

overfitting might be of concern, it produces unbiased estimates for expected values (i.e. 

fixed effects).19 Sample size could be an issue when fitting larger statistical models, but 

cancer registry data usually have sufficient sample sizes to support large models. On the 

other hand, underfitting can create severe bias, which cannot be reduced or eliminated by 

simply increasing the sample size.19 In this study, the identification of additional contextual-

level predictors proved the importance of adopting the full model approach in modeling 

cancer survival. In practice, one need to choose a conceptual framework to guide the 

selection of plausible predictors. For instance, based on the social-ecological model (SEM), 

cancer survival is determined by a complex interplay of contributory factors from multiple 

levels: individual, interpersonal, organizational, community, and policy levels.28 A multi-

level survival analysis is only possible through integrating predictors from these five levels.

Furthermore, our results showed that interactions are highly likely to present when modeling 

cancer survival. Considering only race by other predictor interactions, we observed 

numerous significant interactions, including cross-level predictor interactions, in the largest 

model for all three cancers. It is not surprising that these factors interact with each other to 

impact cancer survival. In fact, we expect many of the social determinants of health (SDH) 

variables, such as SES, to have differential impacts on cancer survival across different race–
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ethnic groups. These interactions, especially cross-levels interactions, can have many 

clinical and public health implications. For instance, when designing interventions targeting 

access to care on cancer outcomes, researchers may need to take into consideration the 

differential effects of access to care across different participant groups (e.g. males vs. 

females or African Americans vs. Whites). Only through testing interactions in statistical 

models can we quantify these differential impacts. Although previous studies have identified 

many determinants of cancer survival, most of these studies did not address the multiple 

levels of plausible determinants, and almost none of them tested interactions among 

determinants. Integrating data from various heterogeneous sources not only improves 

survival model performance but also sets up the stage for building defendable statistical 

models.

Nevertheless, data integration is a daunting task given the idiosyncrasies of how different 

source data are collected. Researchers are faced with varying conceptual frameworks and 

abundant modeling choices that may require a number of integration strategies, each having 

distinctive challenges. The effort required to integrate data from different sources is 

substantial due to heterogeneities in syntax (e.g. file formats, access protocols), schema (e.g. 

data structures), and, perhaps more importantly, semantics (e.g. meanings or interpretations) 

of the data elements. For example, it required significant effort to download, process, 

extract, and transform the raw data from heterogeneous sources into integrated analytical 

datasets. Furthermore, a number of data assumptions have to be made as the different 

datasets were collected at different time periods and on different populations. For example, 

our FCDS data include cancer patients from 1996 to 2010, while the US Census data we 

used were collected from the general population in 2010. Thus, we made assumptions that 

the area-level characteristics derived from the US Census data were applicable across 

different time periods. Researchers generally do not have a clear picture of these data 

integration nuances, and thus, innovative informatics methods and tools are needed to 

address these data integration challenges in an automated fashion. One particularly 

promising data integration method is the semantic data integration approach. With the 

approach, a universal conceptual representation of “information” including data and their 

relationships, via common controlled vocabulary or “ontologies,” is generated to bridge the 

syntactic, schematic, and semantic heterogeneities across different sources. Ontologies can 

be used to encapsulate the knowledge of the source data and associate them with the general 

terms in the corresponding domain. The use of ontologies can facilitate data integration in 

many ways, including metadata representation, automatic data verification, and global 

conceptualization.29

Conclusion

Including additional contextual predictors through integrating data from various sources 

improves the performance of cancer survival models. When building statistical models for 

cancer outcomes, it is important to consider predictor–predictor interactions, especially 

cross-level predictor interactions. Furthermore, different representations of the same variable 

or concept have differential impacts on survival model performance. When integrating 

heterogeneous variables from different sources, model performance is one criterion that can 

guide the data integration process. To facilitate such data-driven analytical approaches, novel 
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informatics methodologies, such as semantic data integration, are needed to bridge 

heterogeneities in data across different sources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Data sources and variables.

Possible predictors Data source

Individual level Sex FCDS

Race

Age at diagnosis

Year of diagnosis

Stage of diagnosis

Treatment

Tobacco use

Marital status

Health insurance

Contextual level SVI socioeconomic status US Census

SVI household composition and disability US Census

SVI minority status and language US Census

SVI housing and transportation US Census

Area rurality status
a RUCA, NCHS

County smoking rate BRFSS

County alcohol consumption rate BRFSS

County health status BRFSS

County density of primary care physicians
b FLHealthCHARTS

FCDS: Florida Cancer Data System; SVI: Social Vulnerability Index; RUCA: rural–urban commuting area; NCHS: National Center for Health 
Statistics; BRFSS: Behavioral Risk Factor Surveillance System.

a
Defined based on RUCA codes and NCHS urban–rural classification scheme.

b
Number of primary care physicians per 1000 people.
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Table 2.

Rurality definition based on RUCA codes.

Code Model B1 Model B2 Model B3 Model B4

1 Metropolitan area: core Metropolitan

2 Metropolitan area: high commuting Metropolitan Metropolitan

3 Metropolitan area: low commuting

4 Micropolitan area: core

5 Micropolitan area: high commuting Micropolitan

6 Micropolitan area: low commuting Non-metropolitan

7 Small town: core Non-metropolitan

8 Small town: high commuting Small town

9 Small town: low commuting

10 Rural areas Rural

RUCA: rural–urban commuting area; FCDS: Florida Cancer Data System.

Other predictors included all the individual-level factors from the FCDS.
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Table 3.

Patients’ characteristics by cancer site.

Characteristics Breast
N = 18,644

Lung
N = 21,552

Colorectal
N = 9,955

Age at diagnosis (year) 63.2 (13.4) 68.8 (10.9) 70.2 (12.6)

Sex

 Women 100% 41.6% 48.0%

 Men – 58.4% 52.0%

Race

 Non-Hispanic Whites 87.8% 91.3% 86.8%

 Non-Hispanic Blacks 10.1% 7.5% 11.2%

 Hispanics 2.1% 1.3% 2.1%

Year of diagnosis

 1996–2000 29.5% 29.1% 33.3%

 2001–2005 26.4% 26.3% 27.1%

 2006–2010 44.1% 44.6% 39.7%

Stage of diagnosis

 Localized 67.8% 16.2% 33.1%

 Regional 23.2% 23.1% 38.4%

 Distant 4.1% 41.5% 17.5%

 Unknown 5.0% 19.3% 11.1%

Treatment

 Surgery

  Yes 93.2% 24.0% 86.5%

  No 6.8% 76.0% 13.5%

 Radiation

  Yes 28.5% 33.4% 2.5%

  No 71.5% 66.6% 97.5%

 Chemotherapy

  Yes 21.3% 29.1% 20.0%

  No 78.7% 70.9% 80.0%

 Hormone therapy

  Yes 14.4% 0.4% 0.2%

  No 85.6% 99.6% 99.8%

Smoking status

 Never 45.5% 8.0% 39.8%

 Former 18.8% 34.6% 25.9%

 Current 11.9% 32.5% 10.7%

 Unknown 23.7% 24.8% 23.6%

Marital status

 Married 58.1% 54.4% 57.4%

 Single 39.0% 42.1% 39.4%

 Unknown 3.0% 3.5% 3.2%
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Characteristics Breast
N = 18,644

Lung
N = 21,552

Colorectal
N = 9,955

Health insurance

 Uninsured 2.6% 2.8% 2.4%

 Private 24.5% 9.8% 12.2%

 Medicaid 3.8% 5.1% 3.2%

 Medicare 14.7% 19.9% 20.4%

 Medicare with supplement 29.6% 35.4% 39.6%

 Other 16.0% 10.3% 9.5%

 Unknown 8.8% 16.8% 12.9%

Five-year survival rate 82.6% 17.0% 58.3%
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Table 4.

Model performance statistics when linking multiple datasets.

Cancer Performance
statistics

Model A1 Model A2 Model A3

Breast AIC 34,409.25 34,400.09 34,381.607

c-Statistic 0.800 0.801 0.801

IDI – 0.002 (0.000 to 0.003) 0.005 (0.001 to 0.013)

Relative IDI – 0.006 (0.002 to 0.010) 0.019 (0.003 to 0.048)

Continuous NRI – 0.10 (0.05 to 0.14) 0.12 (0.06 to 0.20)

Event NRI – 0.02 (−0.03 to 0.05) 0.01 (−0.03 to 0.05)

Non-event NRI – 0.09 (0.07 to 0.10) 0.11 (0.07 to 0.18)

Lung AIC 277,780.96 277,708.46 277,701.67

c-Statistic 0.734 0.734 0.734

IDI – 0.001 (0.000 to 0.002) 0.002 (0.001 to 0.004)

Relative IDI – 0.004 (0.002 to 0.006) 0.006 (0.002 to 0.013)

Continuous NRI – 0.09 (0.05 to 0.14) 0.16 (0.06 to 0.23)

Event NRI – 0.03 (0.02 to 0.05) 0.11 (0.02 to 0.13)

Non-event NRI – 0.06 (0.02 to 0.11) 0.05 (0.02 to 0.11)

Colorectal AIC 51,526.92 51,475.53 51,448.46

c-Statistic 0.782 0.784 0.785

IDI – 0.003 (0.002 to 0.005) 0.009 (0.002 to 0.013)

Relative IDI – 0.009 (0.005 to 0.013) 0.024 (0.007 to 0.035)

Continuous NRI – 0.09 (0.04 to 0.16) 0.25 (0.05 to 0.31)

Event NRI – −0.02 (−0.05 to 0.03) 0.10 (−0.04 to 0.14)

Non-event NRI – 0.11 (0.08 to 0.14) 0.15 (0.09 to 0.18)

AIC: Akaike information criterion; IDI: integrated discrimination improvement; NRI: net reclassification improvement. Sex was not included as a 
predictor in the breast models. Model A1: Basic dataset with individual-level predictors only. Model A2: Integrated dataset with individual- and 
contextual-level predictors. Model A3: Integrated dataset with individual- and contextual-level predictors, and cross-level interactions.

Note: Values in parentheses are lower and upper bounds of 95% confidence intervals.
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