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Common germline-somatic variant interactions
in advanced urothelial cancer
Aram Vosoughi 1,12, Tuo Zhang 2,3,12, Kyrillus S. Shohdy4,5, Panagiotis J. Vlachostergios4,

David C. Wilkes 2, Bhavneet Bhinder2,6, Scott T. Tagawa 4, David M. Nanus4, Ana M. Molina4,

Himisha Beltran 7, Cora N. Sternberg4, Samaneh Motanagh8, Brian D. Robinson1, Jenny Xiang3, Xiao Fan9,

Wendy K. Chung9, Mark A. Rubin 10, Olivier Elemento2,6, Andrea Sboner1,2,6,13, Juan Miguel Mosquera1,2,13 &

Bishoy M. Faltas 2,4,11,13✉

The prevalence and biological consequences of deleterious germline variants in urothelial

cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of

germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a

computational framework for identifying putative deleterious germline variants (pDGVs)

from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that

truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor

samples is observed, suggesting a critical role for these pDGVs in tumor progression. Sig-

nificant intra-patient heterogeneity in germline-somatic variant interactions results in diver-

gent biological pathway alterations between primary and metastatic tumors. Our results

characterize the spectrum of germline variants in UC and highlight their roles in shaping the

natural history of the disease. These findings could have broad clinical implications for cancer

patients.
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Germline variants transmit genetic information that
determines the heritability of complex disorders1. A pre-
vious study of urothelial cancer (UC) in twins showed

significant heritability of up to 33%2. Recent work using targeted
sequencing of known cancer susceptibility genes revealed a
14–24%3,4 prevalence of germline variants in UC patients, which
accounts for only a fraction of the genetic predisposition for the
disease. Individually-rare but collectively common germline var-
iants can explain a substantial fraction of the missing genetic
predisposition to UC1.

To define the spectrum of germline variants affecting protein-
coding genes and germline-somatic interactions (GSIs) in UC
patients, we performed WES of prospectively collected germline
DNA samples and 157 tumors from 80 UC patients at Weill
Cornell Medicine (WCM-UC cohort) (Figs. 1a, 2a, and Supple-
mentary Data 1). The majority of patients (82.5%) had metastatic
disease during the study period. We developed a stepwise com-
putational framework (DGVar) to distinguish putative deleterious

germline variants (pDGVs) from a large number of background
germline variants in each UC patient (Fig. 1b, c). To increase the
specificity of this approach, we restricted our computational
predictions to highly damaging events. To focus on functionally
consequential germline variants, we adopted an approach to
identify and prioritize germline variants that truncate tumor
suppressor proteins. We then used DGVar to analyze germline
WES data from 398 TCGA bladder cancer (TCGA-BLCA)
cohort. We compared the pDGVs in the WCM-UC and TCGA-
BLCA cohorts to an independent cohort of 11,035 ethnicity-
matched noncancer subjects (Fig. 1d). We investigated the bio-
logical impact of pDGVs in UC tumors by screening three-
dimensional protein structures for mutational clusters harboring
pDGVs and somatic variants within the same domain (Fig. 1e).
We examined loss of heterozygosity (LOH) events to identify
pDGVs undergoing positive selection in the context of the two-
hit model5–8 (Fig. 1e). To dissect the effects of pDGVs on UC
throughout its lifetime, we examined LOH events in matched
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primary and metastatic tumors within the same patient.
Finally, we interrogated specific GSIs occurring at the gene and
pathway levels (Fig. 1f) to identify private alterations in distinct
biological processes in individual UC tumors. Our results provide
an atlas of pDGVs and define the spectrum of GSIs in UC
patients.

Results
Development of a computational framework for identifying
putative deleterious germline variants. We reasoned that var-
iants that truncate tumor suppressor proteins would increase
predisposition to cancer and potentially play an important role in
tumor progression in the context of the classical two-hit
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model5–8. To identify these variants, we developed a computa-
tional framework (DGVar) that applies stringent criteria to
germline sequencing data, including several quality checks to
remove sequencing artifacts and exclude common single
nucleotide polymorphisms (SNPs) reported in population data-
bases (Online Methods). DGVar filtered out variants with
inadequate read coverage (<10x), single-nucleotide variants
(SNVs) with potential alignment problems, and variants that are
commonly observed in the general population (>1% in ExAC).
Most importantly, we restricted our definition of pDGVs to
variants designated as pathogenic or likely pathogenic by ClinVar
or those truncating proteins encoded by known tumor suppressor
genes (TSGs) annotated in the COSMIC9 or TSGene10 lists
(Online Methods) (Fig. 1). We included protein-truncating var-
iants (stop gain or frameshift) that pass the inbreeding coefficient
and variant quality score recalibration (VQSR) filters in ExAC
(Online Methods). DGVar filtered a median of 26,225 raw
germline variants per patient in the WCM-UC cohort to identify
a median of one pDGV per patient (Fig. 1 and Supplementary
Fig. 1a, b).

Deleterious germline variants are common in urothelial cancer
patients. We performed WES of germline DNA from 80 UC
patients in our WCM cohort. WES data were analyzed using
DGVar (Figs. 1a, 2a, and Supplementary Data 1). Most patients
(59/80 (74%)) were male and (66/80 (82.5%)) had metastatic
disease. The majority of patients (61/80 (76%)) had a history of
smoking, 39 patients (49%) had a history of a second non-UC
primary cancer, and 40 patients (50%) had a family history of
cancer in at least one first-degree relative (Supplementary Data 1).
The familial history of cancer rates reported in our cohort
were consistent with previous reports11,12. Computational geno-
mic ethnicity analysis using EthSEQ13 (Online Methods) showed
a high representation of European (72/80 (90%)) and Ashkenazi
Jewish (27/80 (34%)) ancestry in our cohort (Fig. 2a and Sup-
plementary Data 1). We identified sixty-one germline pDGVs in
45 (56%) of patients in the WCM-UC cohort (Supplementary
Data 2) (Online Methods). As expected, all pDGVs occurred in
genes annotated as TSGs in the COSMIC9 or TSGene10 lists
(Supplementary Data 3) (Online Methods). Out of 61 pDGVs
identified in the WCM-UC cohort, 57 were not included in the
cancer susceptibility genes (CSGs) list curated by Huang et al.8 or
tested by a commercial targeted sequencing panel of 47 genes
associated with cancer syndromes14 (Supplementary Fig. 2a, and
Supplementary Data 2 and 3).

To validate our findings in a separate UC cohort, we used
DGVar to analyze the germline WES data from the TCGA
bladder cancer study (TCGA-BLCA). We identified 315 pDGVs
in 48% (190/398) of patients in this cohort (Supplementary
Data 4). In the WCM-UC cohort, ITGA7, POLQ, KLK6, EPHB6,
and CNDP2 were the most frequent genes harboring recurrent
pDGVs, occurring in 11/45 patients (24%) (Fig. 2a and

Supplementary Data 5). In the TCGA-BLCA cohort, 46 genes
harbored recurrent pDGVs in 115/190 patients (60%) (Supple-
mentary Data 5). We identified 12 pDGVs occurring in at least
one patient in both the WCM-UC and TCGA-BLCA cohorts
(Fig. 2a and Supplementary Data 5). The EPHB6, ARL11, KLK6,
ITGA7, and POLQ genes harbored the most recurrent pDGVs in
both cohorts (Fig. 2a and Supplementary Data 5). Pathway
analysis showed an enrichment of pDGVs involving genes in the
DNA repair pathway, including POLQ, POLK, FANCA, XPA,
ASCC1, and BRCA2 in 6/80 (7.5%) of WCM-UC patients
(Supplementary Fig. 3). Twelve genes harboring pDGVs in the
WCM-UC cohort were listed as causally implicated in cancer in
the COSMIC Cancer Gene Census15 (https://cancer.sanger.ac.uk/
census), and six genes (BRCA2, FANCA, XPA, POLQ, PTPN13,
and RECQL4) were previously reported to harbor germline
mutations in several cancer types (Supplementary Data 6). Out of
315 pDGVs identified by DGVar in the TCGA-BLCA cohort, 271
(85%) were not included in the CSGs or commercial testing gene
lists (Supplementary Fig. 2b and Supplementary Data 4).

We hypothesized that pDGVs are enriched in UC patients
compared to non-cancer subjects. We used the SPARK study16,
which included whole-exome sequencing data from 11,035 adult
non-cancer subjects of European (EUR) and Ashkenazi Jewish
(AJ) ancestry for comparison. We calculated the ratio of pDGVs
to rare synonymous variants in a gene set of 158 genes comparing
ethnicity-matched urothelial cancer (WCM-UC and TCGA-
BLCA) and non-cancer (SPARK) cohorts (Online Methods,
Supplementary Data 3). The WCM-UC-EUR (Odds ratio (OR)
= 2.12, p= 2.4e–4) and TCGA-BLCA-EUR (OR= 2.04, p=
7.4e–17) cancer patients were more likely to harbor pDGVs in
this gene set compared to SPARK-EUR non-cancer subjects.
Similarly, WCM-UC-AJ (OR= 1.75, p= 0.038) and TCGA-
BLCA-AJ (OR= 1.61, p= 0.019) cancer patients were more
likely to harbor pDGVs in this gene set compared to the SPARK-
AJ non-cancer subjects (Online Methods) (Fig. 2b, Supplemen-
tary Data 7 and 8). We performed similar analyses of the TCGA
pan-cancer and SPARK non-cancer cohorts. These comparisons
were limited to individuals with self-reported white ethnicity in
the TCGA pan-cancer cohorts. The TCGA-BLCA cohort was
among the top five cancers with a significantly higher likelihood
of harboring pDGVs (OR= 1.47, p= 3.42e–6) (Fig. 2c and
Supplementary Data 9). Similarly, in an internal cohort of
patients with non-UC, including prostate, breast, colorectal,
kidney cancers, and glioblastoma, WCM-UC was the only cohort
with a significantly higher likelihood of harboring pDGVs
(WCM-UC-EUR OR= 2.12, p= 2.42e–4, and WCM-UC-AJ
OR= 1.75, p= 0.038) (Supplementary Fig. 4 and Supplementary
Data 10).

The impact of pDGVs on protein structure and function. To
assess the potential deleteriousness of pDGVs, we compared the
combined annotation dependent depletion (CADD)17,18 scores of

Fig. 2 Putative deleterious germline variants are common in urothelial cancer patients. a pDGVs in the WCM-UC cohort. The frequencies of pDGVs in
the same gene in the TCGA-BLCA cohort are displayed as horizontal bar plots (right). b The odds ratio of pDGVs to rare synonymous variants in a gene set
of 158 genes comparing WCM-UC and TCGA-BLCA cancer cohorts to ethnicity-matched SPARK non-cancer cohorts using a two-sided Fisher’s exact test.
Each circle corresponds to one of four comparisons: WCM-EUR vs. SPARK-EUR, WCM-AJ vs. SPARK-AJ, TCGA-EUR vs. SPARK-EUR, or TCGA-AJ vs.
SPARK-AJ. Each circle’s diameter indicates the number of individuals in either the WCM-UC (blue) or TCGA-BLCA (red) cohorts. The horizontal dotted
line indicates the statistical significance threshold above which the p-values are less than 0.05. The vertical dotted line represents an odds ratio of 1. Data
points on the right have a higher ratio of pDGVs to rare synonymous variants in the WCM-UC and TCGA-BLCA cohorts. c The odds ratio of pDGVs to rare
synonymous variants in a gene set of 158 genes comparing TCGA pan-cancer cohorts (n= 7,839) to SPARK non-cancer cohort (n= 11,035) with a two-
sided Fisher’s exact test. Each circle indicates the odds ratio (OR), and the error bars indicate the 95% confidence intervals (CI). The vertical dotted line
represents an odds ratio of 1. Values to the right of this line represent a higher odds ratio of pDGVs to rare synonymous variants in respective cancer
cohorts compared to the SPARK non-cancer cohort. Source data are provided as a Source Data file.
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pDGVs to background variants (Online Methods). CAAD makes
a binary distinction between simulated de novo variants, which
are possibly deleterious and neutral fixed variants that survive
selective pressure17,18. As expected, pDGVs had significantly
higher average CADD scores than randomly selected background
variants (p= 3.9e–19) (Fig. 3a and Supplementary Data 11).
Genomic variants that confer a fitness advantage on tumor cells
tend to aggregate in functionally significant domains19. We used
the Mutation3D20 tool to test whether pDGVs form distinct
topological clusters with known somatic cancer mutations21

relative to the three-dimensional structures of the encoded pro-
teins (Online Methods). Out of 28 pDGVs identified in the
WCM-UC with available structural information for the encoded
protein, 27 (96%) clustered with previously reported somatic

variants (p < 0.001). These clusters harbored a median of 5 var-
iants (Fig. 3b, c, and Supplementary Data 12) and frequently
occurred in important domains (Fig. 3c). Six pDGVs in the
PINX1, MOB1A, CLTCL1, PRR5, CCDC136, and TRIM32 genes
involved the exact amino acid residues affected by known somatic
cancer variants (Supplementary Data 12).

We identified a pDGV in the Xeroderma-Pigmentosum Group
A-Complementing gene (XPA) gene in a UC patient. The patient
did not have any clinical features of xeroderma pigmentosum
apart from mild skin pigmentation and had not had previous
germline testing. This pDGV resulted in an L200* stop codon
clustered with other known somatic variants that target the DNA
binding domain of XPA spanning codons 104–225 (Fig. 3c). It
also clustered with previously identified pathogenic germline
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on the x-axis. -log10 p-values are represented as shades of red. c Lollipop plots showing the clustering of pDGVs, and somatic variants in XPA, EPHB6,
TRIM32, and KLK6 projected on their 3D protein structures. The truncated segment of each protein is shaded in gray. The boundary of the affected domain
is delineated with a dashed line. WCM-UC pDGVs are colored in red, and known somatic variants are colored in blue. Source data are provided as a Source
Data file.
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variants associated with clinical xeroderma pigmentosum, such as
R20722 (Fig. 3c). We confirmed this variant’s presence using
Sanger sequencing of the patient’s germline DNA (Fig. 4a). We
also confirmed that this variant was expressed using RT-PCR of
mRNA extracted from the patient’s tumor tissue (Supplementary
Fig. 5) (Online Methods). The XPA protein is a part of a large
multi-subunit complex, which has dual transcription factor and
nucleotide-excision repair functions23,24. To predict the func-
tional impact of the L200* XPA pDGV within this complex, we
superimposed it on the recently published XPA-TFIIH complex
structure obtained by cryogenic electron microscopy (cryo-EM)24

(Fig. 4b). This model predicts that L200* eliminates the entire
DNA-binding alpha-helix domain of XPA. The deleted region
contains 15 positively charged amino acids, including R207, R211,
K213, K217, and K221, that interact with the negatively charged
DNA backbone. This suggests that the L200* pDGV potentially
causes significant disruption of DNA binding, which is required
for nucleotide-excision repair24,25(Fig. 4c).

Deepening loss of heterozygosity occurs under evolutionary
pressure. To gain insight into the functional role of pDGVs in
UC progression, we hypothesized that loss-of-function pDGVs in
TSGs undergo positive selection in UC tumors, which manifests
as somatic loss of heterozygosity (LOH). LOH was defined as a
tumor-to-normal variant allele frequency (VAF) ratio ≥ 1.6
(Online Methods). Indeed, we found that 53% of pDGVs showed
evidence of LOH (Fig. 5a and Supplementary Data 13), and 34/72
(47%) of the tumor samples with sufficient purity had a corrected
tumor-to-normal VAF ratio ≥1.6, indicating LOH (Supplemen-
tary Data 13) (Online Methods). The peak corrected tumor VAF
density of pDGVs affecting TSGs was significantly higher com-
pared to protein-truncating germline variants affecting non-TSGs
(p= 5.9e–5), suggesting that LOH preferentially occurs in TSGs
(Fig. 5b). As tumors are subject to continuous evolutionary
pressures26,27, we posited that deepening LOH would occur as

the cancer progresses from the primary to the metastatic state.
We were uniquely positioned to study longitudinal pDGV LOH
changes in the WCM-UC cohort, which included 29 primary and
metastatic UC tumor pairs (Supplementary Data 14). We dis-
covered that 79% (23/29) of the paired comparisons showed
significant VAF increases in the metastatic tumors compared to
the primary tumors (p= 0.004) (Fig. 5c, d) (Supplementary
Data 14). These data suggest that the evolutionary pressure on
pDGVs drives progressive LOH in metastatic UC and that
pDGVs play a critical role in tumor progression consistent with
the two-hit model5–8.

Germline-somatic interactions in the biology of urothelial
cancer. To define the mechanisms by which pDGVs contribute to
UC progression, we examined GSIs occurring in the same gene
(in cis) or other genes within the same biological pathway (in
trans) (Fig. 6). We identified somatic copy number losses in 8/45
patients (18%) involving the KLK6, HTRA3, DLG1, PTPN13,
CCDC136, PINX1, RNASEL, and TRIM32 genes (Fig. 6a). We
characterized pathway-level GSIs arising from the interaction of
specific pDGVs with somatic mutations and copy-number var-
iants of additional genes within a pre-defined biological pathway
(Online Methods) (Fig. 6b and Supplementary Fig. 6). This
analysis showed that 14 patients had at least one pathway-level
GSI (p value < 0.05) (Supplementary Data 15), including GSIs in
the DNA repair, TP53 regulation, Hippo signaling, T-cell receptor
signaling, and WNT signaling pathways (Fig. 6b) (Supplementary
Data 15). We previously discovered extensive somatic intra-
patient genomic heterogeneity arising from the clonal evolution
of UC tumors26. We reasoned that this degree of somatic het-
erogeneity generates divergent GSIs in tumors within the same
patient. In matched primary-advanced tumor pairs, we found that
60% of the tumors had GSIs in unique pathways that were not
shared by other tumors from the same patient. These data col-
lectively suggest that GSIs should be taken into consideration to

b

a c
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K217

K221
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Fig. 4 L200* eliminates the DNA-binding domain of XPA. a Sanger sequencing of germline DNA confirms the L200* pDGV in XPA. b The cryo-EM
structure of the XPA-TFIIH complex showing the interaction between XPA and DNA during nucleotide excision repair23. The L200* pDGV (red arrow)
eliminates the entire alpha-helix of the DNA binding domain (dotted line). c The L200* pDGV (red arrow) eliminates the positively charged amino acid
residues (red) which bind to the negatively charged DNA backbone. These positively charged amino acid residues (arrows), such as R207, are commonly
affected by germline mutations in xeroderma pigmentosum patients.
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understand the functional consequences of somatic alterations in
cancer genomes.

Discussion
Germline genomic integrity is safeguarded against high mutation
rates28. When deleterious germline variants occur, they can have
profound effects throughout an organism’s lifespan. For example,
these variants can transmit genetic information that mediates
hereditary cancer predisposition. Previous studies suggest that
first-degree relatives of UC patients have a higher risk of devel-
oping UC11. A large epidemiological study of 203,691 individual
twins estimated a 30% heritable component2. This was the same
degree of heritability observed in breast cancer patients in the
same study2. However, the germline determinants of increased
UC risk are not fully characterized. Furthermore, the functional

consequences of the majority of germline variants in UC biology
are not well understood.

We sought to define the landscape of pDGVs that abrogate
tumor suppressor proteins in advanced UC patients. We imple-
mented a computational framework to identify pDGVs from
WES data. Our findings suggest that pDGVs that are individually
rare but collectively common, occurring in approximately half of
UC patients. This is a significantly higher prevalence than pre-
viously thought3,4,8,29. The pDGVs identified in our study
potentially explain a portion of the missing heritability of UC.
Recent studies using targeted sequencing approaches showed that
7.3%–24% of UC patients carry pathogenic germline variants3,4,8.
A recent study using targeted sequencing of 431 genes showed
that the frequency of pathogenic germline variants in UC was
14%4. Another study using targeted sequencing of 42 genes
identified 203 pathogenic germline variants in 24% of UC
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patients3. Our analysis suggests that targeted sequencing, which is
frequently used for clinical testing approaches, significantly
underestimates the prevalence of pDGVs in UC patients. This
reflects the limited number of genes included in targeted panels.
Our study demonstrates the feasibility of using whole-exome
sequencing to interrogate a broader range of pDGVs in cancer
patients.

Our computational framework has several distinctions from
other approaches for germline variant detection4,8. We prioritized
germline variants defined as pathogenic or likely pathogenic by
ClinVar or those resulting in truncated proteins encoded by
known TSGs. Our DGVar framework expands the definition of
putative pathogenicity to include variants that eliminate critical
domains of TSGs, likely resulting in loss of function.
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We reasoned that germline variants that truncate tumor sup-
pressor proteins would potentially predispose to UC and play a
critical role in tumor progression in the context of the two-hit
carcinogenesis model5–8. The majority of the pDGVs we identi-
fied clustered with known somatic variants within functional
protein domains. Deepening LOH affecting the majority of
pDGVs was observed during cancer progression, supporting their
functional relevance. We identified a pDGV affecting exon 5 of
XPA in a UC patient using WES and confirmed it using Sanger
sequencing of the patient’s germline DNA. Functional modeling
predicted that this pDGV (L200*) eliminates the protein’s DNA-
binding domain critical for nucleotide-excision repair. The
recently published cryo-EM structure positions XPA within the
TFIIH complex at the edge of the DNA repair tunnel, suggesting
that it plays a crucial role by attaching the core TFIIH complex to
DNA24. An adjacent germline variant that affects the splice
acceptor site in intron 3 and eliminates the c-terminus of XPA
occurs in up to 1% of the Japanese population30. The exon 6 XPA
germline variants R228* and H244R, which primarily affect the
TFIIH-interacting region in the protein’s c-terminus, have been
previously associated with a mild xeroderma pigmentosum phe-
notype31,32. Clinical and mouse model data suggest that hetero-
zygous carriers of XPA mutations have a higher risk for
developing cancer23,30,33,34. It is possible that the L200* trun-
cating mutation we identified in XPA results in nonsense-
mediated decay35 decreasing the relative abundance of the XPA
protein.

We designed our approach to prioritize pDGVs in putative
TSGs, including KLK636, EPHB637,38, and TRIM3239. We iden-
tified a TRIM32 R500* pDGV that eliminated its NHL domain.
Interestingly, a colocalizing somatic variant was found in a
patient with endometrial carcinoma in the TCGA cohort40.
TRIM32 is an E3 ubiquitin ligase that orchestrates the degrada-
tion of several targets41. Gli1, an effector of sonic hedgehog
(SHH) signaling, binds to the NHL domain of TRIM32, resulting
in degradation of the former39. Knockout of Trim32 resulted in a
higher incidence of medulloblastoma formation in the Ptch1 ±
mice and the upregulation of SHH target genes, suggesting a
tumor suppressor effect from antagonizing SHH signaling39.
Germline variants in other genes we identified, including EPHB6
and KLK6, were reported in colorectal carcinoma42 and prostate
cancer43. KLK6 re-expression in breast cancer cells reversed their
malignant phenotype by inhibiting epithelial-to-mesenchymal
transition36 consistent with a tumor suppressor role. EphB6
protein expression is differentially downregulated in invasive and
metastatic breast cancer and causes a decrease in the invasiveness
of breast cancer cell lines in vitro38. This is consistent with its role
as a putative tumor suppressor. It is important to note that a
given protein’s tumor suppressor function is lineage- and
context-dependent44,45. Even canonical TSGs such as TP53 can
have oncogenic functions under specific circumstances46,47.
High-throughput gene editing screens are beginning to generate
direct experimental measurements of the pathogenicity of
germline variants in different contexts48. Broader application of
these approaches is expected to provide accurate pathogenicity
data to inform clinical management.

Integrating germline and somatic genomic data can provide
insights into the mechanisms that drive tumor progression49. We
performed an in-depth integrated analysis of germline and
somatic WES data in UC patients. First, we examined LOH, a
hallmark of pDGV pathogenicity within the Knudson two-hit
hypothesis, which suggests that most TSGs require inactivation of
both alleles to cause a phenotypic change5–8. We observed a high
rate of LOH affecting pDGVs in UC. A recent study showed that
LOH patterns are tumor lineage-specific50. We observed pro-
gressive LOH in serial tumor samples in UC patients, suggesting

that positive selection of pDGVs potentially plays role in UC
progression. We identified significant intra-patient heterogeneity
arising from private GSIs in individual tumors. These interactions
involve divergent biological processes. Our findings highlight how
germline-somatic variant interactions contribute to cancer het-
erogeneity. The functional consequences of these interactions
warrant additional studies.

Our study was limited by sample size. To overcome this lim-
itation, we analyzed 398 patients from the TCGA-BLCA cohort.
We identified pDGVs in 48% of these patients confirming their
high prevalence in UC patients. We used DNA extracted from
peripheral blood mononuclear cells (PBMCs) for germline
sequencing, it is possible that some of the pDGVs we detected
resulted from clonal hematopoiesis of indeterminate potential
(CHIP)51,52. However, none of the specific pDGVs we identified
in our WCM-UC and TCGA-BLCA cohorts were previously
identified as CHIP mutations51,52. The majority of pDGVs did
not occur in genes commonly involved by CHIP51,52. The UC
cohorts we studied had high representation of patients of Eur-
opean ancestry. We used ethnicity-matched non-cancer cohorts
for comparison. The pDGVs profile is likely to be different in
diverse populations. Germline studies can be particularly infor-
mative when somatic sequencing is insufficient to explain dis-
parate clinical outcomes53,54.

Our findings have several important clinical implications.
Consistent with previous studies8,55–57, we show that the WES
expands the repertoire of germline variants beyond commonly
used targeted sequencing approaches. While individually rar-
e, pDGVs may be collectively common in cancer patients56,57.
Our approach is generalizable to patients with other malignancies
and likely to have a broad impact, given the growing use of
WES in the clinic58. Recurrent pDGVs in DNA damage repair
pathways are potential therapeutic targets. A randomized phase
III study in patients with castrate-resistant prostate cancer
recruited patients with alterations in the homologous recombi-
nation pathway59. Patients who received the PARP inhibitor
olaparib had improved overall survival compared to those who
received enzalutamide or abiraterone (HR 0.67, 95% CI
0.49–0.93). A recent study of Rucaparib in unselected UC patients
showed stable disease in 28.4% of the patients60. Another study
combining olaparib with immune checkpoint inhibition showed
promising results in UC patients61. By expanding the repertoire
of pDGVs in DNA damage repair genes, our results open the
door to trials of these targeted therapeutic strategies in properly
selected UC patients. In summary, our study characterized the
spectrum of germline variants in UC. These findings have
potential implications for precision medicine in thousands of UC
patients.

Methods
Patient enrollment and tissue acquisition. All experimental procedures were
carried out in accordance with approved guidelines and were approved by the
Institutional Review Boards at WCM. Patients recruited to this study signed
informed consent under IRB-approved protocols: WCM/New York-Presbyterian
(NYP) IRB protocols for Tumor Biobanking—0201005295, GU tumor Biobanking
—1008011210, Urothelial Cancer Sequencing—1011011386, Comprehensive
Cancer Characterization by (Genomic and Transcriptomic Profiling—1007011157,
and Precision Medicine—1305013903). Peripheral blood, buccal swab samples, and
in one patient, normal liver tissue were collected for germline DNA extraction from
80 patients diagnosed with high-grade urothelial carcinoma (HGUC). Fresh frozen
and formalin-fixed paraffin-embedded (FFPE) tissue from biopsies, cystectomy,
and nephroureterectomy specimens from HGUC patients were collected25. All
pathology specimens were reviewed and reported by board-certified genitourinary
pathologists (AV, BDR, JMM, MAR) in the department of pathology at WCM/
NYP. Clinical charts were reviewed by the authors (PJV, AV, BMF) to record
patient demographics, tobacco use, family history of cancer, concurrent cancer,
treatment history, anatomic site, pathologic grade, and stage using the tumor, node,
metastasis (TNM) system.
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DNA extraction and whole-exome sequencing (WES). For WCM-UC samples,
our established Whole-Exome Sequencing (WES) protocol was used, as previously
described62,63. Germline DNA was extracted using the Promega Maxwell 16 MDx
(Promega, Madison, WI, USA), from peripheral blood mononuclear cell (PBMC)
or buccal swab25, except for one patient whose sample was collected from a normal
liver tissue obtained from an autopsy. Tumor DNA was extracted from a macro-
dissected target lesion from FFPE or cored OCT-cryopreserved tumors using the
same method. Pathological review by one of the study pathologists (AV, BDR,
JMM, MAR) confirmed the diagnosis and determined tumor content. A minimum
of 200 ng of DNA was used for WES. The DNA quality was determined by
TapeStation Instrument (Agilent Technologies, Santa Clara, CA) and was con-
firmed by real-time PCR before sequencing. Sequencing was performed with pair-
end 100 bp reads using Illumina HiSeq 2500. A total of 21,522 genes were analyzed
with an average coverage of 85× using Agilent HaloPlex Exome (Agilent Tech-
nologies, Santa Clara, CA).

DGVar gene list. A set of 1604 tumor suppressor genes (TSGs) and oncogenes was
curated from the COSMIC database9 (version 2018.06.11) and the tumor sup-
pressor gene database10 (TSGene 2.0) (https://bioinfo.uth.edu/TSGene/) (Supple-
mentary Data 3). For genes with both TSG and oncogene annotations, we treated
them as TSGs.

DGV pipeline (DGVar). Sequencing reads were processed as previously descri-
bed63, and BAM files were generated. Raw variants were identified using the
UnifiedGenotyper variant caller in the Genome Analysis Toolkit v2.5.264,65. The
gene harboring each variant and the corresponding effect on transcript products
were annotated using SnpEff v4.266 with the pre-built GRCh37.75 database.
Reference SNP ID numbers (rs#) were annotated with NCBI dbSNP build 151 ftp://
ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF Patho-
genicity categories were collected from the NCBI ClinVar database (version
2018.08.05)66. Variant frequency in population and two quality filters, the
inbreeding coefficient filter and the Variant Quality Score Recalibration (VQSR)
filter, were retrieved from the ExAC66 database (http://exac.broadinstitute.org)
using SnpSift v4.267. We developed DGVar, a bioinformatic tool for identifying
high confidence putative germline deleterious variants (pDGVs). DGVar applies a
series of filtering steps (Supplementary Fig. 1a, b). We filtered variants with low
quality (variant quality score lower than 50) or inadequate read coverage (< 10x),
SNVs with potential alignment problems (3 or more SNVs in a 10 bp window),
variants with a variant allele frequency (VAF) less than 35% that may be attributed
to clonal hematopoiesis of indeterminate potential (CHIP) and variants that were
commonly observed in healthy populations (> 1% in ExAC). Variant pathogenicity
annotations were checked in ClinVar. Variants with likely pathogenic or patho-
genic annotations were retained, while variants with likely benign or benign
annotations were discarded. ClinVar pathogenic variants associated with non-
cancer conditions were manually reviewed and excluded. We then screened TSGs
for protein-truncating variants (stop gain or frameshift) that pass the “inbreeding
coefficient” and” “VQS” filters in ExAC. To remove platform-related artifacts,
variants that were commonly observed (>5%) in the entire WCM cohort were
filtered. Variants suspected to be caused by misalignment were removed by
manually checking them using IGV. The remaining variants were designated as
pDGVs and were used for downstream analysis. After applying these strict filtering
criteria, a median of one pDGV per patient was identified (Supplementary Fig. 1a,
b). These pDGVs were annotated to indicate if they occur in canonical transcript
using snpEff v4.2. A canonical transcript was defined as the longest CDS among the
protein-coding transcripts in a gene66. The canonical transcripts were annotated
using SnpEff v4.2 with its pre-built GRCh37.75 database. A comparison with other
pipelines (CharGer and PathoMan)4,9 used to detect and annotate germline var-
iants was provided (Supplementary Table 1).

Functional score prediction using CADD. The deleteriousness of each pDGV was
predicted using a Phred-scaled score with Combined Annotation Dependent
Depletion (CADD) v1.417,18. To verify that pDGVs in TSGs were more likely to be
damaging than protein-truncating germline variants in non-TSGs, a control variant
set was prepared from randomly selected 20 protein-truncating germline variants
from each patient in non-TSGs. These variants were then scored using CADD as
the control set.

Pathway analysis of pDGVs. To investigate the potential pathways affected by
pDGVs, gProfiler68 was used to retrieve all pathways that contained pDGV car-
rying genes. Cancer-associated pathways were selected and scored, based on the
likelihood of a pathway being selected by chance, with the following formula:

Enrichment score ¼ log10 1000 � #genes with DGVs in a pathway
#genes with DGVs in a patient �#genes in a pathway

þ 1

� �
:

EthSEQ. The ethnicity of patients in the WCM cohort was inferred using our
previously published EthSEQ13 method. The reference model built on genotype
data from the 1000 Genome Project and the Ashkenazi genome69 was chosen.
Principal component analysis (PCA) was performed on aggregated genotype data

collected from both the reference and WCM individuals. Four conserved ethnic
groups: EUR/ASH (Caucasian or Ashkenazi), AFR (African), EAS (East Asian),
and SAS (South Asian), were identified by generating the smallest convex sets. Each
individual from WCM was assigned to the closest ethnic group. Another refine-
ment step was then performed to differentiate individuals from EUR and ASH
groups. We inferred ethnicity for patients in the WCM and TCGA-BLCA cohorts.

SPARK cohort. We performed ethnicity-matched comparisons to European
(10607) and Ashkenazi Jewish (428) individuals in the SPARK cohort. Variants
were identified using the DeepVariant caller70, and were pre-filtered by removing
variants with read coverage less than 8, variant quality score < 30, or VAF < 20%.
The variants were initially called on the hg38 genome assembly. For comparison to
WCM and TCGA data, we lifted over those variants to hg19 genome assembly
using LiftoverVcf in the Picard package (v2.23.0)71 and then extracted pDGVs
using our variant filtering pipeline DGVar.

TCGA-BLCA cohort. We downloaded BAM files for germline samples from 398
TCGA bladder cancer (BLCA) patients using the data from the Genomic Data
Commons (GDC) legacy data archives using the GDC-client (https://gdc.cancer.
gov/about-gdc). We applied our variant filtering pipeline DGVar to the TCGA-
BLCA BAM files to retrieve pDGVs using the same steps applied to our WCM-UC
cohort. We removed common variants (i.e., found in >5% of the samples) within
the TCGA-BLCA cohort since those were likely platform-related artifacts.

Rare synonymous variants. Rare synonymous variants were defined as synon-
ymous variants having allele frequency <1% in the ExAC database and passing all
QC filters used for variant calling. For WCM-UC and TCGA-BLCA cohorts,
variant quality score >50, read coverage >= 10, less than 3 SNVs in a 10 bp
window, VAF >= 35%, pass the “inbreeding coefficient” and” “VQS” filters in
ExAC and occur in <5% individuals in a cohort were used. For the SPARK cohort,
variants with read coverage > = 8, variant quality score <30 and VAF > = 20%
were used. The same QC filters were applied to both pDGVs and rare synonymous
variants.

pDGV enrichment analysis. To examine whether pDGVs were enriched in the
cancer cohorts, we compared the ratio of pDGVs to rare synonymous variants in
cancer (WCM and TCGA) and non-cancer (SPARK) cohorts using two-sided
Fisher’s exact test. We constructed the contingency table by counting the number
of alternative alleles for pDGVs and rare synonymous variants in cancer and non-
cancer cohorts. We performed a two-sided Fisher’s exact test using the “fisher.test”
function in R. We performed separate ethnicity-matched comparisons using a gene
set of 158 genes harboring pDGVs found in the European and Ashkenazi Jewish
individuals in the WCM-UC and TCGA-BLCA cohorts. (Supplementary Data 3).

Comparison with non-urothelial cancer types in the TCGA cohort. We
downloaded the filtered variant calls (VCF) released by the TCGA pan-cancer
germline study8 (https://gdc.cancer.gov/about-data/publications/PanCanAtlas-
Germline-AWG). We limited the analysis to individuals with self-reported white
ethnicity in the TCGA pan-cancer cohorts and compared to European and Ash-
kenazi Jewish individuals in the SPARK cohort. We extracted rare synonymous
variants and pDGVs based on the filtered variant calls and performed pDGV
enrichment analysis by comparing each TCGA cancer cohort with the SPARK
non-cancer cohort.

Comparison with non-urothelial cancer types in WCM cohort. To investigate
whether the pDGVs detected in the WCM-UC cohort were present in other WCM
cancer cohorts72, we selected European and Ashkenazi Jewish patients with
prostate cancer (134), kidney cancer (55), glioblastoma (52), colorectal cancer (49),
and breast cancer (37). We performed pDGVs enrichment analysis by comparing
each WCM cancer cohort with the respective ethnicity-matched SPARK non-
cancer cohort.

Somatic variant detection pipeline. Somatic SNVs and indels were identified
using our in-house consensus multi-tool pipeline, which integrated four different
somatic variant callers: MuTect273, Strelka74, VarScan75, and SomaticSniper76;
these tools identified SNVs in a paired analysis of the tumor and its matched
normal sample. Strelka and VarScan were also used to identify indels in the tumor
sample. The variants identified from all tools were first aggregated, and only those
variants identified by a minimum of two tools were retained for further analysis.
The variants were annotated using Oncotator (version 1.9)77. The list of variants
was further filtered using the following criteria: (a) Variants which did not have a
minimum read depth of 10 reads at the corresponding loci were excluded, (b)
Variants which did not have a minimum of 3 reads supporting the altered
nucleotide were excluded, (c) Variants which did not have a variant allele fre-
quency (VAF) of a minimum 5% in tumor tissue and a maximum of 1% in normal
tissue were excluded, (d) Variants that corresponded to the dbSNP78 sites were also
excluded, unless the specific variants were also reported in the COSMIC database9,
(e) Technical artifacts, identified in-house for the Haloplex sequencing kit, were
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also excluded from the final list of mutations. Somatic copy number alterations
were identified using the EXaCT-1 somatic pipeline as previously described63.

Analysis of somatic and germline variant co-clusters. Somatic mutation posi-
tions obtained from the TCGA PanCancer Atlas studies (32 studies, 10967 sam-
ples) were downloaded from cBioportal (https://www.cbioportal.org) and used.
Mutation3D20 was used to identify co-clusters harboring somatic mutations and
pDGVs using the following clustering parameters (i) a minimum cluster size of 3
mutations, (ii) minimum unique amino acid mutations/cluster = 2, (iii) maximum
intracluster distance between mutations of 15 Å. The analysis was limited to
pDGVs that occurred in genes with available Protein Databank (PDB) structures
retrievable by Mutation3D. The analysis used the PDB structure with the highest
MPQS score, a composite score calculated by ModBase, and generated from several
output measures, including protein coverage, sequence identity, e-value of the
alignment, and the discrete optimized protein energy (DOPE) score. The positions
of amino acid residues within each cluster in three-dimensional structures were
rendered using EzMole 2.1 (http://www.sbg.bio.ic.ac.uk/ezmol/). Lollipop plots
were produced using the ProteinPaint tool (https://pecan.stjude.cloud/
proteinpaint).

PCR. Genomic DNA was extracted from the patient’s peripheral blood using the
Promega Maxwell LEV Blood DNA Kit (Cat. No AS1290). 100 ng of genomic DNA
was amplified using the following primers: F-5′TGGTAAAACACAATCCTTC
ACG3′, R-5′TTCTTTGGTACCTTTGGATTTGA3′ using standard protocols
(Supplementary Table 2). The PCR product was checked on 2% agarose gel to
confirm the amplification product. The remaining PCR product was purified using
the Qiagen QiAquick PCR cleanup kit (Qiagen USA), and Sanger sequenced
(Genewiz USA).

RT-PCR. RNA was extracted from FFPE macrodissected tumor tissue of WCM049
using the Promega Maxwell LEV RNA FFPE Kit (Cat. No AS1260). 500 ng of RNA
extracted from the patient tumor was used to produce the first-strand cDNA using
standard protocol using qScript cDNA supermix (Quanta bio. USA). 2ul of cDNA
was used in a standard PCR using the following primers F-5′CATCATTCACAAT
GGGGTGA3” R-5′TCGCCGCAATTCTTTTACTT3” (Supplementary Table 2).
1ul of PCR product was used as a template to re-amplify. PCR product was run on
2% agarose gel to check for amplification. The remaining PCR product was purified
using the Qiagen QiAquick PCR cleanup kit (Qiagen USA), and Sanger sequenced
(Genewiz. USA).

Loss of heterozygosity (LOH) analysis. Evaluation of whether LOH events had
occurred in genes with pDGVs was performed by calculating the VAFs of pDGVs
in tumor samples and comparing it to the VAF observed in the normal sample. In
particular, given a patient with pDGVs, joint variant calling was made at the
respective pDGV locus in all tumor samples. The VAF was calculated by counting
reads supporting reference and alternative alleles in each tumor sample. The VAF
was further corrected for tumor purity. This was done by dividing the tumor VAF
by the tumor purity and limiting the corrected VAF within the range [0, 1]. Tumor
purity was estimated with CLONET79, when available, or by pathology review of
the H&E slides. CLONET is a computational tool to quantify DNA admixture and
ploidy depending on germline heterozygous SNP loci (informative SNPs). This tool
can estimate the normal cell admixture and sub-clonal tumor cell population.
CLONET was previously used in the TCGA prostate cancer project and was
comparable to ABSOLUTE80. To investigate whether LOH events were enriched in
TSGs, a set of background control variants for each patient was generated by
selecting protein-truncating variants in non-TSGs. The background control set was
further refined by removing any variants with a VAF < 35% or > 80% in the normal
sample since, by definition, LOH occurred in heterozygous loci. Then, joint variant
calling was made at those background variants loci in all tumor samples, and VAF
was calculated per tumor and corrected for tumor purity. Tumor samples with low
tumor purity (<50%) or low coverage of pDGVs (<10 reads) were excluded from
the analysis.

Germline-somatic interactions. The interaction between germline and somatic
variants was investigated. First, gene-level events were evaluated by searching for
germline and somatic variants that affect the same TSG. Second, this concept was
extended to a pathway-level analysis by identifying germline and somatic variants
affecting TSG or oncogenes belonging to the same pathway. To screen for pathway-
level germline-somatic interaction, pDGVs and somatic variants from each tumor-
normal pair were combined, and pathway enrichment analysis was performed
using gProfiler68. Enriched pathways were determined by selecting those with a p
value < 0.05, and pathway-level GSIs were identified by selecting cancer-associated
pathways harboring both germline and somatic variants. gProfiler68 utilizes three
pathway databases: KEGG, Reactome, and WikiPathways. Similar pathways from
different source databases were combined. When searching for both gene-level and
pathway-level GSIs, variants in TSGs were required to be protein-truncating (loss
of function of TSG) and variants in oncogenes to be non-truncating.

Statistical analysis. The two-sided Fisher’s exact test was used (Fig. 2b, c and
Supplementary Fig. 4), odds ratios with 95% intervals were reported. A two-tailed
Wilcoxon signed-rank test was used to compare Phred-scaled CADD scores
between pDGVs and background variants (Fig. 3a) and compare VAF differences
in primary and metastasis tumor samples (Fig. 5c). A two-tailed
Kolmogorov–Smirnov test was used to check the tumor-normal VAF difference
between pDGVs affecting TSGs and protein-truncating germline variants affecting
non-TSGs (Fig. 5b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomic data supporting the findings of this study are available in the database of
Genotypes and Phenotypes (dbGaP). The BAM files and associated sample information
are deposited in dbGaP under accession (phs001087.v3.p1). SPARK data are available
through https://www.sfari.org/resource/sfari-base/. The COSMIC database is available at
https://cancer.sanger.ac.uk/cosmic. The tumor suppressor gene database (TSGene 2.0) is
available at https://bioinfo.uth.edu/TSGene/. The dbSNP build 151 is available at ftp://ftp.
ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF. The NCBI
ClinVar database is available at https://www.ncbi.nlm.nih.gov/clinvar/. The ExAC
database is available at http://exac.broadinstitute.org. The TCGA pan-cancer germline
data is available at https://gdc.cancer.gov/about-data/publications/PanCanAtlas-
Germline-AWG.

Code availability
DGVar is a bioinformatic tool developed for identifying putative deleterious germline
variants (pDGVs) from whole-exome sequencing data. Code is available in GitHub at
https://github.com/EIPM/dgvar.
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