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Abstract

Background: Little is known about the inter-relationship among fruit and vegetable intake, gut microbiota and
metabolites, and type 2 diabetes (T2D) in human prospective cohort study. The aim of the present study was to
investigate the prospective association of fruit and vegetable intake with human gut microbiota and to examine
the relationship between fruit and vegetable-related gut microbiota and their related metabolites with type 2
diabetes (T2D) risk.

Methods: This study included 1879 middle-age elderly Chinese adults from Guangzhou Nutrition and Health Study
(GNHS). Baseline dietary information was collected using a validated food frequency questionnaire (2008-2013).
Fecal samples were collected at follow-up (2015-2019) and analyzed for 16S rRNA sequencing and targeted fecal
metabolomics. Blood samples were collected and analyzed for glucose, insulin, and glycated hemoglobin. We used
multivariable linear regression and logistic regression models to investigate the prospective associations of fruit and
vegetable intake with gut microbiota and the association of the identified gut microbiota (fruit/vegetable-
microbiota index) and their related fecal metabolites with T2D risk, respectively. Replications were performed in an
independent cohort involving 6626 participants.
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Results: In the GNHS, dietary fruit intake, but not vegetable, was prospectively associated with gut microbiota
diversity and composition. The fruit-microbiota index (FMI, created from 31 identified microbial features) was
positively associated with fruit intake (p < 0.001) and inversely associated with T2D risk (odds ratio (OR) 0.83, 95%Cl
0.71-0.97). The FMI-fruit association (p = 0.003) and the FMI-T2D association (OR 0.90, 95%Cl| 0.84-0.97) were both
successfully replicated in the independent cohort. The FMI-positive associated metabolite sebacic acid was inversely
associated with T2D risk (OR 0.67, 95%Cl 0.51-0.86). The FMI-negative associated metabolites cholic acid (OR 1.35,
95%Cl 1.13-1.62), 3-dehydrocholic acid (OR 1.30, 95%Cl 1.09-1.54), oleylcarnitine (OR 1.77, 95%Cl 1.45-2.20),
linoleylcarnitine (OR 1.66, 95%CI 1.37-2.05), palmitoylcaritine (OR 1.62, 95%Cl 1.33-2.02), and 2-hydroglutaric acid
(OR 147, 95%Cl 1.25-1.72) were positively associated with T2D risk.

Conclusions: Higher fruit intake-associated gut microbiota and metabolic alteration were associated with a lower
risk of T2D, supporting the public dietary recommendation of adopting high fruit intake for the T2D prevention.
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Background

Type 2 diabetes (T2D) prevalence is increasing rapidly
throughout the world with an estimated global prevalence
of 552 million by 2030 [1]. Fruits and vegetables are both
essential components of a healthy dietary pattern [2],
which are suggested to play an important role in T2D pre-
vention. However, results from human prospective cohort
studies have been inconsistent and the evidence linking
fruit and vegetable intake and T2D is weak [3-5]. An al-
ternative way to investigate the potential role of fruit and
vegetable intake in T2D prevention is to examine the pro-
spective association of fruit and vegetable intake with gut
microbiota and explore its implication in the T2D devel-
opment, given that gut microbiota is closely involved in
the T2D etiology [6-9]. Yet, so far, little is known about
whether and how habitual fruit and vegetable intake could
influence gut microbiota structure and composition over a
period of time. Evidence from large prospective human
cohort studies is lacking [10, 11].

Mechanisms linking fruit and vegetable intake and
T2D are mainly attributed to their rich sources of fibers,
flavonoids, and various antioxidant compounds, which
are reported to interact with the gut microbes and affect
gut microbiota ecology [12, 13]. Therefore, we
hypothesize that gut microbiota is a key mediator linking
fruit and vegetable intake and T2D development. To
date, only a limited number of cross-sectional cohort
studies have shown an association between fruit and
vegetable intake and gut microbiota composition [14—
16]. Several other cross-sectional studies suggest that a
dietary pattern which is rich in fruits and vegetables is
associated with variations in gut microbiota composition
[10, 17, 18]. Fecal metabolome analysis may provide
novel evidence for the understanding of the relationship
between fruit and vegetable intake, gut microbiota, and
T2D, yet research in this area is sparse.

Therefore, this study aimed to investigate the pro-
spective association of fruit and vegetable intake with

the gut microbiota and to examine the association of
fruit or vegetable-related gut microbiota and metabolites
with T2D risk in a prospective cohort, including 1879
participants from the Guangzhou Nutrition and Health
Study (GNHS) [19]. Replications of the above associa-
tions were subsequently conducted in an independent
large cohort study including 6626 participants from the
Guangdong Gut Microbiome Project (GGMP) [16].

Methods

Study design

This study was based on the GNHS, a community-based
prospective cohort including 4048 participants of Han
Chinese ethnicity [19]. Briefly, a total of 4048 partici-
pants, 40-75years and living in Southern China
Guangzhou City, were recruited into the GNHS between
2008 and 2013. Fecal samples of the participants were
collected at one time point during a follow-up visit of
the participants to the study site up to Apr 30, 2019
(median follow-up of 6.2 years from entry into the co-
hort). We excluded the participants who were (1) with-
out valid questionnaire information on dietary intake
(including fruit intake, and vegetable intake) at baseline
(n =47); (2) self-reported baseline cancers, chronic renal
dysfunction, or cirrhosis (n =24); (3) missing covariates
(age, gender, BMI, education, income, smoke, alcohol
status, total energy intake, and physical activity) (n = 2);
(4) extreme levels of total energy intake (men, < 800 kcal
or > 4000 kcal; women, < 500kcal or>3500kcal) (n=
41); (5) without measurement of gut microbiota data
during follow-up (n =2038); and (6) with antibiotic use
within 2 weeks (1 =17) of stool collection. Finally, 1879
participants were included in the present analysis. T2D
was defined as fasting blood glucose >7.0 mmol/L or
glycated hemoglobin (HbAlc) >6.5% or currently under
medical treatment for T2D, according to the American
Diabetes  Association’s  diagnostic  criteria  [20].
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Participant was diagnosed as a T2D case if meeting the
above T2D criteria at baseline or/and during follow-up.
The GGMP is a large community-based cross-
sectional cohort conducted between 2015 and 2016 in-
cluding 7009 participants with high-quality gut micro-
biome data. The GGMP participants were from 14
randomly selected districts or counties in Guangdong
province, China. In face-to-face questionnaire interviews,
the host metadata including sociodemographic features,
disease status, lifestyle, and dietary information (via food
frequency questionnaire, FFQ) were collected [16]. We
excluded the participants who were (1) without valid
questionnaire information on dietary intake (including
fruit intake and vegetable intake) (1 =140); (2) missing
covariates (age, gender, BMI, education, smoke, alcohol
status, and Bristol stool score) (n =243). Finally, we in-
cluded 6626 participants (52.8 + 14.7 y, 55.2% of women)
from GGMP in our analysis as an independent validation
cohort. Characteristics of the included participants in
the GGMP are presented in Additional file 1: Table S1.
Detailed information regarding host metadata and stool
sample collection and 16S rRNA gene sequencing
process for GGMP have been reported previously [16].

Measurement of dietary intakes and other covariates in
GNHS

In GNHS, during the on-site face-to-face interviews, we
collected information on socio-demographic, lifestyle,
and dietary factors and medical history. Habitual dietary
intakes over the past 12 months were assessed at base-
line by a validated FFQ with 79-food items, as previously
described [21]. The energy-adjusted correlation coeffi-
cients between the FFQ and 3-day diet records ranged
from 0.30 to 0.68 for different food groups (for example,
it was 0.37 for vegetable, 0.56 for fruit, and 0.48 for dairy
products) [21]. The food items were grouped into the
following groups: cereals (12 food items), beans, soy and
nut (10 items), vegetables (13 items), fruits (10 items),
animal-based foods (red meat, poultry, fish, eggs, and
dairy products: 26 items), and drinks (8 items) [21].
Total energy intake was calculated according to the
Chinese Food consumption Table, 2002 [22]. All food
items were adjusted for total energy intake using the re-
sidual method [23]. The detailed items in the fruit and
vegetable groups were provided in Additional file 1:
Table S2. During the interview, all the participants were
asked about the frequency of each fruit and vegetable
they consumed and the average amount they consumed
(50 g or 1 Liang was used as a common unit). Physical
activity was assessed as total metabolic equivalent for
task (MET) hours per day on the basis of a questionnaire
for physical activity [24]. Anthropometric parameters,
including weight, height, waist, and hip circumference,
were measured by trained nurses at the site during the
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baseline interview. Fasting venous blood samples were
taken at recruitment and follow-up visit and were ali-
quoted and stored in a — 80 °C freezer prior to analysis.
Fasting glucose and insulin were measured by colorimet-
ric methods using a Roche cobas 8000 c¢702 automated
analyzer (Roche Diagnostics GmbH, Shanghai, China).
High-performance liquid chromatography was used to
measure HbAlc using the Bole D-10 Hemoglobin Alc
Program on a Bole D-10 Hemoglobin Testing System.
Homeostasis model assessment of insulin resistance
(HOMA-IR) and B-cell function (HOMA-f) were calcu-
lated based on fasting glucose and insulin levels [25].

Fecal sample collection, DNA extraction, and 16S rRNA
gene sequencing in GNHS

During a follow-up visit to the study center, participants
were given a stool sampler and provided detailed in-
structions for the stool sample collection. Briefly, each
participant collected their stool sample after defecation,
recorded its Bristol stool score in the stool sampler, and
gave the sample to the staff immediately. The stool sam-
ples with ice bag were transported to the research la-
boratory and stored in a — 80 °C freezer within 4 h. Stool
samples that were not delivered to the collection point
within 4 h were discarded. Detailed information regard-
ing DNA extraction, gut microbiota 16S rRNA gene se-
quencing, and fecal metabolic profiles in GNHS is
provided in Additional file 1: Method S1 and Method S2
[26-28].

Targeted fecal metabolomics profiling in GNHS

The targeted metabolomics profiling of fecal samples
(n=1017) was performed by Metabo-Profile (Shanghai,
China). Detailed information regarding targeted fecal
metabolomics profiling in GNHS is provided in Add-
itional file 1: Method S3.

Statistical analysis

We examined participant characteristics using propor-
tions and mean values with corresponding SDs. We cat-
egorized fruit and vegetable intake in quartiles with the
lowest quartile indicating low intake.

In GNHS, we examined the associations of baseline
fruit and vegetable intakes with a-diversity indices (Ob-
served species, Shannon index and Chao 1 index) using
a multivariable linear regression model, adjusted for
Bristol stool score, sequencing run, sequencing depth,
age, sex, BMI, smoking status, alcohol status, physical
activity, education, income, T2D status, drug use (medi-
cations for hypertension, hyperlipidemia and T2D), total
energy intake, dietary intake of vegetable /fruit (mutual
adjustment for each other), red and processed meat, fish,
and dairy products [6, 10, 11, 29-31]. The association
between fruit and vegetable intakes and [-diversity
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dissimilarity based on Bray-Curtis distance was tested
using permutational ANOVA (PERMANOVA) (999 per-
mutations) [3], adjusted for the same covariates as above
analyses of a-diversity indices.

We used Multivariate Analysis by Linear Models
(MaAsLin) to identify potential gut microbial operational
taxonomic units (OTUs) associated with dietary fruit or
vegetable intake, adjusted for the same covariates as
above diversity analysis. The Benjamini-Hochberg
method was used to control false discovery rate (FDR)
due to multiple testing.

To summarize the association of fruit and vegetable
with the gut microbes, we calculated a fruit-microbiota
index (FMI), vegetable-microbiota index (VMI), and
total fruit and vegetable-microbiota index (TFVMI)
based on the identified OTUs for each of the three diet-
ary variables (Additional file 1: Method S4).

To test the validity of the above created microbiota
index, we used a linear regression model to examine the
association of fruit, vegetable, or their sum with the cor-
responding microbiota index, adjusted for the same co-
variates as the above fruit/vegetable-microbiota analysis.
To further test the robustness of the associations and
minimize the influence of disease status, we repeated the
analysis in non-T2D participants using the linear regres-
sion models, adjusted for the same covariates. To gain
insight about the relationship between the different fruit
types and FMI, we used the partial correlation analysis
to investigate the correlation of FMI with different fruit
types, adjusted for age, sex, and BML

We then used a multivariable logistic regression model
to examine the cross-sectional association of FMI, VMI,
or TEVMI with T2D risk in the GNHS, adjusted for
Bristol stool score, sequencing run, sequencing depth,
age, sex, BMI, smoking status, alcohol status, physical
activity, education, income, drug use (medications for
hypertension, hyperlipidemia), total energy intake, diet-
ary intake of vegetable /fruit (mutual adjustment for
each other), red and processed meat, fish, and dairy
products. We also used a multivariable linear regression
model to examine the association of the fruit/vegetable-
microbiota index with T2D-related traits (fasting serum
insulin, glucose, HbAlc, HOMA-IR, and HOMA-p), ad-
justed for the same covariates as above fruit/vegetable-
microbiota analysis.

In the GGMP participants, we created the same FMI,
VML, or TEVMI using the above identified OTUs to rep-
licate the results from the GNHS. We used a multivari-
able linear regression to examine the association of
corresponding dietary factor with the related microbiota
index, adjusting for Bristol stool score, age, sex, BMI,
smoking status, alcohol status, education, T2D status,
dietary intake of vegetable/fruit (mutual adjustment for
each other), and red and processed meat. The analyses
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were conducted among all GGMP participants and
among those without T2D, respectively. We also used a
logistic regression to examine the association of the
EMI, VM, or TFVMI with T2D risk, adjusted for Bristol
stool score, age, sex, BMI, smoking status, alcohol status,
education, dietary intake of vegetable /fruit (mutual ad-
justment for each other), and red and processed meat.
For GGMP, we did not include the income in the statis-
tical models due to large amount of missing values (in-
come data were available among 4109 out of 6626
participants). We therefore did a sensitivity analysis with
further adjustment for income in the above analyses to
examine the robustness of the models. Then, for each of
the above linear regression or logistic regression, the ef-
fect estimates from GNHS and GGMP were pooled by
random effects meta-analysis.

To gain further mechanistic insight about the connec-
tion between fruit and vegetable intake and T2D risk, we
investigated the correlation of the FMI, VMI, or TEVMI
with fecal metabolome with partial correlation analysis
in the GNHS, adjusted for age, sex, and BMI. We further
examined the association of the above identified fecal
metabolites with T2D risk using logistic regression, ad-
justed for the same covariates as the above FMI/VMI/
TFVMI-T2D analysis. Throughout the above analyses,
FDR from multiple testing was controlled by the
Benjamini-Hochberg method.

We used the co-occurrence network analysis based on
the above partial correlation coefficient to demonstrate
the interaction of the above gut microbial OTUs and
metabolites respectively, and only the significant correla-
tions (larger than 0.3 or smaller than - 0.3) were used
for network construction. The networks were further vi-
sualized in Cytoscape software version 3.7.2. Pathways
enrichment analysis of metabolomics profiles was per-
formed by MetaboAnalyst 4.0 [32] using the online ser-
ver. We used R version 3.6.3 for statistical analysis
unless otherwise specified, and p value <0.05 was con-
sidered statistically significant.

Results

Characteristics of study participants

In GNHS, the mean (SD) age was 58.6 (6.1) years, with
67.3% women participants (Table 1). At baseline, the
mean (SD) intake of fruit, vegetable, and their sum were
146 (109), 383 (182), and 529 (239) g/day, respectively
(Additional file 1: Table S3). The fruit, vegetable, and
total fruit and vegetable intakes were significantly differ-
ent between men and women (p <0.001, p =0.025, p <
0.001, respectively) (Additional file 1: Table S4). For
GGMP, the mean (SD) age was 52.8 (14.7) years, with
55.2% women participants. The mean (SD) intake of
fruit, vegetable, and their sum were 79 (117), 337 (230),
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Table 1 Characteristics of the study participants in the Guangzhou Nutrition and Health Study

Characteristics Total Fruit intake Vegetable intake
Q1 Q2 Q3 Q4 p- Q1 Q2 Q3 Q4 p-
trend trend
n 1879 471 471 467 470 470 470 469 470
Age, years 586 (6.1) 59.1 (6.5 588 (64) 585 (6.0) 580 (55 0005 588 (69 590(6.2) 584 (57) 583 (54) 0079
Sex, n (% of women) 1264 278 297 335 354 (753) < 291 305 332 336 <
(67.3) (59.0) (63.1) (71.7) 0.001 (619 (64.9) (70.8) (71.5) 0.001
BMI, kg/m? 232300 233(3.1) 234(32) 2319 23328 0683 233(3.1) 234(30) 230(7) 233(3.1) 0420
Total energy intake, kcal/day 1742 1573 1687 1765 1944 < 1505 1677 1798 1989 <
(488) (469) (455) (432) (517) 0001 (433) (430) (455) (500) 0.001
Physical activity, MET hours/day ~ 40.6 385 396 418 426 < 388 395 416 42.5 <
(14.1) (13.4) (13.6) (143) (14.6) 0001 (12.7) (13.6) (14.3) (15.2) 0.001
Vegetable intake, g/day 383 (182) 317 352 401 464 (208) < 192 (45) 303 (29) 414 (37) 624 <
(175) (149) (157) 0.001 (162) 0.001
Fruit intake, g/day 146 (109) 42 (19) 95 (16) 154 (19) 292 (107) < 103 (86) 133(92) 154(97) 194 <
0.001 (133) 0.001
Total fruit and vegetable intake, 529 (239) 358 448 556 756 (248) < 295 436 568 819 <
g/day (178) (152) (159) 0.001 (100) (100) (105) (222) 0.001
Red and processed meat intake, 104 (61) 98 (59) 101 (56) 105 (57) 114 (70) < 89(54) 99(54) 112(64) 117(67) <
g/day 0.001 0.001
Fish intake, g/day 50 (51) 44 (64) 43 (31) 54 (60) 61 (42) < 37 (56) 45 (34) 53 (44) 67 (62) <
0.001 0.001
Dairy products intake, g/day 115 (114) 88 (104) 107 124 142 (116) < 94 (105) 113 125 128 <
(108) (122) 0.001 (107) (115) (127) 0.001
Current alcohol drinker, n (%) 137(73) 33(70) 51(108) 28(60) 25(53) 0065 39(83) 405 3268 26(55 0063
Current smoker, n (%) 292 100 87 (185) 57 (122) 48(102) < 93 (19.8) 79 (16.8) 59 (126) 61 (13.0) 0.001
(15.5) (21.2) 0.001
Income level, n (%) <0.001 0472
<500 ¥/months 28 (1.5) 11 (23) 408 8(1.7) 5(1.1) 6(1.3) 8(1.7) 9(1.9) 5(1.1)
501-1500 ¥/months 403 116 110 93 (1990 84 (179 85(18.1) 98 (20.9) 105 115
(21.4) (24.6) (23.4) (22.4) (24.4)
1501-3000 ¥/months 1197 301 299 295 302 (64.2) 343 302 279 273
(63.7) (63.9) (63.5) (63.2) (73.0) (64.2) (59.5) (58.1)
> 3000 ¥/months 251 43 (9.1)  58(123) 71(152) 79 (16.8) 36 (76) 62132 76(16.2) 77 (164)
(134)
Education, n (%) 0492 0.130
Middle school or lower 510 139 120 128 123 (26.2) 132 137 1 130
(27.1) (29.5) (25.5) (27.4) (28.1) (29.1) (23.7) (27.7)
High school or professional 864 205 201 218 240 (51.1) 203 217 226 218
college (46.0) (43.5) (42.7) (46.7) (43.2) (46.2) (48.2) (46.3)
University 505 127 150 121 107 (22.7) 135 116 132 122
(26.9) (27.0) (31.8) (25.9) (28.7) (24.7) (28.1) (26.0)
Glucose, mmol/L 548 551 553 554 534 0089 549 539 557 547 0.657
(1.32) (1.22) (1.65) (1.38) 7(0.87) (1.24) (1.05) (1.64) (1.27)
Insulin, pU/mL 7.30 717 742 741 7.19 0926 754 741 7.12 7.09 0.072
(4.00) (4.00) (4.00) (4.43) (3.50) (4.36) (4.05) (3.64) (3.87)
HbAlc, % 7.24 713 7.26 714 742 03% 713 7.28 7.37 7.16 0.822
(4.22) (4.01) (4.25) (4.03) (4.57) (3.95) (4.64) (4.51) (3.70)
HOMA-IR 1.83 1.81 1.86 191 1.74 0626  1.89 1.81 1.81 1.81 0.356
(1.23) (1.25) (1.16) (1.50) (0.91) (1.33) (1.19) (1.10) (1.29)
HOMA-B, % 85.2 838 876 838 85.7 0873 885 88.7 813 815 0.023
(54.2) (54.5) (58.2) (56.1) (47.3) (61.5) (52.8) (50.8) (49.9)

Medication use, n (%) 0.057 0.930
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Table 1 Characteristics of the study participants in the Guangzhou Nutrition and Health Study (Continued)

Characteristics Total Fruit intake Vegetable intake
Q1 Q2 Q3 Q4 p- Q1 Q2 Q3 Q4 p-
trend trend
Hypertension 100 (53) 22(47) 26(55) 26(56) 26(5.5) 1532 2349 265 36(7.7)
Hyperlipidemia 111659 3166 39@83) 1839 2349 35(74)  25(3) 31(66) 20(43)
12D 58 (3.1) 2145 1940 603) 12 (2.6) 19140 12260 17366 1027

Data are expressed as mean (SD) for continuous variables and n (%) for categorical variables; Q1 indicates the quartile with the lowest intake; p-trend represents

the comparison among quartiles using linear regression

Q7 quartile 1, Q2 quartile 2, Q3 quartile 3, Q4 quartile 4, HbAlc glycated hemoglobin, HOMA-IR homeostasis model assessment of insulin resistance, HOMA-3

homeostasis model assessment of 3-cell function, T2D type 2 diabetes

and 416 (272) g/day, respectively (Additional file 1:
Table S1).

Prospective association of fruit and vegetable intake with
gut microbiota

In GNHS, habitual fruit intake was positively associated
with Observed species (Q4 vs Q1: p =0.006), Shannon
index (Q4 vs Ql: p=0.020), and Chao 1 index (Q4 vs
Q1: p =0.004) (Fig. 1la—c). Vegetable intake or total fruit
and vegetable intake was not associated with any of the
above a-diversity indices (Additional file 1: Figure S1).
Fruit intake was significantly associated with the shift of
B-diversity (p < 0.001) (Fig. 1d). However, associations of
vegetable intake and total fruit and vegetable intake with
[B-diversity were not significant (Additional file 1: Figure
S2).

Comparing the highest with lowest quartile, fruit in-
take was prospectively associated with 31 gut microbial
OTUs. The identified 31 OTUs for fruit intake were
assigned to Faecalibacterium prausnitzii, Akkermansia
muciniphila, Ruminococcaceae, Clostridiales, Acidamino-
coccus, Prevotella stercorea, Prevotella copri, Fusobacter-
ium, and Enterobacteriaceae (Fig. le). Thirty of the
identified 31 OTU biomarkers were positively associated
with fruit intake, whereas OTU2945  Fusobacterium was
negatively associated with fruit intake (Fig. le and Add-
itional file 1: Table S5). Vegetable intake was only asso-
ciated with 1 OTU belonging to Lachnospira, and total
fruit and vegetable intake was associated with 2 OTUs
belonging to Lachnospira and Lachnospiraceae spp.
(Additional file 1: Table S6 and Table S7).

Association of the fruit or vegetable-associated gut
microbiota alteration with T2D

In GNHS, fruit intake was positively associated with
FMI among all the participants, as well as the non-T2D
participants (p < 0.001 and p = 0.004, respectively) (Fig. 2a
and B). FMI was positively correlated with dietary intake
of mango, banana, apple, grape, and durian (Additional
file 1: Figure S3). We found that per unit increment in
FMI was associated with 17% lower risk of T2D (OR
0.83, 95%CI 0.71-0.97) (Fig. 2c). FMI was inversely

associated with HbAlc (p = 0.013), and positively associ-
ated with HOMA-B (p = 0.038) (Additional file 1: Figure
S4). However, VMI or TFVMI was not associated with
corresponding dietary intake (Additional file 1: Figure
S5A) or T2D (Additional file 1: Figure S5B).

In the GGMP, the FMI was significantly positively as-
sociated with fruit intake in all participants and non-
T2D participants (p =0.003 and p =0.017, respectively)
(Fig. 2a and B). Per unit increment in FMI was associ-
ated with 10% lower risk of T2D (OR: 0.90, 95%CI:
0.84-0.97) (Fig. 3c). In addition, results of the sensitivity
analysis suggested that with and without including in-
come as a covariate did not substantially affect the re-
sults (Additional file 1: Table S8). Meta-analysis of
results from the two cohorts consistently showed that
the FMI was significantly positively associated with fruit
intake in all participants and non-T2D participants (p =
0.003 and p = 0.006, respectively) (Fig. 2a and b). Meta-
analysis also suggested that per unit increment in FMI
was associated with 11% lower risk of T2D (pooled OR
0.89, 95%CI 0.83—0.95) (Fig. 2c).

Association of the FMI-associated fecal metabolites with
T2D

In the GNHS, the FMI was significantly associated with
76 fecal metabolites which could be clustered into three
modules (Additional file 1: Figure S6 and Figure S7).
Pathway enrichment analysis of the identified metabo-
lites showed that the FMI-related metabolites were
mainly assigned to pathways of bile acid biosynthesis,
fatty acid biosynthesis, and fatty acid metabolism (Add-
itional file 1: Figure S8). Notably, 7 out of the 76 FMI-
related metabolites were significantly associated with
T2D risk (Fig. 3 and Additional file 1: Figure S7C). The
FMlI-positive related metabolite sebacic acid was in-
versely associated with T2D (OR 0.67, 95%CI 0.51-0.86),
whereas the FMI-negative related metabolites cholic acid
(OR 1.35, 95%CI 1.13-1.62), 3-dehydrocholic acid (OR
1.30, 95%CI 1.09-1.54), oleylcarnitine (OR 1.77, 95%CI
1.45-2.20), linoleylcarnitine (OR 1.66, 95%CI 1.37-2.05),
palmitoylcarnitine (OR 1.62, 95%CI 1.33-2.02), and 2-
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regression was used to estimate the difference in a-diversity comparing extreme quartiles (quartile 4 versus quartile 1) of fruit intake, adjusted for
Bristol stool score, sequencing run, sequencing depth, age, sex, BMI, physical activity, education, income, smoking status, alcohol status, drug use
(medications for hypertension, hyperlipidemia and T2D), T2D status, total energy intake, dietary intakes of vegetable, red and processed meat, fish
and dairy products. d 3-diversity: principal coordinate analysis (PCoA) plot based on Bray-Cutis distance at operational taxonomic unit (OTU) level.

Permutational ANOVA (PERMANOVA) (999 permutations) was used to identify the variation of B-diversity in human gut microbiota structure
comparing extreme quartiles of fruit intake, adjusted for the same covariates. e MaAsLin was used to identify the gut microbial biomarkers for
fruit intake comparing extreme quartiles of fruit intake, adjusted for the same covariates. The Benjamini-Hochberg method was used to adjust p
values for multiple testing. Value with asterisk is significantly different (*p < 0.05, ** p < 0.01, ***p < 0.001)

hydroglutaric acid (OR 1.47, 95%CI 1.25-1.72) were
positively associated with T2D (Fig. 3).

Discussion

In the present large-scale epidemiological study, we
demonstrated that fruit intake was prospectively associ-
ated with a-diversity, p-diversity, and 31 OTUs of gut
microbiota, whereas the influence of vegetable intake on
gut microbiota was minimal. The novel created FMI,
which represented the microbial biomarker of fruit in-
take, was positively associated with fruit intake and in-
versely associated with T2D risk. We successfully

replicated the FMI-fruit intake association and the FMI-
T2D association in a large independent cohort study.
Fecal metabolome analysis revealed specific fecal metab-
olites linking fruit-associated gut microbiota and T2D.
Fruit is an essential component of a healthy dietary
pattern, which is suggested to play an important role in
maintaining the balance of gut microbiota and improv-
ing intestinal ecology [17]. However, to date, only a lim-
ited number of cross-sectional cohort studies have
shown an association between fruit intake and gut
microbiota composition and little known about the pro-
spective association of fruit intake with gut microbiota,
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Fig. 2 Relationships among the fruit intake, fruit-gut microbiota index, and
the associations of fruit intake with fruit-microbiota index (FMI) in all partici
Guangdong Gut Microbiome Project (GGMP). b Multivariable linear regressi

unit increase) with type 2 diabetes (T2D) risk in the GNHS and GGMP respe!
random effects meta-analysis for each of the above analyses

non-T2D participants in the GNHS and GGMP. ¢ Multivariable logistic regression was used to estimate the association of FMI (per standardized

type 2 diabetes. a Multivariable linear regression was used to estimate
pants in the Guangzhou Nutrition and Health Study (GNHS), and the
on was used to estimate the associations of fruit intake with FMI in

ctively. The effect estimates from GNHS and GGMP were pooled using

and its implication for T2D [15-17]. Results from large
prospective studies are important for the causal infer-
ence given that it is difficult and not feasible to conduct
long-term large-scale randomized controlled trials for
fruit and vegetable intake. Specifically, high fruit intake
had positive association with 27 OTUs (out of total 31
OUTs) belonging to Faecalibacterium prausnitzii,
Akkermansia muciniphila, Ruminococcaceae, Clostri-
diales, and Acidaminococcus, which indicated that high
fruit intake was potentially beneficial for human health
through increasing production of short-chain fatty acids,

maintaining intestinal mucosal integrity, improving insu-
lin sensitivity and anti-inflammatory properties [33—36].
In addition, high fruit intake was inversely associated
with Fusobacterium, which was positively associated
with T2D, ulcerative colitis, and colorectal cancer in
prior studies [37-39].

As indicated in previous studies [6, 9], human gut
microbiota plays a crucial role in the development of
T2D. Given the weak evidence on the protective associ-
ation of fruit and vegetable intake with T2D based on
the self-reported questionnaire data [3, 4], identification
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Fig. 3 Association of the fruit-microbiota index-related fecal metabolites and type 2 diabetes. Multivariable logistic regression was used to
examine the association of the fruit-microbiota index (FMI)-related fecal metabolites (per standardized unit increase) with type 2 diabetes (T2D)
risk in the Guangzhou Nutrition and Health Study (133 cases/1017 participants), adjusted for Bristol stool score, sequencing run, sequencing
depth, age, sex, BMI, physical activity, education, income, smoking status, alcohol status, drug use (medications for hypertension, hyperlipidemia,
and T2D), total energy intake, dietary intakes of vegetable, red and processed meat, fish, and dairy products. “FMI-positive” and “FMI-negative”
represented that fecal metabolites had positive and negative association with FMI, respectively. The Benjamini-Hochberg method was used to

0.05 is significantly different

of novel gut microbial biomarkers of fruit or vegetable
intake may help clarify the relationship of fruit and vege-
table intake with T2D risk. The present study demon-
strated that the novel fruit microbiota index, which
represented the microbial features of fruit intake, was
positively associated with fruit intake and inversely asso-
ciated with T2D risk. These findings collectively suggest
that habitual fruit intake has the potential to reshape the
human gut microbiome in a direction beneficial for the
prevention of T2D. We did not find many vegetable-
related gut microbiota, which may be because that ma-
jority of the vegetables consumed in Chinese cultures
are deeply cooked, and therefore, the influence on gut
microbiota is compromised. Therefore, in future work, it
may be important to investigate the potential different
associations with gut microbiota for raw versus cooked
vegetables. In addition, impact of different fruit sub-
groups on the gut microbiota is also an interesting topic
for further research.

Our data demonstrated that specific gut microbiota
related metabolites contributed to the interpretation of
the connection between the fruit-related microbiota and
T2D. Previous studies demonstrated that treatment with
specific microbiota derived secondary bile acids (obeti-
cholic acid, DCA, and GDCA) in patients with T2D
improved insulin sensitivity and HbAlc, which was
consistent with our present study [40, 41]. Another
study found that fecal sebacic acid was decreased in IBD
patients [42]. High plasma levels of palmitoylcarnitine
and linoleylcarnitine reflecting dysfunctional glucose and
fatty acid metabolism were correlated with T2D, obesity,
and cardiovascular disease [43, 44]. Taken together, our
results suggest that higher fruit intake-related gut
microbiota alteration may be beneficial for T2D
prevention.

Strengths and limitations

The present study had several strengths. First, it was
based on a large prospective study, as the prospective re-
lationship between fruit and vegetable intake and gut
microbiota was rarely investigated in prior studies [15—
18], which mainly focused on cross-sectional associa-
tions. Second, we constructed a novel gut microbial
index for fruit intake and used it to demonstrate the po-
tential beneficial association of fruit intake for T2D pre-
vention. Third, we replicated our main findings in
another large cohort study. Fourth, we identified several
potential microbial metabolites linking the association
between fruit-related gut microbiota and T2D.

The present study also contains several limitations.
First, the dietary assessment is based on FFQ, which is
subject to recall bias and measurement error. In
addition, we could not obtain the information of cooking
methods and intake of probiotic containing foods from
FFQ and we did not measure the serum biomarkers of
fruit and vegetable intake (i.e., different micronutrients).
Nevertheless, FFQ is a commonly used tool in large-
scale cohort study and it is suitable for ranking individ-
uals within a cohort [45]. Second, diet was only assessed
at one timepoint at baseline and it may change over
time. Third, although we included fecal metabolites as
objective biomarkers in our analysis, we did not measure
some specific blood gut microbiota-related metabolites
(such as lipopolysaccharides and Trimethylamine N-
oxide), which may potentially help further improve the
interpretation of our present findings. Fourth, the repli-
cation cohort (GGMP) is a cross-sectional study, while
this is the best data resource and largest study we could
find at current stage. Finally, our two cohorts are both
based on individuals of Chinese ethnicity, which may
not be generalizable to other populations or ethnicities.
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Conclusions

Results of the present study suggest that high fruit intake
is prospectively associated with human gut microbiome,
favoring the beneficial association of fruit intake with
the T2D risk. Our study supports the emerging concept
that healthy diet-shaped gut microbiota contributes to a
decreased risk of T2D and other metabolic diseases.
Meanwhile, our results provide important and timely
evidence supporting the public dietary recommendation
of adopting a healthy dietary pattern with high fruit in-
take for the T2D prevention.
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