Skip to main content
. 2020 Dec 3;10:21149. doi: 10.1038/s41598-020-77875-5

Table 2.

Comparison between the parameters of conventional PET and MRI parameters and convolutional neural network methods for predicting pathological response to neoadjuvant chemotherapy.

Sensitivity (%) Specificity (%) Accuracy (%) AUC, median
SUV0a 50 88 84 0.652
PET0b 79 94 97 0.886
SUV1 67 70 70 0.687
PET1 72 96 95 0.980
ADC0c 100 56 61 0.703
MRI0d 18 90 85 0.602
ADC1 100 38 45 0.537
MRI1 14 90 88 0.701

AUC area under the curve.

aSUV0 maximum standardized uptake value at baseline, SUV1 maximum standardized uptake value on interim images.

bPET0 baseline PET image data for deep learning, PET1 interim PET image data for deep learning.

cADC0 apparent diffusion coefficient at baseline, ADC1 apparent diffusion coefficient on interim images.

dMRI0 baseline MR image data for deep learning, MRI1 interim MR image data for deep learning, PET positron emission tomography, MRI magnetic resonance imaging.