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Abstract
Since the publication of the Society for Immunotherapy of 
Cancer’s (SITC) original cancer immunotherapy biomarkers 
resource document, there have been remarkable 
breakthroughs in cancer immunotherapy, in particular 
the development and approval of immune checkpoint 
inhibitors, engineered cellular therapies, and tumor 
vaccines to unleash antitumor immune activity. The most 
notable feature of these breakthroughs is the achievement 
of durable clinical responses in some patients, enabling 
long-term survival. These durable responses have been 
noted in tumor types that were not previously considered 
immunotherapy-sensitive, suggesting that all patients 
with cancer may have the potential to benefit from 
immunotherapy. However, a persistent challenge in the 
field is the fact that only a minority of patients respond 
to immunotherapy, especially those therapies that rely 
on endogenous immune activation such as checkpoint 
inhibitors and vaccination due to the complex and 
heterogeneous immune escape mechanisms which can 
develop in each patient. Therefore, the development of 
robust biomarkers for each immunotherapy strategy, 
enabling rational patient selection and the design of 
precise combination therapies, is key for the continued 
success and improvement of immunotherapy. In this 
document, we summarize and update established 
biomarkers, guidelines, and regulatory considerations for 
clinical immune biomarker development, discuss well-
known and novel technologies for biomarker discovery 
and validation, and provide tools and resources that can 
be used by the biomarker research community to facilitate 
the continued development of immuno-oncology and aid in 
the goal of durable responses in all patients.

Overview
In the Introduction to biomarkers for the 
immunotherapy of cancer section, we intro-
duce the cancer immunotherapy revolu-
tion from the standpoint of biomarkers and 
their roles in predicting clinical outcome 
or adverse events, as well as in quantifying 
antitumor immune responses. We discuss 
best practices for biomarker development, 

validation, and harmonization of data, and 
technical considerations for sample collec-
tion and reporting of data. Finally, we review 
recent biomarker discovery literature and 
regulatory considerations for developing 
diagnostics. These topics are divided into the 
following elements:

►► Background.
►► Recently approved cancer immunothera-

pies—a breakthrough.
►► Biomarkers of immune response and clin-

ical outcome in patients with cancer.
►► Biomarkers of immune-related adverse 

events and correlation with clinical 
response.

►► Quantifying the antitumor immune 
response.

►► The development and validation of immu-
notherapy biomarkers.

►► Data harmonization efforts for biomarker 
discovery.

►► Sample collection: technical consid-
erations for processing, storage, and 
shipment of tumor samples for immuno-
logical studies.

►► Reporting of biomarker data in clinical 
trials and publications.

►► Novel biomarker discovery: immuno-
therapy biomarker useful literature 
review.

►► Regulatory agency guidelines for 
diagnostics.

In the New and emerging technologies for 
biomarker discovery section, we focus on 
technology platforms, especially those that 
are new and emerging, for use in biomarker 
discovery. These are grouped by the type of 
cellular target. First, we consider nucleic 
acid-based platforms, including genomic, 
microbiome, mitochondrial genome, epige-
netic, transcriptomic (including single-cell), 
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and PCR/hybridization techniques. Second, proteomic 
biomarkers, ranging from ELISA to mass cytometry, 
are reviewed, along with imaging technologies that can 
analyze spatial context in tumor biopsies. Software tools 
for all these platforms are reviewed. Finally, we review in 
vivo imaging platforms and metabolic biomarkers. These 
topics are divided into the following elements:

►► Genomic biomarker discovery.
►► Microbiome sequencing.
►► Mitochondrial genome arrays.
►► Epigenomic biomarker discovery.
►► Transcriptomic biomarker discovery.
►► Single-cell gene expression analysis.
►► Hybridization and PCR-based gene expression 

platforms.
►► Proteomic biomarkers discovery: detection 

techniques.
►► Proteomic biomarkers discovery: target identification 

and immunomonitoring.
►► Immune contexture biomarker discovery.
►► Software and tools for data analysis.
►► In vivo imaging (non-invasive and whole body).
►► Predictive metabolic biomarkers in tumor 

immunotherapy.
We conclude with an extensive table of online 

resources, including links to consortia and regulatory 
agency websites, databases, online software tools, and 
clinical trial registries. Resources include:

►► Cancer Immune Monitoring and Analysis Centers/
Cancer Immunologic Data Commons network 
(CIMAC/CIDC).

►► Partnership for Accelerating Cancer Therapies (PACT).
►► Links to Food and Drug Administration (FDA) 

biomarker approval.
►► Public databases.
►► Transcription factors binding sites prediction software.
►► Tools for neoantigen prediction.
►► Clinical trial registries (CTRs).

Introduction to biomarkers for the immunotherapy 
of cancer
Background
The Society for Immunotherapy of Cancer (SITC) has 
extensively documented the importance of biomarkers 
for cancer immunotherapy through symposia and work-
shops, and the SITC Biomarkers Committee has been 
involved in the publication of a number of technology 
primers and white papers.

Workshop reports
►► SITC 2018 workshop report: immuno-oncology 

biomarkers: state of the art.1

►► Immunotherapy biomarkers 2016: overcoming the 
barriers.2

White papers
►► Validation of biomarkers to predict response to 

immunotherapy in cancer: volume I—pre-analytical 
and analytical validation.3

►► Validation of biomarkers to predict response to immu-
notherapy in cancer: volume II—clinical validation 
and regulatory considerations.4

►► Identifying baseline immune-related biomarkers to 
predict clinical outcome of immunotherapy.5

►► Systematic evaluation of immune regulation and 
modulation.6

►► Novel technologies and emerging biomarkers for 
personalized cancer immunotherapy.7

►► Society for Immunotherapy of Cancer clinical and 
biomarkers data sharing resource document: Volume 
I—conceptual challenges.8

►► Society for Immunotherapy of Cancer clinical and 
biomarkers data sharing resource document: Volume 
II—practical challenges.9

Technology primers
►► Immune monitoring technology primer: 

immunosequencing.10

►► Immune monitoring technology primer: the enzyme-
linked immunospot (Elispot) and fluorospot assay.11

►► Immune monitoring technology primer: single cell 
network profiling (SCNP).12

►► Immune monitoring technology primer: flow and 
mass cytometry.13

►► Immune monitoring technology primer: clinical vali-
dation for predictive markers.14

►► Quantitative real-time PCR assisted cell counting 
(qPACC) for epigenetic-based immune cell quantifi-
cation in blood and tissue.15

►► nCounter PanCancer Immune Profiling Panel.16

►► Immune monitoring technology primer: protein 
microarray (‘seromics’).17

►► Multiplexed tissue biomarker imaging.18

►► Immune monitoring technology primer: immunopro-
filing of antigen-stimulated blood.19

►► Immune technology primer: whole exome 
sequencing for neoantigen discovery and precision 
oncology.20

►► Biomarkers immune monitoring technology primer: 
Immunoscore Colon.21

The current source document, which was developed by 
the SITC Biomarkers Committee of 2018–2019 to support 
biomarker research for various immunotherapeutic strat-
egies, is an update from the cancer immunotherapy 
biomarker resource document published by SITC in 
2011.

►► SITC/iSBTc cancer immunotherapy biomarkers 
resource document: online resources and useful 
tools - a compass in the land of biomarker 
discovery.22

Since then, there have been revolutionary advances 
in the cancer immunotherapy field, highlighted by the 
successful clinical development of immune checkpoint 
inhibitors (ICIs) and genetically engineered cellular 
therapies. The management of a growing list of cancers 
has been transformed by immunotherapy, exemplified 
by the 5-year survival of more than 50% of patients with 
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stage IV melanoma treated by combination checkpoint 
inhibitors. Immunotherapy was named Science magazine’s 
breakthrough of the year in 2013, and Dr James Allison 
and Dr Tasuku Honjo received the 2018 Nobel Prize for 
their contributions to the development of checkpoint 
inhibitors to treat patients with cancer. Despite this 
excitement, challenges remain, with low response rates 
in the majority of tumor types and the unique profile 
of immune-related adverse events (irAEs), which are 
hard to manage. Due to this conundrum, the utilization 
of biomarkers to prognosticate about patients’ overall 
cancer outcomes (regardless of therapy) or to predict 
response and toxicity from the effect of a therapeutic 
intervention, especially immunotherapy, is warranted. 
Both prognostic biomarkers (such as expression levels 
of programmed death-ligand 1 (PD-L1) and PD-L2 
to predict survival outcomes in patients) and predic-
tive biomarkers of response and toxicity are dealt with 
due to this urgent need, and these biomarkers are key 
to successful immunotherapy development, which is in 
the midst of an explosion of innovation. As demarcated 
by the National Cancer Institute (NCI) Dictionary of 
Cancer Terms, a biomarker is defined as:

A biological molecule (molecular marker and signa-
ture molecule) found in blood, other body fluids, or 
tissues that is a sign of a normal or abnormal process, 
or of a condition or disease. A biomarker may be used 
to see how well the body responds to a treatment for 
a disease or condition.

Thus, this document provides comprehensive tools 
and resources with supporting publications to summarize 
current information, facilitate biomarker discovery and 
validation, and discuss assays in development for clinical 
use. It encompasses topics of assay standardization and 
harmonization, novel biomarker discovery, regulatory 
agency guidelines for diagnostics, and new and emerging 
technologies. An attempt has been made to include 
many pertinent products, resources, and publications. 
However, as the field of immune biomarkers is growing 
very rapidly, it is impossible to provide an exhaustive list 
of all relevant products, resources and publications. A 
summary table of online resources is provided in the last 
section.

Recently approved cancer immunotherapies—a breakthrough
Immune checkpoint inhibitors
In 2011, the first ICI, ipilimumab, an immune cell cyto-
toxic T lymphocyte-associated protein-4 (CTLA-4)-
targeting monoclonal antibody, was approved by the FDA 
to treat patients with advanced melanoma based on two 
pivotal phase III clinical trials. Ipilimumab functions in 
the priming phase of T cell activation by inhibiting the 
immune suppressive CTLA-4 checkpoint and allows anti-
tumor T cells to be activated and released from lymphoid 
tissue.

►► Improved survival with ipilimumab in patients with 
metastatic melanoma.23

►► Ipilimumab plus dacarbazine for previously untreated 
metastatic melanoma.24

Subsequently, in 2014, programmed cell death-1 
(PD-1)-targeting monoclonal antibodies were approved, 
beginning with pembrolizumab for advanced or unresect-
able melanoma based on the KEYNOTE-001, KEYNOTE-
002, and KEYNOTE-006 trials; and nivolumab based on 
the CheckMate 037, CheckMate 067, and CheckMate 069 
trials. These antibodies strengthen antitumor immunity by 
releasing the ‘brakes’ that cause the immune suppression 
of effector T cells in the tumor microenvironment (TME). 
These antibodies have been subsequently approved in the 
treatment of more than 10 malignancies, spanning from 
Hodgkin lymphoma to head and neck carcinoma, with 
inspiring durability of response, resulting in widespread 
clinical application. A newer anti-PD-1 antibody, cemi-
plimab (2018), was approved for cutaneous squamous 
cell carcinoma based on Study 1540.

►► Anti-programmed-death-receptor-1 treatment with 
pembrolizumab in ipilimumab-refractory advanced 
melanoma: a randomised dose-comparison cohort of 
a phase 1 trial.25

►► Pembrolizumab vs ipilimumab in advanced 
melanoma.26

►► Pembrolizumab vs investigator-choice chemotherapy 
for ipilimumab refractory melanoma (KEYNOTE-
002): a randomised, controlled, phase 2 trial.27

►► Nivolumab versus chemotherapy in patients with 
advanced melanoma who progressed after anti-
CTLA-4 treatment (CheckMate 037): a randomised, 
controlled, open-label, phase 3 trial.28

►► Nivolumab and ipilimumab versus ipilimumab in 
untreated melanoma.29

►► Combined nivolumab and ipilimumab or mono-
therapy in untreated melanoma.30

►► Development of PD-1 and PD-L1 inhibitors as a form 
of cancer immunotherapy: a comprehensive review of 
registration trials and future considerations.31

►► PD-1 blockade with cemiplimab in advanced cuta-
neous squamous cell carcinoma.32

In addition, PD-L1 ICIs such as atezolizumab (2016), 
avelumab (2017), and durvalumab (2017) were approved 
by the FDA based on clinical trials POPLAR and OAK 
(both for non-small cell lung cancer, NSCLC), Study 1108 
(refractory urothelial carcinoma), and JAVELIN (meta-
static Merkel cell carcinoma). These antibodies target 
PD-L1 expressed by tumor cells to thwart the immuno-
suppression exerted by the interactions of PD-1 on T cells 
with PD-L1 on tumor cells.

►► Atezolizumab versus docetaxel for patients with previ-
ously treated non-small-cell lung cancer (POPLAR): 
a multicentre, open-label, phase 2 randomised 
controlled trial.33

►► Atezolizumab versus docetaxel in patients with previ-
ously treated nonsmall-cell lung cancer (OAK): 
a phase 3, open-label, multicentre randomized 
controlled trial.34

►► IMFINZI prescribing information.35
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►► Durvalumab after chemoradiotherapy in stage III 
non-small-cell lung cancer.36

►► Avelumab, an anti-programmed death-ligand 1 anti-
body, in patients with refractory metastatic urothe-
lial carcinoma: results from a multicenter, phase Ib 
study.37

These ICIs are associated with durable responses, 
a hallmark of immunotherapy, and further increased 
overall survival (OS) and progression-free survival (PFS) 
compared with chemotherapies and targeted therapies in 
a subset of patients. On the other hand, many patients/
tumor types do not respond to these interventions. This 
leads to combinatorial approaches among these ICIs and 
with other established agents such as chemotherapy, radi-
ation, and molecularly targeted therapeutics. With the 
identification of more immune checkpoint molecules 
(eg, lymphocyte-activation gene 3 (LAG3), T cell immu-
noglobulin and mucin domain 3 (TIM3), B7-H3 (also 
known as CD276), V-domain Ig suppressor of T cell acti-
vation (VISTA) and adenosine A2A receptor (A2AR)), 
new options for single and combined therapy regimens 
with already approved ICIs are being explored in many 
ongoing clinical trials. However, irAEs can be severe, with 
unpredictable patterns of occurrence. For the continued 
successful development of cancer immunotherapies, 
biomarkers predicting response, resistance mechanisms, 
immune-related toxicities, and hyperprogression are 
paramount.

►► Combining immune checkpoint inhibitors: estab-
lished and emerging targets and strategies to improve 
outcomes in melanoma.38

Adoptive cell therapy
In 2017, the first anti-CD19 chimeric antigen receptor 
(CAR) T cell product, tisagenlecleucel (Kymriah), was 
approved for the treatment of pediatric and young adult 
patients with relapsed and/or refractory B cell precursor 
acute lymphoblastic leukemia, based on the ELIANA trial. 
This was followed by the second anti-CD19 CAR, axicabta-
gene ciloleucel (Yescarta), which was approved based on 
the ZUMA-1 trial for the treatment of adult patients with 
relapsed or refractory large B cell lymphoma. Despite 
great promise, treatment-related toxicities, relapse due to 
loss of CD19 on tumor cells, and lack of specificity (eg, 
targeting CD19 that is also expressed by other cells such as 
follicular dendritic cells) remain important issues. There-
fore, identifying patients who would benefit from the 
therapy and preventing or managing unwanted toxicity, 
along with additional development of CAR T cell thera-
peutics for successful clinical application, are warranted.

►► Tisagenlecleucel in children and young adults with 
B-cell lymphoblastic leukemia.39

►► Axicabtagene ciloleucel CAR T-cell therapy in refrac-
tory large B-cell lymphoma.40

Cancer vaccines
Provenge (sipuleucel-T) is a cancer vaccine consisting of 
autologous dendritic cells loaded with a prostate tumor 

antigen, prostatic acid phosphatase (PAP), along with 
other peripheral blood mononuclear cells (PBMCs). It 
was the first therapeutic cancer vaccine approved by the 
FDA in 2010, based on three double-blind, randomized 
phase III studies on asymptomatic/minimally symptom-
atic metastatic castration-resistant prostate cancer and 
finally on the IMPACT trial reported by Kantoff PW et al.41 
SITC produced a clinical practice guideline on this treat-
ment approach for prostate cancer. Again, the real chal-
lenges with Provenge, apart from production issues, are 
the single-antigen targeting approach and methodolog-
ical variation in detecting PAP as a biomarker to deter-
mine treatment options.

►► Placebo-controlled phase III trial of immunologic 
therapy with sipuleucel-T (APC8015) in patients with 
metastatic, asymptomatic hormone refractory pros-
tate cancer.42

►► Integrated data from 2 randomized, double-blind, 
placebo-controlled, phase 3 trials of active cellular 
immunotherapy with sipuleucel-T in advanced pros-
tate cancer.43

►► Sipuleucel-T immunotherapy for castration-resistant 
prostate cancer.41

►► The Society for Immunotherapy of Cancer consensus 
statement on immunotherapy for the treatment of 
prostate carcinoma.44

Oncolytic viral immune therapy
Oncolytic viruses (OVs) embody a new class of ther-
apeutic agents that facilitate antitumor responses by 
combining selective tumor cell killing and the induction 
of systemic antitumor immunity. There are three OVs 
that have received regulatory approval: Rigvir in Latvia, 
Georgia, and Armenia; Oncorine H101 in China; and 
talimogene laherparepvec (T-VEC, Imlygic) in the USA. 
These consist of an echovirus, an adenovirus, and a herpes 
simplex-1 virus, respectively. Owing to the approval of 
T-VEC for treatment of melanoma in 2015 by the FDA, 
based on data from a pivotal phase III trial (OPTiM) in 
patients with advanced melanoma, oncolytic viral therapy 
has been accepted as a standard immunotherapy in the 
USA. However, the benefit of single-agent T-VEC deliv-
ered intralesionally is marginal in patients with visceral 
metastases. In order to enhance response rates, newer 
generations of OVs such as HF10 (canerpaturev, C-REV) 
and CVA21 (CAVATAK) are being tested as monothera-
pies and in combination with ICIs. Important hurdles for 
OV therapy are the presence of pre-existing antibodies to 
these viruses in vaccinated or seropositive patients, and 
the intact innate responses of tumor cells or immune cells 
in the TME that affect viral replication.

►► OPTIM trial: a phase III trial of an oncolytic herpes 
virus encoding GM-CSF for unresectable stage III or 
IV melanoma.45

►► Talimogene laherparepvec improves durable response 
rate in patients with advanced melanoma.46

►► The emerging role of oncolytic virus therapy against 
cancer.47
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A summary of the immunotherapies discussed above 
may be found in table 1.

Biomarkers of immune response and clinical outcome in 
patients with cancer
As highlighted above, immunotherapy has radically trans-
formed the standard of cancer treatment but suffers 
from low frequency of benefit due to the complexity of 
resistance mechanisms. In order to increase the clinical 
efficacy of immunotherapy, combinations of immuno-
therapeutic agents and standard therapies are being 
developed. In this regard, the characterization and moni-
toring of immune responsiveness during immunotherapy 
treatment are important to understand the mechanisms 
of action of these therapeutic regimens, to optimize 
patient stratification and selection for combination strat-
egies, and to monitor and predict treatment-related toxic-
ities. Recent reviews by Pilla L and Maccali C,48 Darvin P et 
al,49 Lu S et al,50 and Wang Y et al51 focus on correlation of 
clinical responsiveness with different immunomonitoring 
strategies such as circulating immune cells (including 
absolute leukocyte count (Weide B et al,52 Martens A et 
al,53 Subrahmanyam PB et al54)), TME-associated immune 
cells, soluble serum markers, host microbiome, PD-L1 
overexpression, neoantigens, and genetic and epigen-
etic signatures. A more detailed discussion on different 
biomarkers is provided in the last part of this section.

►► Immune profiling of cancer patients treated with 
immunotherapy: advances and challenges.48

►► Immune checkpoint inhibitors: recent progress and 
potential biomarkers.49

►► Comparison of biomarker modalities for predicting 
response to PD-1/PD-L1 checkpoint blockade: a 
systematic review and meta-analysis.50

►► Modulation of gut microbiota: a novel paradigm of 
enhancing the efficacy of programmed death-1 and 
programmed death ligand-1 blockade therapy.51

►► Myeloid-derived suppressor cells predict survival of 
patients with advanced melanoma: comparison with 
regulatory T cells and NY-ESO-1- or melan-A-specific 
T cells.52

►► Baseline peripheral blood biomarkers associated with 
clinical outcome of advanced melanoma patients 
treated with ipilimumab.53

►► Distinct predictive biomarker candidates for response 
to anti-CTLA-4 and anti-PD-1 immunotherapy in 
melanoma patients54

Biomarkers of immune-related adverse events and correlation 
with clinical response
As highlighted above, several factors have been shown to 
have potential as biomarkers for tumor response to ICIs, 
but factors which can predict irAEs are less common. 
IrAEs are diverse and vary according to the ICI agent. 

Table 1  Recently approved immunotherapies

Drug name
Type of 
agent Target Supporting study Year approved

FDA-approved use on first 
approval

Ipilimumab ICI CTLA-4 NCT00094653 2011 Melanoma

Pembrolizumab ICI PD-1 KEYNOTE-001 
(NCT01295827)

2014 Melanoma

Nivolumab ICI PD-1 CheckMate 037 
(NCT01721746)

2014 Melanoma

Cemiplimab ICI PD-1 Study 1423 
(NCT02383212), 
Study 1540 
(NCT02760498)

2018 Cutaneous squamous cell 
carcinoma

Atezolizumab ICI PD-L1 NCT02108652 2016 Urothelial carcinoma

Avelumab ICI PD-L1 JAVELIN Merkel 200 
(NCT02155647)

2017 Merkel cell carcinoma

Durvalumab ICI PD-L1 Study 1108 
(NCT01693562)

2017 Urothelial carcinoma

Tisagenlecleucel CAR T cell CD19 ELIANA 
(NCT02435849)

2017 B cell precursor acute 
lymphoblastic leukemia

Axicabtagene 
ciloleucel

CAR T cell CD19 ZUMA-1 
(NCT02348216)

2017 Large B cell lymphoma

Sipuleucel-T Vaccine Prostatic acid 
phosphatase

IMPACT 
(NCT00065442)

2010 Castration-resistant prostate 
cancer

Talimogene 
laherparepvec

Oncolytic 
virus

Tumor cells OPTiM 
(NCT00769704)

2015 Melanoma

CAR T cell, chimeric antigen receptor T cell; CTLA-4, cytotoxic T lymphocyte-associated protein-4; FDA, Food and Drug Administration; ICI, 
immune checkpoint inhibitor; PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1.
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In this regard, a recent review by Nakamura,55 which 
highlights recent advances in the understanding of 
biomarkers for tumor response and the occurrence of 
irAEs in patients with cancer treated with ICIs, is valu-
able. Although controversial, the correlation of severe 
irAEs with clinical efficacy has been reported in NSCLC, 
head and neck, and other cancers. In a 2019 meeting 
abstract presentation, a higher rate of objective response 
and lower progression and death rates were reported in 
a cohort of patients with urothelial cancer who experi-
enced irAEs. In another meeting report, the development 
of irAEs was associated with clinical benefit for patients 
with advanced gastric cancer receiving nivolumab mono-
therapy. Further studies with larger numbers of patients 
and longer follow-up are needed to validate these find-
ings, in addition to developing biomarker-based assays to 
predict the development of irAEs.

►► Do immune-related adverse events correlate with 
response to immune checkpoint inhibitors?.56

►► Association between immune-related adverse events 
(irAEs) and clinical outcomes (CO) in advanced 
urothelial cancer patients (pts) treated with immuno-
therapy (IO).57

►► Correlation between immune-related adverse events 
and prognosis in patients with gastric cancer treated 
with nivolumab.58

►► Biomarkers for immune checkpoint inhibitor-
mediated tumor response and adverse events.55

Quantifying the antitumor immune response
Tumor development, or response to immunotherapy, 
dynamically shapes the composition and function of the 
immune response. The following select recent reviews 
and original research papers explore some of the current 
immunotherapies being assessed in patients with cancer 
and describe the experimental tools available for moni-
toring their antitumor immune response prior to or 
during treatment.

►► Quantifying the anti-tumor immune response in 
patients receiving immunotherapy.59

►► Comprehensive intrametastatic immune quantifica-
tion and major impact of immunoscore on survival60

►► Association between expression level of PD1 by tumor-
infiltrating CD8+ T cells and features of hepatocellular 
carcinoma.61

►► The development, function, and plasticity of the 
immune macroenvironment in cancer.62

►► Enhanced adaptive immune responses in lung adeno-
carcinoma through natural killer cell stimulation63

►► Quantifying antigen-specific T cell responses when 
using antigen-agnostic immunotherapies.64

The development and validation of immunotherapy 
biomarkers
Recent comprehensive reviews by the SITC Biomarkers 
Committee (Masucci GV et al3 and Dobbin KK et al4) 
deal with considerations for preanalytical, analytical, and 
clinical validation of biomarkers to predict responses to 

cancer immunotherapy. Gnjatic S et al5 describe baseline 
immune-related biomarkers and how those biomarkers 
could predict the clinical outcome of immunotherapy. 
Lastly, the challenges to developing valuable immuno-
oncology biomarkers are outlined by Mehnert JM et al.65

►► Validation of biomarkers to predict response to 
immunotherapy in cancer: volume I—pre-analytical 
and analytical validation.3

►► Validation of biomarkers to predict response to immu-
notherapy in cancer: volume II—clinical validation 
and regulatory considerations.4

►► Identifying baseline immune-related biomarkers to 
predict clinical outcome of immunotherapy.5

►► The challenge for development of valuable immuno-
oncology biomarkers.65

Data harmonization efforts for biomarker discovery
CIMAC/CIDC network
In 2017, the US NCI funded the CIMAC and the CIDC, 
as part of the Cancer Moonshot program. The CIMAC 
constitutes four academic centers (Dana-Farber Cancer 
Institute, MD Anderson Cancer Center, Mount Sinai 
School of Medicine, and Stanford University Medical 
School), which are responsible for providing standard-
ized, analytically validated, state-of-the-art immune moni-
toring assays for early-stage NCI trials involving cancer 
immunotherapy. The CIDC, housed at the Dana-Farber 
Cancer Institute, will create a database for aggrega-
tion and integrated analysis of CIMAC data, biomarker 
discovery, and sharing with the scientific community. For 
more information, see:

►► https://​cimac-​network.​org/66

In partnership with the CIMAC/CIDC network, a 
consortium of 11 biopharmaceutical companies was 
created by the Foundation for the National Institutes of 
Health. Called PACT, this public–private collaboration 
will extend the CIMAC/CIDC activities to include addi-
tional non-NCI clinical trials, with the goal of accelerating 
biomarker discovery in immuno-oncology. More informa-
tion can be found at:

►► ht tp s :// ​fn ih . ​o rg/ ​wha t - ​we - ​do/ ​programs/​
partnership-​for-​accelerating-​cancer-​therapies67

Assay standardization and harmonization
Standardization and harmonization are two integral parts 
for controlling the performance of biomarker assays to 
allow for consistency and comparability of results. Stan-
dardization of an operational assay procedure addresses 
each single variable of an assay, and is hence restricted to a 
specific application and laboratory or laboratory network 
that follows the established standard operating procedure 
(SOP) for the defined application. Standardization is a 
prerequisite for assay validation. Reviews and guidelines 
on biomarker assay standardization are numerous. More 
information is provided within the specific assay subsec-
tions of this document.

Assay harmonization addresses the major limitations of 
assay standardization, which are twofold: (1) explorative 

https://cimac-network.org/
https://fnih.org/what-we-do/programs/partnership-for-accelerating-cancer-therapies
https://fnih.org/what-we-do/programs/partnership-for-accelerating-cancer-therapies
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biomarker assays often require procedural adaptations, 
and (2) countless minute assay variables exist, which 
are impossible to standardize across a large number of 
laboratories. Harmonization focuses on key protocol vari-
ables that influence the assay outcome, and their align-
ment across laboratories and SOPs. Assay harmonization 
efforts are currently underway in the CIMAC network for 
cytometry by time of flight (CyTOF), single parameter 
and multiplex immunohistochemistry (IHC), RNA-seq, 
and whole exome sequencing (WES), as these assays are 
performed across multiple CIMAC centers. An outline for 
achieving biomarker assay harmonization has been given.

►► Harmonization of immune biomarker assays for clin-
ical studies.68

Sample collection: technical considerations for processing, 
storage, and shipment of tumor samples for immunological 
studies
Regardless of the assay type (eg, detection of DNA, RNA, 
or protein expression), quality of data is largely influ-
enced by the quality of the biospecimens used (eg, blood 
including isolated serum/plasma and mononuclear 
immune cells, body fluid, tissue such as tumors, and so 
on). Factors influencing the quality of biospecimens are 
often referred to as preanalytical variables, which involve 
sample processing, storage, and shipment. A comprehen-
sive list of guidelines on the best practices for bioreposi-
tories and biospecimens is available from the NCI, which 
includes comprehensive checklists created by the College 
of American Pathologists (CAP). The International 
Society for Biological and Environmental Repositories 
(ISBER) also publishes Best Practices for Repositories, 
which reflects the collective experience of repository 
professionals.

►► https://​biospecimens.​cancer.​gov/​bestpractices/69

►► https://www.​cap.​org/​laboratory-​improvement/​
accreditation/​accreditation-​checklists70

►► https://www.​isber.​org/​page/​BPR71

The following reviews discuss the most up-to-date 
understanding of preanalytical variables:

►► Preanalytical challenges - time for solutions.72

►► The root causes of pharmacodynamic assay failure73

►► Tumor pre-analytics in molecular pathology: impact 
on protein expression and analysis.74

►► Understanding preanalytical variables and their 
effects on clinical biomarkers of oncology and 
immunotherapy.75

Reporting of biomarker data in clinical trials and publications
To allow an objective evaluation of biomarker data, the 
reporting has to follow standards of conformity and trans-
parency to support the rigor required for reproducibility 
and confidence in the data. The REMARK (REporting 
recommendations for tumor MARKer prognostic studies) 
guidelines for prognostic tumor marker studies have 
been widely accepted.76 Reporting recommendations for 
specific biomarker assays exist as minimal information 
guidelines, and are further addressed in this document, 

for example, for microarray assays,77 T cell assays,78 and 
flow cytometry assays.79 A review commentary about 
achieving greater reproducibility and credibility of early 
clinical biomarker studies, including data reporting, has 
recently been published.80

►► REporting recommendations for tumor MARKer 
prognostic studies (REMARK).76

►► Minimum information about a microarray experi-
ment (MIAME)—toward standards for microarray 
data.77

►► T cell assays and MIATA: the essential minimum for 
maximum impact.78

►► MIFlowCyt: the minimum information about a flow 
cytometry experiment.79

►► In pursuit of greater reproducibility and credibility of 
early clinical biomarker research.80

Conclusions
For new biomarker discovery, using validated assays is 
important, especially in larger clinical trials. Harmoniza-
tion of assays across sites is difficult but needed whenever 
multiple sites are expected to generate comparable data. 
Control of preanalytical variables is key to the success of 
biomarker assays, and standardized reporting is required 
for effective evaluation and data reuse.

Novel biomarker discovery: immunotherapy biomarker useful 
literature review
PD-L1 expression
Anti-PD-1 checkpoint inhibitors have revolutionized 
cancer care. Six PD-(L)1-specific antibodies including 
nivolumab (Opdivo; anti-PD-1), pembrolizumab 
(Keytruda; anti-PD-1), atezolizumab (Tecentriq; anti-
PD-L1), durvalumab (Imfinzi; anti-PD-L1), avelumab 
(Bavencio; anti-PD-L1), and cemiplimab (Libtayo; anti-
PD-1) have been approved by the US FDA in specific 
tumor indications; clinical benefit from this class of agents, 
however, is restricted to a subset of patients. Assessment 
of tumor PD-L1 expression by IHC was a rational choice 
for biomarker development, and a number of PD-L1 IHC 
assays, including 28-8 pharmDx (Agilent), 22C3 pharmDx 
(Agilent), Ventana SP142 (Roche Diagnostics), Ventana 
SP263 (Roche Diagnostics) and Dako/Agilent 73-10 
(Agilent), have been developed to support patient selec-
tion and diagnostic strategies for nivolumab, pembroli-
zumab, atezolizumab, durvalumab, and avelumab, 
respectively. However, it has become apparent that PD-L1 
protein is an imprecise biomarker in predicting clinical 
benefit from PD-(L)1-specific antibodies. While multiple 
studies have found a positive correlation between tumor 
PD-L1 expression and clinical efficacy of anti-PD-1 
blockade, others have detected no association. Many 
patients with PD-L1-negative tumors also derive durable 
clinical benefit from anti-PD-1 inhibitors. The contradic-
tory data from correlative studies around PD-L1 IHC are 
attributable to multiple factors, including the inducible 
nature and intertumor and intratumor heterogeneity 
of PD-L1 expression and technical variations, such as 

https://biospecimens.cancer.gov/bestpractices/
https://www.cap.org/laboratory-improvement/accreditation/accreditation-checklists
https://www.cap.org/laboratory-improvement/accreditation/accreditation-checklists
https://www.isber.org/page/BPR
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different detection antibodies and assay platforms used, 
archival versus fresh tumor tissue, type and duration of 
tissue fixation, non-standardized criteria, and various cut-
off levels to define positive expression.

►► Comparing and contrasting predictive biomarkers for 
immunotherapy and targeted therapy of NSCLC.81

►► Monitoring immune-checkpoint blockade: response 
evaluation and biomarker development.82

►► Mechanism-driven biomarkers to guide immune 
checkpoint blockade in cancer therapy.83

►► What does PD-L1 positive or negative tumors mean?84

►► Predictive biomarkers for checkpoint inhibitor-based 
immunotherapy.85

►► PD-L1 expression as a predictive biomarker in cancer 
immunotherapy.86

Assessment of PD-L1 expression on tumor versus 
immune cells adds another level of complexity. In certain 
tumor types (eg, squamous cell carcinoma of the head 
and neck (SCCHN), melanoma, breast cancer and 
renal cell carcinoma (RCC)), PD-L1 is expressed on the 
surface of both tumor and immune cells (macrophages, 
dendritic cells, and activated T cells), whereas in others 
such as colorectal cancer (CRC) and gastric carcinoma, 
PD-L1 expression is predominantly seen on tumor-
infiltrating immune cells. In certain tumor types, clinical 
activity of PD-(L)1 inhibitors is associated with PD-L1 on 
immune rather than tumor cells. Therefore, scoring algo-
rithms based on PD-L1 expression in both the tumor and 
immune cell compartments have been established.

►► Predictive correlates of response to the anti-PD-L1 
antibody MPDL3280A in cancer patients.87

►► Atezolizumab versus docetaxel for patients with previ-
ously treated non-small-cell lung cancer (POPLAR): 
a multicentre, open-label, phase 2 randomised 
controlled trial.33

►► Atezolizumab in patients with locally advanced and 
metastatic urothelial carcinoma who have progressed 
following treatment with platinum-based chemo-
therapy: a single-arm, multicentre, phase 2 trial.88

►► Clinical utility of the combined positive score for 
programmed death ligand-1 expression and the 
approval of pembrolizumab for treatment of gastric 
cancer.89

►► Establishing a complementary diagnostic for anti-
PD-1 immune checkpoint inhibitor therapy.90

In contrast to complementary tests (which assist in 
risk-benefit analysis but are not required for the use of a 
therapy), companion diagnostic (CDx) tests are required 
for use with a specific therapy to identify patients who are 
most likely to benefit from that therapy. For pembroli-
zumab, for example, the 22C3 pharmDx assay has been 
approved by the FDA as a CDx test to help identify eligible 
patients with NSCLC, gastric or gastroesophageal junc-
tion (GEJ), cervical, and urothelial carcinoma. PD-L1 
expression in NSCLC is determined using the Tumor 
Proportion Score (TPS), which is the percentage of 
viable tumor cells showing partial or complete membrane 
PD-L1 staining at any intensity. An NSCLC specimen is 

considered PD-L1-positive for the purposes of first-line 
treatment with pembrolizumab monotherapy if the 
TPS is ≥ 1% of tumor cells. PD-L1 protein expression in 
gastric/GEJ, cervical, SCCHN, esophageal squamous cell 
carcinoma, and urothelial carcinomas is determined by 
the Combined Positive Score (CPS), which is defined as 
the percentage of PD-L1-positive tumor and immune cells 
relative to the total number of tumor cells. The sample is 
considered to have PD-L1 expression if it has a CPS ≥1 
for gastric/GEJ, SCCHN, and cervical carcinomas and 
≥10 for urothelial cell carcinoma (UCC) and esophageal 
squamous cell carcinoma. The FDA also approved the 
Ventana SP142 assay as a CDx test to select patients with 
(1) locally advanced or metastatic UCC who are cisplatin-
ineligible for single-agent treatment with atezolizumab or 
unresectable/locally advanced and (2) metastatic triple-
negative breast cancer (TNBC) for combination treat-
ment with atezolizumab and nanoparticle albumin-bound 
paclitaxel. The SP142 assay determines tumor PD-L1 posi-
tivity as PD-L1 stained tumor-infiltrating immune cells of 
any intensity covering ≥1% or 5% of the tumor area in 
TNBC and UCC, respectively.

►► https://www.​fda.​gov/​drugs/​resources-​information-​
approved-​drugs/​fda-​grants-​accelerated-​approval-​
pembrolizumab-​advanced-​gastric-​cancer91

►► https://www.​fda.​gov/​drugs/​resources-​information-​
approved-​drugs/​fda-​updates-​prescribing-​informa-
tion-​keytruda-​and-​tecentriq92

►► https://www.​fda.​gov/​drugs/​resources-​informa-
tion-​approved-​drugs/​fda-​approves-​pembrolizumab-​
advanced-​cervical-​cancer-​disease-​progression-​during-​
or-​after-​chemotherapy93

►► https://www.​fda.​gov/​Drugs/​InformationOnDrugs/​
ApprovedDrugs/​ucm633065.​htm94

►► https://www.​fda.​gov/​drugs/​fda-​expands-​pembroli-
zumab-​indication-​first-​line-​treatment-​nsclc-​tps-195

►► https://www.​fda.​gov/​drugs/​resources-​information-​
approved-​drugs/​fda-​approves-​pembrolizumab-​first-​
line-​treatment-​head-​and-​neck-​squamous-​cell-​carci-
noma96

►► https://www.​fda.​gov/​drugs/​resources-​informa-
tion-​approved-​drugs/​fda-​approves-​pembrolizumab-​
advanced-​esophageal-​squamous-​cell-​cancer97

Currently, there is no standardized approach for PD-L1 
testing. Significant heterogeneity was reported for the 
available PD-L1 IHC tests, with different cut-off points 
and testing standards, which makes interpretation of the 
PD-L1 expression data across various clinical trials very 
challenging. In the Blueprint PD-L1 IHC Assay Compar-
ison Project (an industrial–academic collaborative part-
nership), as well as in a similar National Comprehensive 
Cancer Network (NCCN) project, different PD-L1 IHC 
assays, including 28-8 pharmDx, 22C3 pharmDx, Ventana 
SP142, Ventana SP263, and Dako/Agilent 73-10, were eval-
uated to provide information on their analytical and clin-
ical comparability. The results of this effort demonstrated 
comparable analytical results for the 22C3, 28-8, and 
SP263 assays, but differences were noted with regard to 

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-updates-prescribing-information-keytruda-and-tecentriq
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-updates-prescribing-information-keytruda-and-tecentriq
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-updates-prescribing-information-keytruda-and-tecentriq
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-cervical-cancer-disease-progression-during-or-after-chemotherapy
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm633065.htm
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm633065.htm
https://www.fda.gov/drugs/fda-expands-pembrolizumab-indication-first-line-treatment-nsclc-tps-1
https://www.fda.gov/drugs/fda-expands-pembrolizumab-indication-first-line-treatment-nsclc-tps-1
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first-line-treatment-head-and-neck-squamous-cell-carcinoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first-line-treatment-head-and-neck-squamous-cell-carcinoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first-line-treatment-head-and-neck-squamous-cell-carcinoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first-line-treatment-head-and-neck-squamous-cell-carcinoma
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-esophageal-squamous-cell-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-esophageal-squamous-cell-cancer
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-advanced-esophageal-squamous-cell-cancer
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the SP142 and 73-10 assays for determining TPS on tumor 
cells. A greater variability between tests was observed 
when PD-L1 expression was analyzed on immune cells. 
Although the data suggest possible interchangeability of 
some PD-L1 IHC tests (but not for assessment of PD-L1 
expression on immune cells), some discordance in the 
results was apparent, and the interchangeable use of 
these assays may result in misclassification of PD-L1 status 
for some patients. A recent meta-analysis suggests that the 
FDA-approved PD-L1 IHC assays that were designed and 
approved for a different purpose may not be interchange-
able with each other. In contrast, well-designed, fit-for-
purpose PD-L1 laboratory-developed IHC tests appear to 
achieve higher accuracy than the FDA-approved PD-L1 
IHC assays when both are compared with an appropriate 
designated reference standard.

►► PD-L1 immunohistochemistry assays for lung cancer: 
results from phase I of the Blueprint PD-L1 IHC assay 
comparison project.98

►► Programmed death ligand-1 immunohistochemistry 
testing: a review of analytical assays and clinical imple-
mentation in non-small cell lung cancer.99

►► PD-L1 immunohistochemistry comparability study in 
real-life clinical samples: results of Blueprint phase 2 
project.100

►► A prospective, multi-institutional, pathologist-based 
assessment of 4 immunohistochemistry assays for 
PD-L1 expression in non-small cell lung cancer. 101

►► Automated image analysis of NSCLC biopsies to 
predict response to anti-PD-L1 therapy.102

►► “Interchangeability” of PD-L1 immunohistochemistry 
assays: a meta-analysis of diagnostic accuracy.103

Prognostic prediction of PD-L1 and PD-L2 expression
A meta-analysis study suggests that PD-L1 overexpres-
sion is related to poor OS in patients with cervical cancer 
and poor PFS in Asian patients with cervical cancer. This 
study also suggests that PD-L1 expression is a promising 
prognostic indicator for cervical cancer. In this scenario, 
PD-L1 assay validation is critical for its utility in routine 
clinical practice.

►► Elevated PD-L1 expression predicts poor survival 
outcomes in patients with cervical cancer.104

Although PD-L2 is more confined to antigen-presenting 
cells, its expression has been discovered in many tumor 
types owing to induction by stimuli in the TME. A recent 
meta-analysis revealed that high PD-L2 expression in solid 
tumors, especially in hepatocellular carcinoma (HCC), 
predicts tumor metastasis and unfavorable prognosis 
after surgery. In this scenario, it is unknown what addi-
tional correlation might be achieved by combining PD-L2 
with PD-L1 measurement.

►► Correlation between PD-L2 expression and clinical 
outcome in solid cancer patients: a meta-analysis.105

Conclusions
PD-L1 IHC has demonstrated clinical utility by allowing 
patient selection and enrichment for clinical benefit 

from single-agent treatment with anti-PD-1 checkpoint 
inhibitors. A number of PD-L1 IHC tests were inde-
pendently codeveloped to support specific anti-PD-(L)1 
programs, and the lack of standardization between these 
IHC requires harmonization of these assays in the clinic, 
as well as consensus on the scoring algorithms and cut-
off levels to define positive PD-L1 status across various 
tumor types. While PD-L1 IHC tests allow for enrich-
ment of patients who are likely to derive clinical benefit 
from anti-PD-(L)1 agents, their clinical utility is less clear 
in the context of combination immunotherapies (eg, 
nivolumab/ipilimumab, angio-immunotherapy, and 
chemoimmunotherapy) which, based on currently avail-
able data, appear to be efficacious irrespective of tumor 
PD-L1 status.

Tumor mutational burden
Human tumors harbor a varying number of somatic 
mutations collectively referred to as tumor mutational 
burden (TMB). TMB has become a useful biomarker 
in immuno-oncology following the demonstration that 
a correlation between high TMB and clinical efficacy of 
ICIs exists across multiple tumor types. Initial interest 
in TMB was triggered by two exploratory studies of WES 
data obtained from patients with melanoma; a correlation 
between TMB and the magnitude of clinical benefit in 
ipilimumab (anti-CTLA-4)-treated patients was observed.

►► Genetic basis for clinical response to CTLA-4 blockade 
in melanoma.106

►► Genomic correlates of response to CTLA-4 blockade 
in metastatic melanoma.107

In addition, a high response rate to anti-PD-1 check-
point inhibitors was observed in desmoplastic melanoma, 
a subtype of melanoma that has very high median muta-
tional burden.

►► High response to PD-1 blockade in desmoplastic 
melanoma.108

Similar observations were made in patients with NSCLC 
treated with anti-PD-1 antibodies.

►► Mutational landscape determines sensitivity to PD-1 
blockade in non-small cell lung cancer.109

The clinical relevance of TMB was further demon-
strated in a study of mismatch repair-deficient tumors 
(frequently detected as tumors with high microsatellite 
instability (MSI-H)); these tumors exhibited a markedly 
increased mutational load and displayed high objective 
response rates after anti-PD-1 blockade.

►► PD-1 blockade in tumors with mismatch repair 
deficiency.110

Based on the results of larger randomized and non-
randomized clinical trials (Checkmate-012, Check-
mate-569, Checkmate-227), TMB has emerged as a 
potential biomarker predictive of clinical benefit in 
patients with NSCLC treated with combined ICIs (in 
this case, nivolumab/ipilimumab). Ten mutations per 
megabase was identified as an optimal cut-off level to 
define the NSCLC patient population with high TMB. 
However, while high TMB appears to be associated with 
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improved PFS, a correlation between TMB and OS in 
patients treated with combined immune checkpoint 
blockade has not been demonstrated.

►► Genomic features of response to combination immu-
notherapy in patients with advanced non-small cell 
lung cancer.111

►► Nivolumab plus ipilimumab in lung cancer with a 
high tumor mutational burden.112

►► First-line nivolumab plus ipilimumab in advanced non-
small-cell lung cancer (CheckMate 568): outcomes by 
programmed death ligand 1 and tumor mutational 
burden as biomarkers.113

►► Nivolumab plus ipilimumab in advanced non-small-
cell lung cancer.114

An association of TMB with response to checkpoint 
blockade was also demonstrated in patients with small 
cell lung cancer treated with nivolumab and ipilimumab.

►► Tumor mutational burden and efficacy of nivolumab 
monotherapy and in combination with ipilimumab in 
small-cell lung cancer.115

Furthermore, investigators analyzed genomic data of 
>1600 patients with advanced cancer treated with some 
type of ICI, whose tumors were subjected to the targeted 
next-generation sequencing (NGS) test Memorial Sloan 
Kettering-Integrated Mutation Profiling of Actionable 
Cancer Targets (MSK-IMPACT) established at Memorial 
Sloan Kettering Cancer Center. For most, but not all, 
tumor types, higher somatic TMB (highest 20% in each 
histology) correlated with improved survival in patients 
receiving ICIs across multiple cancer types; however, 
based on these data one universal definition of high TMB 
appears to be unlikely.

►► Tumor mutational load predicts survival after immu-
notherapy across multiple cancer types.116

In line with these data, another study of whole exomes 
of microsatellite stable tumors (n=294) concluded that 
TMB has insufficient predictive power to differentiate 
tumor responses from progressive disease, and therefore 
additional molecular correlates should be taken into 
consideration.

►► Genomic correlates of response to immune check-
point blockade in microsatellite-stable solid tumors.117

Based on the results of the KEYNOTE clinical trials 
spanning 22 tumor types and >300 patients treated with 
pembrolizumab, investigators from Merck & Co also 
concluded that the TMB and T cell-inflamed gene expres-
sion profiles (GEPs) exhibited only modest correlation 
and were independently predictive of clinical outcome 
(see ‘Immune gene expression signatures’ section for an 
examination of T cell-inflamed GEPs). However, when 
analyzed jointly, TMB and GEP were capable of defining 
a patient population (TMB-high/GEP-high) deriving 
maximum clinical benefit from pembrolizumab.

►► Pan-tumor genomic biomarkers for PD-1 checkpoint 
blockade-based immunotherapy.118

Not all somatic mutations are alike in their potential 
to generate neoantigens. Frameshift insertion and dele-
tion (indel) mutations are believed to be a rich source 

of immunogenic neoantigens. Indel burden may help 
explain some discrepancy in the data for TMB and ICI 
response in specific tumor indications, including RCC, 
which has a good rate of response to ICIs (~25%), 
although most patients with RCC have low TMB. RCC 
had the highest frequency of indel mutations among 19 
cancer types analyzed, and frameshift indel mutations 
were found to be ~3 times more immunogenic than non-
synonymous mutations; the relationship between indel 
burden and clinical efficacy of ICIs needs to be investi-
gated further.

►► Insertion-and-deletion-derived tumour-specific 
neoantigens and the immunogenic phenotype: a pan-
cancer analysis.119

►► Tumor exome analysis reveals neoantigen-specific 
T-cell reactivity in an ipilimumab-responsive 
melanoma.120

►► Checkpoint blockade cancer immunotherapy targets 
tumour-specific mutant antigens.121

►► Mutational landscape determines sensitivity to PD-1 
blockade in non-small cell lung cancer.109

Somatic copy number alterations, such as amplifica-
tions and deletions, represent another complexity of 
tumor-specific genomic aberrations that may affect the 
tumor immune microenvironment and clinical efficacy 
of ICIs.

►► Molecular and genetic properties of tumors associ-
ated with local immune cytolytic activity.122

►► Integrated molecular analysis of tumor biopsies on 
sequential CTLA-4 and PD-1 blockade reveals markers 
of response and resistance.123

WES of matched tumor and normal tissue samples is 
a gold standard of TMB analysis. However, it requires 
high coverage sequencing of ~50 Mb of genomic content 
and is technically and is operationally challenging for 
routine use in clinical practice. Targeted NGS panels 
that use hybridization-capture methodologies such as the 
FoundationOne CDx (F1CDx by Foundation Medicine) 
and MSK-IMPACT assays that target 324 and 468 cancer-
related genes, respectively, have been used to assess TMB 
in tumor biopsy samples; compared with WES, they have 
a shorter turnaround time and are more cost-effective for 
clinical sample analysis.

►► https://www.​foundationmedicine.​com/​genomic-​
testing/​foundation-​one-​cdx124

►► https://www.​mskcc.​org/​msk-​impact125

►► Comprehensive cancer-gene panels can be used to 
estimate mutational load and predict clinical benefit 
to PD-1 blockade in clinical practice.126

►► Tumor mutational load predicts survival after immu-
notherapy across multiple cancer types.116

TMB quantifies the mutations found in a tumor. 
Currently, there are no standards for calculating and 
reporting TMB. Similar to efforts with harmonizing 
PD-L1 assays by IHC, the harmonized measurement 
of TMB is ongoing, with the goal of helping reduce 
potential variability and optimizing its use. The TMB 
Harmonization Working Group has issued its plan for 

https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx
https://www.foundationmedicine.com/genomic-testing/foundation-one-cdx
https://www.mskcc.org/msk-impact
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upcoming analyses of human tumor cells. The working 
group will create a universal reference standard using 
WES and identify sources of potential variability. To date, 
the working group has reviewed publicly available data 
from The Cancer Genome Atlas (TCGA) and identified 
sources of variability between TMB calculated using WES 
and various targeted panels used in the clinic. The work 
is ongoing, and phase I results will be reported at an 
upcoming meeting.

►► Development of tumor mutation burden as an immu-
notherapy biomarker: utility for the oncology clinic.127

Friends of Cancer Research TMB Harmonization Working Group
►► https://www.​focr.​org/​TMB128

►► https://www.​focr.​org/​news/​friends-​cancer-​research-​
announces-​launch-​phase-​ii-​tmb-​harmonization-​
project129

With the advent of methods enabling analysis of tumor-
derived DNA in the circulation (ctDNA), an approach 
commonly referred to as liquid biopsy, it may be possible 
to assess TMB by ctDNA sequencing. Analysis of ctDNA 
using the Guardant Health NGS panel targeting 54–70 
genes revealed that the total number of mutations 
detected in ctDNA positively correlated with clinical 
benefit from ICIs in a clinical trial of 69 patients repre-
senting 23 different cancer types. An obvious question 
is whether TMB in ctDNA could accurately reflect TMB 
evaluated in tumor biopsy samples. A blood-based plat-
form using the aforementioned FoundationOne CDx 
assay was capable of measuring TMB in plasma samples 
(blood TMB, or bTMB) in two large randomized clin-
ical trials (POPLAR and OAK); bTMB correlated with 
TMB measured in tumor biopsy samples in NSCLC, 
and therefore has the potential to identify patients who 
derive clinical benefit from anti-PD-L1 treatment (such 
as atezolizumab). Furthermore, preliminary results from 
the MYSTIC phase III trial of first-line durvalumab with or 
without tremelimumab (anti-CTLA-4) versus platinum-
based chemotherapy in NSCLC indicate that in patients 
with high bTMB (≥20 mut/Mb), identified by the Guard-
antOMNI platform, treatment with durvalumab and 
tremelimumab was associated with both OS and PFS 
benefit.

►► Hypermutated circulating tumor DNA: correla-
tion with response to checkpoint inhibitor-based 
immunotherapy.130

►► Blood-based tumor mutational burden as a predictor 
of clinical benefit in non-small-cell lung cancer 
patients treated with atezolizumab.131

►► Clinical potential of circulating tumour DNA in 
patients receiving anticancer immunotherapy.132

►► Tumor mutational burden (TMB) as a biomarker 
of survival in metastatic non-small cell lung cancer 
(mNSCLC): blood and tissue TMB analysis from 
MYSTIC, a phase III study of first-line durvalumab ± 
tremelimumab vs chemotherapy.133

While emerging data for TMB as a biomarker predic-
tive of efficacy of ICIs look encouraging, it is apparent 

that TMB assessment needs to be standardized across 
platforms and laboratories. Several key factors should 
be taken into consideration to enable the comparison of 
TMB data across various platforms: depth and length of 
sequencing reads; choice of aligners, variant callers, and 
filters used; and preanalytical variability due to inconsist-
ency in sample collection and processing, input material 
quality and quantity, fixation methodology, and library 
preparation should also be addressed.

►► Tumor mutational burden standardization initiatives: 
recommendations for consistent tumor mutational 
burden assessment in clinical samples to guide immu-
notherapy treatment decisions.134

►► Development of tumor mutation burden as an immu-
notherapy biomarker: utility for the oncology clinic.127

Defective mismatch repair
In an interesting study with a single tumor type, the 
presence of a defective mismatch repair system and the 
presence of tumor-infiltrating lymphocytes (TILs) could 
be linked to better outcomes from novel immune-based 
therapies in patients with advanced gastric cancer.

►► Mismatch repair deficiency may affect clinical 
outcome through immune response activation in 
metastatic gastric cancer patients receiving first-line 
chemotherapy.135

►► PD-1 blockade in tumors with mismatch-repair 
deficiency.110

Using a database of more than 10000 tumors, immu-
nogenomic analysis of data compiled by TCGA could 
serve as a resource to identify patients likely to respond to 
particular immunotherapies.

►► The immune landscape of cancer.136

Conclusions
TMB and other genetic determinants have demonstrated 
the potential to make immune checkpoint therapy more 
precise. Clinical data in support of the predictive value of 
TMB in the context of ICIs are encouraging but not fully 
conclusive, and challenges remain. It remains to be seen 
if tumor and/or bTMB can help identify patients who 
are likely to benefit from combination immunotherapies, 
including, but not limited to, angio-immunotherapy and 
chemoimmunotherapy combinations. Additionally, the 
variability in the current methods of TMB assessment may 
complicate therapeutic decisions in the clinic. This high-
lights the need for standardization and harmonization of 
TMB analysis and reporting across assays and laboratories.

Tumor-infiltrating T cells
T cells are the most important effector cells in the anti-
tumor immune response. There is compelling evidence 
on the prognostic significance of intratumoral CD8+ T cell 
density across multiple tumor types. The location, density, 
and phenotype of tumor-infiltrating immune cells are 
three important parameters of the intratumoral immune 
contexture. The concept of Immunoscore was developed 
by quantifying and qualifying the T cell infiltrate in the 

https://www.focr.org/TMB
https://www.focr.org/news/friends-cancer-research-announces-launch-phase-ii-tmb-harmonization-project
https://www.focr.org/news/friends-cancer-research-announces-launch-phase-ii-tmb-harmonization-project
https://www.focr.org/news/friends-cancer-research-announces-launch-phase-ii-tmb-harmonization-project
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tumor core as well as at the invasive tumor margins to 
predict tumor recurrence and survival in patients with 
stage I–III colon cancer, using a four-point scale. The 
potential utility of this scoring approach in other tumor 
types (eg, melanoma, NSCLC) is being evaluated:

►► The immune contexture in human tumours: impact 
on clinical outcome.137

►► International validation of the consensus Immu-
noscore for the classification of colon cancer: a prog-
nostic and accuracy study.138

►► Immunoscore and immunoprofiling in cancer: an 
update from the melanoma and immunotherapy 
bridge.139

►► Assessing PDL-1 and PD-1 in non-small cell lung 
cancer: a novel Immunoscore approach.140

Since the antitumor activity of anti-CTLA-4 and anti-
PD-1 inhibitors is attributed at least in part to the rein-
vigoration of dysfunctional T cells in the TME, both the 
density and location of intratumoral T cells have also 
emerged as potential predictive biomarkers for ICIs. 
While baseline density does not appear to correlate with 
clinical activity of ipilimumab, pre-existing CD8+ (but not 
CD4+) T cell infiltration at the invasive tumor margin 
and within the tumor core is associated with response 
to anti-PD-1 therapy in patients with melanoma. In both 
anti-CTLA-4-treated and anti-PD-1-treated patients with 
melanoma, increases in intratumoral T cells while on 
treatment were associated with clinical activity, while a 
higher proximity of CD68+ myeloid cells to CD8+ T cells 
was documented in non-responders to anti-PD-1. Three 
main phenotypes were described in the context of anti-
PD-1 pathway blockade: (1) the immune-desert pheno-
type (absence of immune cells within or around the 
tumor), (2) the immune-excluded phenotype (immune 
cells surrounding but not penetrating the tumor), and 
(3) the inflamed phenotype (immune cells penetrating 
the tumor, but presumably non-functional).

►► A prospective phase II trial exploring the associa-
tion between tumor microenvironment biomarkers 
and clinical activity of ipilimumab in advanced 
melanoma.141

►► PD-1 blockade induces responses by inhibiting adap-
tive immune resistance.142

►► Analysis of immune signatures in longitudinal tumor 
samples yields insight into biomarkers of response 
and mechanisms of resistance to immune checkpoint 
blockade.143

►► Predictive correlates of response to the anti-PD-L1 
antibody MPDL3280A in cancer patients.87

►► Elements of cancer immunity and the cancer-immune 
set point.144

In-depth immunophenotypic analyses of TILs or the 
TME have shown correlation of the following T cell 
phenotypes with clinical benefit from checkpoint inhib-
itors or cellular therapy in patients with melanoma or 
NSCLC: (1) baseline frequency of tumor-infiltrating CD8+ 
T cells coexpressing PD-1 and CTLA-4 (PD-1hi CTLA-4hi 
cells) and exhibiting an exhausted phenotype; (2) high 

absolute levels of PD-1 on CD8+ TILs; (3) a ‘dormant’ 
TIL phenotype (CD3hi GzmBlo Ki67lo); (4) increased 
cytolytic activity (cytolytic score defined as the geometric 
mean of Perforin 1 and Granzyme A mRNA expression); 
(5) reduction of non-conventional CD4+ Foxp3− PD-1+ 
T cells (4PD-1hi cells) on anti-PD-1 treatment; (6) ratio 
of memory-like TCF7+ (also known as TCF1) to CD39+ 
TIM3+ cells within CD8+ T cells; (7) high frequency 
of TCF1+ PD-1+ CD8+ T cells; (8) improved metabolic 
fitness and low mitochondrial membrane potential of 
TCF1+ stem cell memory T cells (Tscm cells); and (9) 
high frequency of tissue-resident memory T cells (Trm 
cells) that express the integrin CD103. The CD8+ T cells 
expanded in treated tumors displayed an exhausted, 
terminally differentiated phenotype, while the corre-
sponding CD4+ T cell population displayed a T helper 
1 (Th1)-like effector phenotype. There is an increased 
frequency of Th1-like T cells in melanoma samples 
treated by anti-CTLA-4 compared with those treated by 
anti-PD-1 antibodies.

►► Tumor immune profiling predicts response to anti-
PD-1 therapy in human melanoma.145

►► A transcriptionally and functionally distinct PD-1+ 
CD8+ T cell pool with predictive potential in non-
small-cell lung cancer treated with PD-1 blockade.146

►► A dormant TIL phenotype defines non-small cell 
lung carcinomas sensitive to immune checkpoint 
blockers.147

►► Tumor and microenvironment evolution during 
immunotherapy with nivolumab.148

►► Non-conventional inhibitory CD4+Foxp3-PD-1hi T 
cells as a biomarker of immune checkpoint blockade 
activity.149

►► Defining T cell states associated with response to 
checkpoint immunotherapy in melanoma.150

►► Checkpoint blockade immunotherapy induces 
dynamic changes in PD-1-CD8+ tumor-infiltrating T 
cells.151

►► Subsets of exhausted CD8+ T cells differentially 
mediate tumor control and respond to checkpoint 
blockade.152

►► Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like 
properties promote tumor control in response to vacci-
nation and checkpoint blockade immunotherapy.153

►► Mitochondrial membrane potential identifies cells 
with enhanced stemness for cellular therapy.154

►► Single-cell profiling of breast cancer T cells reveals 
a tissue-resident memory subset associated with 
improved prognosis.155

►► Tissue-resident memory features are linked to the 
magnitude of cytotoxic T cell responses in human 
lung cancer.156

►► Tissue-resident memory T cells at the center of immu-
nity to solid tumors.157

►► Resident memory T cells, critical components in 
tumor immunology.158

►► Distinct cellular mechanisms underlie anti-CTLA-4 
and anti-PD-1 checkpoint blockade.159
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Emerging data from a recent work that used T cell 
receptor (TCR) sequencing coupled with functional 
studies of tumor-infiltrating T cells suggest that many 
tumor-infiltrating T cells are not reactive against tumor 
cells, and are in fact specific for epitopes related to viruses 
(Epstein-Barr virus (EBV), cytomegalovirus (CMV), 
or influenza virus) rather than tumor antigens. These 
bystander CD8+ T cells may exhibit phenotypes that 
overlap with tumor-specific cells, but lack CD39 expres-
sion. Furthermore, tumor-infiltrating CD103+ CD39+ 
CD8+ T cells that display an exhausted Trm phenotype 
showed an enrichment for tumor-specific cells with a 
distinct tumor-specific TCR repertoire; contrary to what 
their exhausted phenotype might suggest, they efficiently 
kill autologous tumor cells in a major histocompatibility 
complex (MHC) class I-dependent manner, and their 
frequencies positively correlate with OS in patients with 
SCCHN.

►► Low and variable tumor reactivity of the intratumoral 
TCR repertoire in human cancers.160

►► Bystander CD8+ T cells are abundant and phenotypi-
cally distinct in human tumour infiltrates.161

►► Co-expression of CD39 and CD103 identifies tumor 
reactive CD8 T cells in human solid tumors.162

In two types of patients with cancer, melanoma and 
NSCLC, those whose tumors exhibited increased inflam-
matory gene transcripts with high circulating CD4+ and 
CD8+ central memory T cell (Tcm) to effector T cell 
ratios had longer PFS.

►► Circulating T cell subpopulations correlate with 
immune responses at the tumor site and clinical 
response to PD1 inhibition in non-small cell lung 
cancer.163

Conclusions
Assessments of T cell density, location, and phenotype 
in baseline and on-treatment tumor samples provide 
important insights into the role of these cells in patients 
with cancer and immune checkpoint therapy. It is 
apparent that complex immune monitoring approaches 
and robust computational solutions are needed to better 
characterize the tumor immune contexture.

Immune gene expression signatures
High-throughput gene expression profiling has enabled 
the development of transcriptomic profiles in predicting 
response or resistance to ICIs. Numerous gene expression 
signatures have been evaluated for specific tumor types or 
across multiple indications; however, their clinical utility 
needs to be further explored.

A pan-cancer 18-gene T cell-inflamed signature asso-
ciated with clinical benefit of pembrolizumab was devel-
oped by Merck using GEPs of baseline tumor samples 
spanning nine tumor types and 220 patients. This gene 
signature is predominantly represented by interferon 
(IFN)-γ-responsive genes related to antigen presentation, 
chemokine expression, cytolytic activity, and adaptive 
immune resistance, and has been deployed in ongoing 

clinical trials of pembrolizumab. An eight-gene T-ef-
fector/IFN-γ (Teff/IFN-γ) gene expression signature 
defined by CD8A, GZMA, GZMB, IFN-γ, EOMES, CXCL9, 
CXCL10, and TBX21 was developed by Genentech. This 
signature was indicative of pre-existing tumor immunity 
and was associated with clinical benefit from atezolizumab 
in a second-line treatment of NSCLC. In line with these 
data, investigators from MedImmune (now AstraZeneca) 
identified a four-gene IFN-γ+ signature comprising IFN-γ, 
CD274, LAG3, and CXCL9, which was associated with 
clinical efficacy of durvalumab in NSCLC and UCC.

►► IFN-γ-related mRNA profile predicts clinical response 
to PD-1 blockade.164

►► Atezolizumab versus docetaxel for patients with previ-
ously treated non-small-cell lung cancer (POPLAR): 
a multicentre, open-label, phase 2 randomised 
controlled trial.33

►► Interferon gamma messenger RNA signature in tumor 
biopsies predicts outcomes in patients with non-small 
cell lung carcinoma or urothelial cancer treated with 
durvalumab.165

A transcriptional signature related to innate anti-
PD-1 resistance (IPRES) was identified in patients with 
melanoma. The IPRES signature is driven by increased 
expression of genes involved in the regulation of mesen-
chymal transition, cell adhesion, extracellular matrix 
remodeling, angiogenesis, and wound healing, and these 
transcriptomic changes are also seen in patients with 
melanoma after treatment with mitogen-activated protein 
kinase (MAPK) pathway inhibitors, suggesting overlap-
ping mechanisms of resistance to MAPK and anti-PD-1 
inhibitors. High scores of a pan-fibroblast transforming 
growth factor-β (TGF-β) response signature were asso-
ciated with lack of clinical benefit from atezolizumab 
in UCC with a T cell-excluded phenotype. Another 
epithelial-mesenchymal transition (EMT)-related gene 
expression signature helped define outcomes of patients 
with UCC with high intratumoral T cell density treated 
by nivolumab. In addition, the clinical efficacy of atezoli-
zumab in metastatic RCC is inversely correlated with a 
high myeloid inflammation signature defined by upreg-
ulation of interleukin (IL)-6, CXCL1, CXCL2, CXCL3, 
CXCL8, and PTGS2 identified within Teffhi tumors, while 
a combination of atezolizumab and bevacizumab (anti-
vascular endothelial growth factor) appeared to be effica-
cious in this patient population (Teffhi Myeloidhi).

►► Genomic and transcriptomic features of response to 
anti-PD-1 therapy in metastatic melanoma.166

►► TGFβ attenuates tumour response to PD-L1 blockade 
by contributing to exclusion of T cells.167

►► EMT- and stroma-related gene expression and resist-
ance to PD-1 blockade in urothelial cancer.168

►► Clinical activity and molecular correlates of response 
to atezolizumab alone or in combination with bevaci-
zumab versus sunitinib in renal cell carcinoma.169

Immunophenoscore was developed using data from 
TCGA for 20 tumor types based on the expression of genes 
related to MHC molecules, costimulatory/coinhibitory 
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molecules, effector T cells, and immunosuppressive cell 
subsets, and was associated with survival in 12 tumor types 
and predicted response to checkpoint inhibitors in two 
independent cohorts.

►► Pan-cancer immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of 
response to checkpoint blockade.170

A computational tumor immune dysfunction and 
exclusion (TIDE) framework was developed using 
publicly available data from >33,000 human tumor 
samples with transcriptome and patient survival infor-
mation by testing the effects of interactions among the 
candidate genes with either cytotoxic T cells or immu-
nosuppressive cell signatures on the risk of death. 
TIDE provides signatures of both T cell dysfunction 
in immunologically hot tumors and T cell exclusion in 
cold tumors. When applied to pretreatment transcrip-
tomic data from patients with melanoma subsequently 
treated with ICIs, TIDE outperformed other predictive 
biomarkers tested, including PD-L1 expression, TMB, 
and IFN-γ signature.

►► Signatures of T cell dysfunction and exclusion predict 
cancer immunotherapy response.171

Another predictive score, IMPRES (immunopredictive 
score), was developed from gene expression changes of 
15 rational pairwise relationships between immunoinhib-
itory and immunostimulatory genes associated with spon-
taneous immune-mediated regression of neuroblastoma 
and extrapolated to other tumor types (eg, melanoma). 
High IMPRES scores were found to define immunologi-
cally hot tumors and predict clinical outcomes in patients 
with melanoma treated with different ICIs.

►► Robust prediction of response to immune checkpoint 
blockade therapy in metastatic melanoma.172

Single-cell RNA sequencing (scRNA-seq) profiling 
identified a transcriptional resistance program in malig-
nant cells that is associated with T cell exclusion and 
immune evasion. This cyclin-dependent kinase 4/6 
(CDK4/6)-dependent signature was detected prior to 
immunotherapy and predicted clinical responses to anti-
PD-1 therapy in an independent cohort of 112 patients 
with melanoma.

►► A cancer cell program promotes T cell exclusion and 
resistance to checkpoint blockade.173

Endogenous retroviral elements (ERVs), integrated 
into human DNA over the past 100 million years of 
primate evolution, constitute ~8.5% of the human 
genome and are normally transcriptionally silent; tran-
scription of ERV sequences can result in the activation of 
RNA sensing pathways and subsequent production of type 
I and/or II interferons (IFNs). There is also evidence of 
tumor-specific human ERV (hERV) epitopes that can be 
translated and presented on MHC class I molecules to the 
cognate tumor-reactive T cell clones. A transcriptomic 
hERV signature has shown prognostic value in patients 
with RCC.

►► Molecular and genetic properties of tumors associ-
ated with local immune cytolytic activity.122

►► Endogenous retroviral signatures predict immuno-
therapy response in clear cell renal cell carcinoma.174

►► ERVmap analysis reveals genome-wide transcription 
of human endogenous retroviruses.175

Furthermore, gene expression profiling of both tumor 
samples and peripheral T cells enabled identification of 
shared and non-overlapping transcriptomic changes in 
patients treated with anti-PD-1 and anti-CTLA-4 inhibitors.

►► Analysis of immune signatures in longitudinal tumor 
samples yields insight into biomarkers of response 
and mechanisms of resistance to immune checkpoint 
blockade.143

►► Combination therapy with anti-CTLA-4 and anti-PD-1 
leads to distinct immunologic changes in vivo.176

Useful reviews
►► Mechanism-driven biomarkers to guide immune 

checkpoint blockade in cancer therapy.83

►► Implementing TMB measurement in clinical practice: 
considerations on assay requirements.177

Guidelines and meeting reports
►► Method validation and measurement of biomarkers 

in nonclinical and clinical samples in drug develop-
ment: a conference report.178

Regulatory agency guidelines for diagnostics
The FDA has approved two types of CDx tests for some 
immuno-oncology therapeutics and indications: PD-L1 
IHC assays and MSI analyses. There are FDA-approved 
tests reporting metrics of TMB and B2M/JAK/LKB1 
mutations. Regulatory agency approval and guidance on 
the use of these tests may differ. Key agencies to monitor 
include FDA (USA), European Medicines Agency (EMA; 
European Union), Pharmaceuticals and Medical Devices 
Agency (PMDA; Japan), and National Medical Products 
Administration (NMPA; China). Importantly, the guide-
lines may change and should be monitored for the latest 
updates.

The FDA issued a draft guidance document to address 
the potential challenges when multiple CDx tests are 
in use for the same disease indication. For instance, an 
additional biopsy and/or a different CDx needs to be 
obtained to have additional treatment options, which is 
not optimal. With the draft guidance (references below), 
manufacturers may expand current CDx tests by submit-
ting a premarket approval, supplement, or a new ‘510(k) 
application, as appropriate, to expand the labeling to 
broaden the indication for use with a specific group or 
class of oncology products in the same disease’.

Agencies post their guidance documents, roadmaps, 
and/or approved medical devices on their websites.

USA: FDA
Example list of cleared or approved CDx devices from the 
FDA:

►► https://www.​fda.​gov/​medicaldevices/​prod​ucts​andm​
edic​alpr​ocedures/​invitrodiagnostics/​ucm301431.​
htm179

https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm301431.htm
https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm301431.htm
https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm301431.htm
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FDA guidance issued April 2020:
►► https://www.​fda.​gov/​regulatory-​information/​search-​

fda-​guidance-​documents/​developing-​and-​labeling-​
vitro-​companion-​diagnostic180

►► https://www.​fda.​gov/​NewsEvents/​Newsroom/​Pres-
sAnnouncements/​ucm627745.​htm181

Europe: EMA
EMA presentations on new guidance, October 2018:

►► https://www.​ema.​europa.​eu/​documents/​presenta-
tion/​presentation-​interface-​between-​medicinal-​
product-​medical-​devices-​development-​update-​ema_​
en.​pdf182

EMA Competent Authorities for Medical Devices 
Implementation Taskforce Roadmap 2017:

►► https://www.​camd-​europe.​eu/​wp-​content/​uploads/​
2018/​05/​NEWS_​171107_​MDR-​IVDR_​RoadMap_​v1.​
3-​1.​pdf183

EMA concept paper on evolving landscape for 
biomarkers and CDx (August 2017):

►► ht tp s ://www. ​ema . ​europa . ​eu/ ​document s/​
scientific-​guideline/​concept-​paper-​predictive-​
biomarker-​based-​assay-​development-​context-​drug-​
development-​lifecycle_​en.​pdf184

Japan: PMDA
Website of approvals:

►► https://www.​pmda.​go.​jp/​english/​review-​services/​
reviews/​approved-​information/​drugs/​0002.​html185

Other consortia, collaboration projects, and meeting groups
►► Immunoscore task force.186

►► PACT: a public–private partnership to aid standardiza-
tion of immune therapy biomarkers.

►► Parker Institute for Cancer Immunotherapy’s ‘TESLA’ 
(Tumor NeoantigEN SeLection Alliance) collabo-
rative project: neoantigen selection and the TESLA 
consortium.187

►► CIDC and CIMAC/CIDC network.
►► American Association for Cancer Research Project 

GENIE (Genomics Evidence Neoplasia Information 
Exchange).188

Conclusions
The gene expression data sets generated in clinical trials 
of ICIs provide important insights into the mechanisms 
underlying the antitumor effects of this class of agents, 
and allow for both qualitative and quantitative assessment 
of the tumor immune microenvironment at baseline and 
on treatment with immunomodulatory agents. Transcrip-
tomic profiling represents a powerful and promising 
approach to predict sensitivity and resistance to ICIs 
and identify new targets in immuno-oncology. While 
numerous lines of evidence demonstrate the potential 
of gene expression signatures to enrich for patients who 
are likely to benefit from single-agent treatment with ICIs, 
transcriptomic profiling may also help identify patient 
populations for combination immunotherapies, as exem-
plified by the aforementioned data for the myeloid gene 

expression signature and clinical activity of atezolizumab 
+ bevacizumab versus atezolizumab in RCC. Additional 
transcriptomic data are needed to help differentiate 
patients with cancer who would be appropriate candi-
dates for anti-PD-(L)1 monotherapy and for combination 
immunotherapies.

New and emerging technologies for biomarker 
discovery
Biomarker discovery for immunotherapy is challenging, 
as the efficacy of the treatment relies not only on the char-
acteristics of the tumor cells, but also the host’s immune 
system, as well as the interaction of the immune system 
and the tumor cells in the dynamic TME. In addition, 
each patient may have a unique combination of features 
that determine their sensitivity to a particular treatment. 
Therefore, biomarker research for immunotherapy 
needs to go beyond the tumor itself and explore the 
TME and the host. In this section, we introduce different 
technology platforms that can be useful in biomarker 
discovery. For tumor immunogenicity, intrinsic resistance 
and neoantigen-focused research and nucleic acid-based 
platforms, including genomic, transcriptomic, epigenetic, 
and PCR/hybridization techniques, are instrumental. For 
dynamic changes in the tumor immune contexture and 
the host’s immune susceptibility, proteomic platforms 
ranging from ELISA to mass cytometry, along with multi-
plex imaging technologies, can be helpful. Overall, the 
development of reliable biomarkers that can predict the 
efficacy of different immunotherapeutic agents and their 
combination is key to the success of extending the benefit 
of immunotherapy to a majority of patients with cancer.

Genomic biomarker discovery
Whole exome sequencing
The protein-coding sequences of a gene are called exons, 
and all the combined exons in a genome are referred 
to as the exome. With existing technology, 95% of the 
human exome can be sequenced. Therefore, the term 
‘exome sequencing’ is more accurate than the term 
‘whole-exome sequencing (WES)’. It is noteworthy that 
while the human exome comprises all coding nuclear 
DNA sequences, mitochondrial DNA is not included. The 
exome represents less than 2% of the human genome, 
but contains about 85% of known disease-related vari-
ants, establishing exome sequencing as a cost-effective 
alternative to whole genome sequencing (WGS). Exome 
sequencing using exome enrichment can efficiently 
identify coding variants across a wide range of applica-
tions, including population genetics, genetic disease, 
and cancer studies. However, exome sequencing tech-
niques have non-standardized, highly variable coverage, 
including regions of the exome that are refractory to 
being accurately sequenced, such as genes containing a 
pseudogene, highly repetitive coding regions, large dele-
tions, and duplications. Therefore, it is likely that some 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/developing-and-labeling-vitro-companion-diagnostic
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/developing-and-labeling-vitro-companion-diagnostic
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/developing-and-labeling-vitro-companion-diagnostic
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm627745.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm627745.htm
https://www.ema.europa.eu/documents/presentation/presentation-interface-between-medicinal-product-medical-devices-development-update-ema_en.pdf
https://www.ema.europa.eu/documents/presentation/presentation-interface-between-medicinal-product-medical-devices-development-update-ema_en.pdf
https://www.ema.europa.eu/documents/presentation/presentation-interface-between-medicinal-product-medical-devices-development-update-ema_en.pdf
https://www.ema.europa.eu/documents/presentation/presentation-interface-between-medicinal-product-medical-devices-development-update-ema_en.pdf
https://www.camd-europe.eu/wp-content/uploads/2018/05/NEWS_171107_MDR-IVDR_RoadMap_v1.3-1.pdf
https://www.camd-europe.eu/wp-content/uploads/2018/05/NEWS_171107_MDR-IVDR_RoadMap_v1.3-1.pdf
https://www.camd-europe.eu/wp-content/uploads/2018/05/NEWS_171107_MDR-IVDR_RoadMap_v1.3-1.pdf
https://www.ema.europa.eu/documents/scientific-guideline/concept-paper-predictive-biomarker-based-assay-development-context-drug-development-lifecycle_en.pdf
https://www.ema.europa.eu/documents/scientific-guideline/concept-paper-predictive-biomarker-based-assay-development-context-drug-development-lifecycle_en.pdf
https://www.ema.europa.eu/documents/scientific-guideline/concept-paper-predictive-biomarker-based-assay-development-context-drug-development-lifecycle_en.pdf
https://www.ema.europa.eu/documents/scientific-guideline/concept-paper-predictive-biomarker-based-assay-development-context-drug-development-lifecycle_en.pdf
https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html
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clinically significant mutations would be missed by exome 
sequencing due to inefficient capture of relevant exons:

►► Targeted capture and massively parallel sequencing of 
12 human exomes.189

►► Educational materials—genetic testing: current 
approaches.190

Cancer is driven by genomic events, and different sets of 
genetic aberrations can characterize individual cancers. 
The use of high-throughput sequencing, including 
exome sequencing, to identify those changes can guide 
the identification of effective therapies currently available 
or still in clinical trials.

►► Personalized oncology through integrative high-
throughput sequencing: a pilot study.191

►► Whole-exome sequencing of metastatic cancer and 
biomarkers of treatment response.192

Clinical implementation of genomic data to inform 
therapy necessitates that clinicians interpret the patient’s 
genomic profile, including both tumor and germline 
DNA. Currently, only a limited number of genomic 
markers in specific cancer settings have shown strong 
evidence of differential response to specific therapies, as 
these are targetable mutations with approved or investi-
gational therapies. For many other known genomic alter-
ations, there are no data or insufficient data to support 
routine clinical implementation of biomarker-based 
therapy.

►► A decision support framework for genomically 
informed investigational cancer therapy.193

►► Precision oncology in the age of integrative 
genomics.194

Conclusions
The rapid advances in availability and affordability of 
NGS technology provide the potential to include WES 
in routine, genomically informed, personalized cancer 
therapy. WES is a rational option because most known 
driver mutations occur in exons, and thus WES is thought 
to be an efficient method to identify a broad array of 
possible targetable mutations. However, WES could miss 
mutations outside the exons that lead to aberrant gene 
activity and protein production. Development of broadly 
accessible, comprehensive, and regularly updated data-
bases that link observed genomic changes to clinically 
actionable phenotypes, and continued education of clini-
cians and patients about advantages and limitations, will 
greatly facilitate broader clinical implementation of this 
approach.

TCR sequencing and clonality
Human T cells mature in the thymus from hematopoietic 
progenitors, gain the ability to recognize foreign antigens, 
and provide protection against a vast array of pathogens.

A complex molecular mechanism in T cells based 
on somatic recombination leads to the expression of 
highly polymorphic surface receptors, the TCRs, and 
provides the immune system with functional plasticity. 
TCR sequencing (TCR-seq) produces large numbers of 

short DNA sequences covering key regions of the TCR 
coding sequence, allowing quantification of T cell diver-
sity at high resolution. Reduced cost of high-throughput 
sequencing technologies has enabled the identification 
of immune response signatures based on sequence anal-
ysis. In consequence, high-throughput TCR-seq has been 
established as a tool to analyze antigen specificity, clon-
ality, and diversity of T lymphocytes:

►► Linking T-cell receptor sequence to functional pheno-
type at the single-cell level.195

►► Overview of methodologies for T-cell receptor reper-
toire analysis.196

The characterization of the TCR repertoire through 
TCR-seq is of great scientific and potential clinical rele-
vance because it accurately describes T cell dynamics in a 
wide range of diseases, including infection, autoimmune 
diseases, and malignancies:

►► Tumor-infiltrating lymphocytes in colorectal tumors 
display a diversity of T cell receptor sequences that 
differ from the T cells in adjacent mucosal tissue.197

►► TCR sequencing facilitates diagnosis and identifies 
mature T cells as the cell of origin in CTCL.198

►► Characteristics of tumor infiltrating lymphocyte and 
circulating lymphocyte repertoires in pancreatic 
cancer by the sequencing of T cell receptors.199

►► A new high-throughput sequencing method for deter-
mining diversity and similarity of T cell receptor 
(TCR) α and β repertoires and identifying potential 
new invariant TCR α chains.200

High-throughput TCR-seq is rapidly evolving, and 
numerous validated procedures for clonotype identifi-
cation and TCR repertoire analysis exist. However, no 
gold standard method has been established in the field. 
A number of platforms are available, including DNA-
based (eg, Adaptive), RNA-based (eg, iRepertoire), 
bulk TCR-seq, and single-cell TCR-seq (10X) technolo-
gies. Different approaches may be more applicable than 
others for different scientific purposes, but can be subject 
to possible method-specific biases. There are innovative 
approaches, such as combining TCR-seq with an assay for 
transposase-accessible chromatin analysis at the single 
cell level for information on TCR specificity and the epig-
enomic state of individual T cells, which will likely expand 
the academic and clinical utility of this technology:

►► Single cell T cell receptor sequencing: techniques and 
future challenges.201

►► Transcript-indexed ATAC-seq for precision immune 
profiling.202

►► Quantifiable predictive features define epitope-
specific T cell receptor repertoires.203

►► Identifying specificity groups in the T cell receptor 
repertoire.204

►► Using T cell receptor repertoires to understand the 
principles of adaptive immune recognition.205

Conclusions
TCR-seq, clonality, and repertoire analysis are valuable 
tools to help elucidate T cell biology in healthy individuals 
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and pathological conditions, including cancer. It is being 
used not only to investigate mechanisms of immune-
mediated diseases, but also to monitor immune responses 
to therapies, including immunotherapy. Sequencing the 
TCRs of thousands of cells in parallel is a powerful tech-
nology to dissect the complexity and diversity of the T 
cell response repertoire. Advances in single-cell technol-
ogies and corresponding data management can deliver 
accurate sequence information on paired alpha and beta 
chains of individual cells, and enable high-throughput 
TCR-seq as a routine tool for immune monitoring and 
biomarker development.

Epigenetic immune cell quantification with qPCR-based assisted 
cell counting (qPACC)
DNA-based, immune cell subset-specific epigenetic 
markers have recently been identified and can be used to 
differentiate leukocytes, lymphocytes, and other cell types 
of interest. These markers can also be used for epigenetic 
cell counting.

►► DNA demethylation in the human FOXP3 locus 
discriminates regulatory T cells from activated 
FOXP3+ conventional T cells.206

►► Quantitative DNA methylation analysis of FOXP3 as a 
new method for counting regulatory T cells in periph-
eral blood and solid tissue.207

►► Epigenetic quantification of tumor-infiltrating 
T-lymphocytes.208

Relative cell numbers can be quantified using quan-
titative real-time PCR (qPCR) based on knowledge of 
unmethylated DNA regions of previously character-
ized cell types, in combination with bisulfite conversion 
(BSC). During BSC, unmethylated cytosines in DNA 
convert to uracil, but methylated cytosines are protected 
and remain unchanged. The resulting sequence changes 
are the foundation for developing differentiating primer 
and probe sets for qPCR on clinical samples. Different 
cell types relevant for immune monitoring during immu-
notherapy have been described, for example, Treg, 
CD3+, CD4+, and CD8+ T cells, B cells, natural killer (NK) 
cells, and neutrophils. In addition, several approaches 
to control, calibration, and quantification are used that 
allow the calculation of immune cell concentrations with 
qPCR-based assisted cell counting (qPACC), in a process 
referred to as epigenetic cell counting.

►► Quantitative real-time PCR assisted cell counting 
(qPACC) for epigenetic-based immune cell quantifi-
cation in blood and tissue.15

►► Epigenetic immune cell counting in human blood 
samples for immunodiagnostics.209

The general stability of DNA as well as its methylation, 
in addition to the small sample volume needed, provide 
epigenetic-based assays the advantage of being less suscep-
tible to challenges related to sample amount and quality, 
and permit the measurement of different immune cell 
subset frequencies without the need to count intact cells.

The immune cell subset-specific epigenetic markers are 
developed based on highly purified, fluorescence-activated 

cell sorting (FACS)-sorted cells, obtained from whole 
blood of healthy donors. Cancer is a disease affecting 
the DNA of patients, including, but not limited to, DNA 
strand breaks, gene duplication, and aberrant DNA meth-
ylation. In the immuno-oncology setting, this represents 
a theoretical obstacle to the successful use of this tech-
nology, since the specificity of the established cell type 
markers from healthy individuals could be compromised 
in cancer, precluding their use, at least in tumor-affected 
tissues.

►► Demethylation of the FOXP3 gene in human mela-
noma cells precludes the use of this epigenetic mark 
for quantification of Tregs in unseparated melanoma 
samples.210

Conclusions
There is a lack of peer-reviewed and published clinical 
studies using this technology during immunotherapy 
trials that independently demonstrate the consistency 
and validity of enumerating various subsets of lympho-
cytes in the peripheral blood of patients with cancer in 
comparison with fully validated, gold standard technol-
ogies like flow cytometry. However, it is theoretically an 
attractive methodology and has the potential to change 
research and clinical trial monitoring strategies. The cell 
type specificity of epigenetic-based qPACC assays is likely 
not a significant obstacle toward enumerating circulating 
lymphocytes in most immune oncology trial settings. The 
potential exception could be hematological malignancies, 
which would warrant particular attention to signals indi-
cating issues with assay specificity. The use of epigenetics-
based qPACC assays for the enumeration of different cell 
types in tumor tissue carries a theoretical and published 
risk of lacking specificity. In addition, it has no ability to 
provide relevant data on spatial immune cell distribution 
within a tumor, and therefore allows no direct compar-
ison or correlation to classic or multiplex IHC.

Microbiome sequencing
The human body is inhabited by countless microor-
ganisms that live within diverse communities specific to 
each body site, including the skin, nose and mouth, eyes, 
and gastrointestinal and urogenital tracts. The human 
microbiome (or human microbiota) is referred to as the 
collection of micro-organisms which live on and in us, 
and comprised not just bacteria, but also fungi, protozoa, 
and viruses. The important role the microbiome plays 
in human health and disease, including oncology, is a 
broadly accepted fact today:

►► The human microbiome: at the interface of health 
and disease.211

Impressive progress in high-throughput sequencing 
methods used by human genome research has benefitted 
the investigation of the microbiome greatly by enabling 
high-throughput microbial characterization in a culture-
independent manner. The two most common methods of 
sequencing used to study the microbiome are 16 S rRNA 
sequencing and shotgun metagenomics.
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►► Genomic approaches to studying the human 
microbiota.212

The 16S rRNA is part of the 30 S subunit of prokaryotic 
ribosomes. The 16S ribosomal gene is understood to be 
present in all bacteria and contains regions that are highly 
variable between species that can be used to differentiate 
between different bacteria without having to sequence 
their entire genome. This approach permits targeting 
of only very specific regions of the genome, dramatically 
reducing the amount of sample and sequencing needed. 
The main disadvantage of this technology is that it can 
only identify and differentiate bacteria; it cannot be used 
to detect or differentiate viruses, fungi, or protozoa. 
There are different protocols and platforms available for 
16S rRNA sequencing, and a more indepth analysis of 
platforms can be found in the following:

►► A comprehensive benchmarking study of protocols 
and sequencing platforms for 16 S rRNA community 
profiling.213

►► The madness of microbiome: attempting to find 
consensus “best practice” for 16 S microbiome 
studies.214

Shotgun metagenomic sequencing is the other 
approach most often used. During shotgun sequencing, 
all DNA within a complex sample are fragmented into very 
small pieces and then amplified and analyzed with NGS 
technology. It permits the study of the entire genomes of 
all the organisms present in a sample, including viruses, 
fungi, and protozoa. Shotgun metagenomics can give 
indications as to dominant gene pathways and functions, 
and are less susceptible to the biases that are inherent in 
targeted gene amplification.

►► Shotgun metagenomics, from sampling to analysis.215

Different microorganisms and the microbiota, in 
general, are able to increase or alleviate carcinogenesis, 
alter sensitivity to cancer therapeutics, and influence 
response to immunotherapy. There are several areas of 
positive or negative contribution to carcinogenesis by 
microbes. They include changing the balance of host cell 
proliferation and death, altering immune system func-
tion, and influencing a host’s metabolism. Microbiota 
can act as an adjuvant, enhancing efficacy or attenuating 
toxicity of chemotherapies.

►► Cancer and the microbiota.216

►► The role of microbiota in cancer therapy.217

►► Microbiome and anticancer immunosurveillance.218

A direct detrimental immunological effect has been 
shown, for example, in the inhibition of NK cell killing of 
various tumors by Fusobacterium nucleatum.

►► Binding of the Fap2 protein of Fusobacterium nucleatum 
to human inhibitory receptor TIGIT protects tumors 
from immune cell attack.219

Efforts to target the microbiota in oncology settings 
should take into account that, during fecal microbiota 
transplantation (FMT), adverse events (including patient 
death) have been observed in attempted treatments of 
recurrent or refractory Clostridium difficile infections and 
other intestinal or extraintestinal disorders.

►► Systematic review: adverse events of fecal microbiota 
transplantation.220

Conclusions
Studies have demonstrated the influence of the micro-
biome on carcinogenesis and response to therapy. 
However, it will require extensive research and resources 
to obtain reliable and clinically actionable information. 
The microbiota can vary considerably over time, between 
individuals, and in different areas of the body. Estab-
lishing clear distinctions in regard to the cause and effect 
of tumor-associated microbiota and concurrent changes 
in the microbiota is essential. The prognostic potential 
and theoretical value of therapeutic intervention toward 
the microbiota offer the exciting possibility of new tools 
to fight cancer, while making current therapies more 
effective and reducing side effects.

Mitochondrial genome arrays
Mitochondrial DNA (mtDNA) genes encode proteins 
that work in conjunction with nuclear genes to form the 
respiratory chain complexes that represent the main 
energy production structures in cells. Because of its high 
susceptibility to mutations based on limited repair mecha-
nisms existing (as compared with nuclear DNA), mtDNA 
has long been suspected to contribute to carcinogen-
esis. Since mtDNA lacks introns, mutations always affect 
coding sequences, and an accumulation of these muta-
tions may lead to tumor formation. Research into the role 
of mtDNA mutations in cancer is advancing our under-
standing of their contribution to carcinogenesis and their 
potential value in cancer diagnosis and monitoring.

►► Mitochondrial DNA mutations in human disease.221

►► Human mitochondrial DNA: roles of inherited and 
somatic mutations.222

►► Mitochondria and cancer.223

►► How do changes in the mtDNA and mitochondrial 
dysfunction influence cancer and cancer therapy? 
Challenges, opportunities and models.224

►► The landscape of mtDNA modifications in cancer: a 
tale of two cities.225

High-throughput mitochondrial sequencing arrays (eg, 
MitoChip by Affymetrix) are used in research and clinical 
studies for the identification of mtDNA markers associ-
ated with malignancies. Using the MitoChip technique, 
large numbers of mtDNA mutations have been found in 
human cancers, including CRC, head and neck cancer, 
bladder cancer, breast cancer, adenoid cystic carcinoma, 
sessile serrated adenoma, lung cancer, urinary bladder 
carcinomas, RCC, pancreatic cancers, ovarian carci-
nomas, gastric cancers, gliomas, and several other solid 
tumors.

►► The human MitoChip: a high-throughput sequencing 
microarray for mitochondrial mutation detection.226

►► MtDNA as a cancer marker: a finally closed chapter?227

The MD Anderson Cancer Center provides an online 
tool, called ‘The Cancer Mitochondrial Atlas (TCMA) 
data portal’, in order to assist mitochondria-related 
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biological discoveries and clinical applications beyond 
mtDNA sequencing. This open-access data portal allows 
exploration of various types of molecular data:

►► https://​ibl.​mdanderson.​org/​tcma/228

The TCMA consists of four modules: somatic muta-
tions, nuclear transfer, copy number, and gene expres-
sion. International Cancer Genome Consortium (ICGC) 
WGS data are the basis for the first three modules and 
provide detailed annotations for the corresponding 
features of each cancer sample. TCGA RNA-seq data 
are the basis for the last module and provide an interac-
tive interface through which operators can visualize the 
coexpression network. Operators can browse and query 
molecular data by cancer type and download the data for 
their own analysis.

Conclusions
The use of MitoChip to track mutations in mtDNA has 
been shown to be relevant in diverse cancer settings. 
However, its diagnostic, prognostic, and clinical value 
is still debated in the field based on several technology-
related obstacles to standardization and relevant controls. 
New NGS approaches, combined with sophisticated data 
analysis to select mutations with likely functional rele-
vance, could help to more systematically evaluate the 
potential role of mtDNA mutations in tumor biology in 
the future.

Epigenomic biomarker discovery
DNA methylation, histone modifications, chro-
matin remodeling and spatial orientation, and post-
transcriptional regulation influence gene expression 
and cellular phenotype without altering the nucleotide 
sequence of DNA. Collectively referred to as epigenomic 
signaling, these processes orchestrate cell development 
and differentiation, carcinogenesis, cancer progression, 
and resistance to therapy.

An overview of the history of epigenetics, various 
epigenetic processes, and their role in health and disease 
can be found in the following review.

►► The molecular hallmarks of epigenetic control.229

For detailed reviews on epigenetic processes, the 
following collection is useful.

►► h t t p s : / / w w w. ​c e l l . ​c o m / ​c e l l / ​c o l l e c t i o n s /​
transcription-​epigenetics230

Biomarkers that detect these epigenetic processes are 
crucial for diagnosis, prognostication, and therapeutic 
targeting. For example, the following review enumerates 
epigenomic biomarkers useful in the diagnosis and prog-
nosis of hepatocellular carcinoma.

►► Biomarkers: what role do they play (if any) for diag-
nosis, prognosis and tumor response prediction for 
hepatocellular carcinoma?231

In a study evaluating alternative promoter utilization 
in metastatic gastric cancer, higher levels of alternative 
promoter utilization predicted lower immunogenicity, 
cancer immunoediting, and evasion of immune 

checkpoint inhibition therapy, thus providing an epige-
netic biomarker to predict response to immunotherapy.

►► Epigenomic promoter alterations predict for benefit 
from immune checkpoint inhibition in metastatic 
gastric cancer.232

Epigenomic profiling has become automated, minia-
turized, and reproducible, with the ability to resolve at 
the single cell level. Widely available epigenetic database 
and processing software have now made it possible to 
perform epigenomic profiling of tumors for biomarker 
discovery. This paper reviews the various methods of 
epigenomic biomarker discovery, their compatibility with 
sample preservation techniques, automation, reproduci-
bility, and miniaturization.

►► Genome-wide epigenomic profiling for biomarker 
discovery.233

This paper discusses the computational methods for 
assessing chromatin hierarchy.

►► Computational methods for assessing chromatin 
hierarchy.234

ATAC-seq
Eukaryotic DNA is extensively packaged around histone 
proteins, forming nucleosomes, which are condensed 
into higher levels of packaging to allow chromatin to fit 
within the nucleus of a cell. Nevertheless, processes that 
allow ‘open’ chromatin states, which permit transcription 
factors and histone post-translational changes to influ-
ence gene expression, orchestrate active transcription.

Assay for transposase accessible chromatin with high-
throughput sequencing, or ATAC-seq for short, is a 
method for mapping chromatin accessibility genome-
wide. Hyperactive transposase Tn5 is used to cut and 
ligate adaptors for high-throughput sequencing of DNA 
in regions of high accessibility. This allows mapping of 
‘open’ chromatin areas as well as nucleosome topology. 
The following paper describes ATAC-seq of lympho-
blastoid cells.

►► ATAC-seq: a method for assaying chromatin accessi-
bility genome-wide.235

Significant chromatin heterogeneity can exist within 
a population of cells. Accuracy is enhanced when chro-
matin assays can be performed at a single cell level. 
The following paper talks about single-cell chromatin 
profiling.

►► A rapid and robust method for single cell chromatin 
accessibility profiling.236

The profiling of chromatin of different cells within a 
cell population can inform cell subsets. The following 
papers describe single-cell ATAC-seq (scATAC-seq) in 
multiple cells to cluster them.

►► Single-cell ATAC-seq: strength in numbers.237

►► High-throughput chromatin accessibility profiling at 
single-cell resolution.238

Transcript-indexed ATAC-seq is a tool by which the TCR 
gene is sequenced along with ATAC-seq at the single cell 
level. Transcript-indexed ATAC-seq enables an analysis of 
the epigenetic landscape of a clonal T cell population and 

https://ibl.mdanderson.org/tcma/
https://www.cell.com/cell/collections/transcription-epigenetics
https://www.cell.com/cell/collections/transcription-epigenetics
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also enables discovery of regulatory pathways affecting T 
cell function.

►► Transcript-indexed ATAC-seq for precision immune 
profiling.202

In this paper, the team has identified a programmable 
and a dysfunctional chromatin state in tumor-infiltrating 
T cells based on chromatin assays. They have identified 
the epigenetic processes associated with dysfunctional 
immune cells and surface biomarkers to identify repro-
grammable T cells.

►► Chromatin states define tumour-specific T cell 
dysfunction and reprogramming.239

Studies of chromatin states using ATAC-seq in immu-
nology to reveal epigenetic heterogeneity, the mech-
anistic basis of T cell dysfunction, and distinct T cell 
subsets are as follows.

►► Joint single-cell DNA accessibility and protein epitope 
profiling reveals environmental regulation of epig-
enomic heterogeneity.240

►► Newly identified T cell subsets in mechanistic studies 
of food immunotherapy.241

Satpathy AT et al242 describe the use of scATAC-seq with 
a droplet-based method on a widely used single-cell 10X 
Chromium platform to discover cell types and regulatory 
DNA elements in complex tissues. They performed scAT-
AC-seq using bone marrow and blood samples to char-
acterize the chromatin landscape of cell subtypes and 
their differentiation trajectories. They then performed 
scATAC-seq on primary tumor tissue before and after 
treatment with PD-1 blockade. The authors demonstrate 
the ability to deconvolute the TME at the single cell level, 
revealing subpopulations of immune cells and malignant 
cells.

►► Massively parallel single-cell chromatin landscapes of 
human immune cell development and intratumoral T 
cell exhaustion.242

The following paper describes the various methods used 
to assess chromatin accessibility, including the limitations, 
advantages, and specimen requirements of each tech-
nique: micrococcal nuclease sequencing (MNase-seq), 
DNase-seq, formaldehyde-assisted isolation of regulatory 
elements sequencing (FAIRE-seq), and ATAC-seq.

►► Chromatin accessibility: a window into the genome.243

ChIP arrays (ChIP on chip) and ChIP-seq
The interaction of DNA with transcription factors and 
histones affects gene expression and cell phenotype. 
Chromatin immunoprecipitation (ChIP) is used widely 
to establish specific DNA–protein interactions. When 
ChIP is combined with whole genome DNA microar-
rays, the assay is known as a ChIP microarray or ChIP on 
chip. A genome-wide assessment of protein–DNA inter-
actions was made possible through ChIP arrays and led 
to the discovery of epigenomic transcriptional regula-
tion. Several tiling microarray platforms for common 
model organisms were commercially developed, and 
bioinformatics tools were generated to analyze data from 
those platforms. Some early descriptions of methods, 

applications, and analytical tools for ChIP on chip are 
referenced in the following.

►► ChIP-chip: considerations for the design, analysis, and 
application of genome-wide chromatin immunopre-
cipitation experiments.244

►► Chromatin immunoprecipitation for determining 
the association of proteins with specific genomic 
sequences in vivo.245

►► Genome-wide profiling of PPARγ:RXR and RNA 
polymerase II occupancy reveals temporal activation 
of distinct metabolic pathways and changes in RXR 
dimer composition during adipogenesis.246

►► rMAT-- an R/Bioconductor package for analyzing 
ChIP-chip experiments.247

More recently, massive parallel sequencing of DNA 
fragments crosslinked to protein has been made possible 
by a newly developed high-throughput sequencing tech-
nology. This technology, referred to as ChIP-seq, repre-
sents a large advancement in the study of DNA–protein 
interactions.

ChIP-seq has higher sensitivity and specificity than ChIP 
on chip and can be used to analyze any sequenced species, 
since it is not dependent on a microarray. It is also more 
cost-effective than ChIP on chip. The use of ChIP-seq 
in non-coding regions of the DNA has the potential to 
identify the biological role of single nucleotide polymor-
phisms (SNPs) associated with a disease state.

The following study compares ChIP on chip using the 
Agilent tiling microarray with ChIP-seq using the Illu-
mina GAII.

►► ChIP-chip vs ChIP-seq: lessons for experimental 
design and data analysis.248

The following describe ChIP-seq assays and bioinfor-
matic tools for data analysis:

►► Practical guidelines for the comprehensive analysis of 
ChIP-seq data.249

►► ChIP-seq and beyond: new and improved meth-
odologies to detect and characterize protein-DNA 
interactions.250

►► Identifying and mitigating bias in next-generation 
sequencing methods for chromatin biology.251

Methylation arrays
In the human body, using the same genome, at least 200 
distinct cell phenotypes can be created by means of epig-
enomic processes. An epigenetic imprint of cell types 
enhances cell recognition. In fact, the recent years have 
seen the identification of cell types based on epigenomic 
profiles by making use of reference methylation profiles 
of known cell types from the gene expression omnibus 
(GEO). In one such study, investigators performed 
epigenetic deconvolution of SCCHN samples from the 
TCGA, identifying different cell types in the tumors by 
histoepigenetic means. By identifying various cell popu-
lations in the tumors as immune, cancer, and epidermal 
cells, the investigators were able to epigenetically profile 
the distinct types of SCCHN by differential methylation 
analysis:



21Hu-Lieskovan S, et al. J Immunother Cancer 2020;8:e000705. doi:10.1136/jitc-2020-000705

Open access

►► Histoepigenetic analysis of HPV- and tobacco-
associated head and neck cancer identifies both 
subtype-specific and common therapeutic targets 
despite divergent microenvironments.252

Several methylated genes serve as biomarkers of disease 
diagnosis, prognosis, and therapeutic targeting. With the 
availability of epigenome-wide methylation arrays, a much 
more amplified biomarker discovery platform is available.

The computational analysis of DNA methylation data 
involves multiple steps of data processing. The following 
papers describe the use of Illumina-based Infinium DNA 
methylation BeadChip assays, which are considered to be 
the gold standard method for DNA methylation analysis. 
These assays provide quantitative measurement of DNA 
methylation levels in a predetermined set of cytosine resi-
dues using a microarray format. With advancing capabili-
ties and demands, and increasing numbers of target CpG 
sites, the kits have advanced from HumanMethylation 
27K BeadChip (27K array) to HumanMethylation 450K 
(450K array) and more recently the Infinium Methylatio-
nEPIC (850K array). The following reviews describe the 
steps involved in data acquisition and processing.

►► Review of processing and analysis methods for DNA 
methylation array data.253

►► Computational and statistical analysis of array-based 
DNA methylation data.254

In a multicenter study based in Europe, investigators 
have successfully identified and validated a DNA meth-
ylation signature, termed EPIMMUNE, associated with 
clinical benefit from anti-PD-1 blockade in patients with 
stage IV lung cancer. Among the methylated genes, fork-
head box P1 (FOXP1) was confirmed to be a predictor of 
clinical benefit from anti-PD-1 therapies. The epigenetic 
signature was not associated with the PD-L1 status, muta-
tional load, or CD8 immunostaining.

►► Epigenetic prediction of response to anti-PD-1 treat-
ment in non-small-cell lung cancer: a multicentre, 
retrospective analysis.255

When compared with studies that require live cells for 
immune subset quantification and monitoring, assessing 
gene methylation by epigenetic assays to identify cell 
subsets is a more feasible approach. The same principle 
can be used to characterize the cell population of tumor 
tissue as well.

►► Novel technologies and emerging biomarkers for 
personalized cancer immunotherapy.7

PBMCs and T cells from patients with HCC have been 
shown to have a DNA methylation signature distinct from 
those who do not have HCC. This methylation signature 
in the host immune cells deepens as the HCC advances.

►► The signature of liver cancer in immune cells DNA 
methylation.256

microRNA arrays
Overwhelming portions of the human DNA do not 
encode protein. The RNA resulting from the transcrip-
tion of approximately 98% of DNA is non-coding RNA 
(ncRNA). In the early 2000s, the role of ncRNAs as they 

affect translation of proteins started to emerge. Further 
study revealed a large network of interactions between 
ncRNA and the cell physiological machinery. This has 
led to a new understanding of what used to be consid-
ered ‘junk’ DNA and RNA. These are now recognized as 
important players in the regulation of the cell machinery 
and as oncogenic drivers and suppressors.

►► Non-coding RNA networks in cancer.257

microRNA (miRNA) are 22-nucleotide short RNA 
molecules that are highly conserved through evolution. 
miRNA binds to mRNA transcripts of a gene, which leads 
to cleavage of the mRNA or shutdown of gene translation. 
miRNAs are active participants in normal cellular, devel-
opmental, and host environment processes such as inter-
cellular communication through exosomes. Additionally, 
these tiny molecules play a fascinating role in cancer, as 
they have the powerful ability to orchestrate carcinogen-
esis and therapy resistance in cancer. Some miRNAs may 
stimulate an oncogenic process directly by acting as a 
ligand, termed onco-miRNAs (such as miR-21/miR-29a), 
while others such as miR34a act as tumor suppressors. For 
a detailed review on this subject, refer to the following.

►► The role of microRNAs in human cancer.258

Circulating and exosomal miRNAs can be used as 
diagnostic biomarkers for diseases such as cancer. The 
following reviews discuss the process of developing 
miRNAs as biomarkers, various profiling platforms, 
sample preparation, and analytical strategies.

►► MicroRNA as biomarkers and diagnostics.259

►► Potential pitfalls in microRNA profiling.260

The following reviews outline the role of miRNAs in 
mediating immune responses by influencing cellular 
signaling in immune cells, influencing both innate and 
adaptive immunity.

►► MiRNAs: dynamic regulators of immune cell func-
tions in inflammation and cancer.261

►► Nuclear functions of mammalian microRNAs in gene 
regulation, immunity and cancer.262

►► Extracellular RNAs: a secret arm of immune system 
regulation.263

►► miRNA regulation of innate immunity.264

►► MicroRNAs as regulatory elements in immune system 
logic.265

The following is an excellent review of the role of 
miRNAs in oncogenesis and therapy resistance in mela-
noma. The authors describe an miRNA signature that 
affects angiogenic and inflammatory pathways and 
predicts resistance to both targeted and immunotherapy, 
highlighting this as a biomarker of resistance and a poten-
tial therapeutic target.

►► MicroRNA-driven deregulation of cytokine expres-
sion helps development of drug resistance in meta-
static melanoma.266

Studies that successfully sought and identified miRNA 
biomarker signatures in relation to immunotherapy in a 
variety of settings are listed below.

►► Identification of a microRNA signature in dendritic 
cell vaccines for cancer immunotherapy.267
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►► Circulating immune cell and microRNA in patients 
with uveal melanoma developing metastatic disease.268

miRNA can also be used as therapeutic targets.
►► Sequence-specific knockdown of EWS-FLI1 by 

targeted, nonviral delivery of small interfering RNA 
inhibits tumor growth in a murine model of meta-
static Ewing’s sarcoma.269

►► Evidence of RNAi in humans from systemically admin-
istered siRNA via targeted nanoparticles.270

Conclusions
Epigenetic biomarker discovery has an expansive reach 
in clinical practice for diagnostic, prognostic, and ther-
apeutic purposes. Multiple epigenetic processes such as 
DNA methylation, histone post-translational changes, 
chromatin remodeling, and ncRNA production have 
been described in the context of normal tissue devel-
opment, cancer, and immunology. Sample processing 
and preservation, miniaturization, and automation have 
improved the ability to perform large-scale reproducible 
epigenome-wide biomarker assays to define the epigen-
etic phenotype of cells. In conjunction with refined 
bioinformatics analytical processes, epigenetics has been 
successfully applied toward biomarker discovery in immu-
nology. A shared knowledge of a growing epigenomic 
database, developed in conjunction with a much larger 
and more mature genomic database, facilitates establish-
ment of epigenomic signatures of cell subsets, drug resis-
tance, and other immunological biomarkers. Epigenetic 
changes can serve as biomarkers of diagnosis and prog-
nosis, and are attractive therapeutic targets.

Transcriptomic biomarker discovery
RNA sequencing
With the advent of NGS, RNA-seq has become main-
stream in transcriptome analysis spanning basic and trans-
lational research. This methodology enabled sequencing 
and quantification of the transcriptional portraits of 
individual cells or thousands of samples, linking cellular 
and molecular phenotypes. Below is the first article that 
reported RNA-seq.

►► Mapping and quantifying mammalian transcriptomes 
by RNA-seq.271

The following articles provide a high-level overview 
of RNA-seq, summarizing advantages over existing tran-
scriptomic platforms and challenges. Technological 
advancements are covered, including improvements in 
transcription start site mapping, strand-specific meas-
urements, gene fusion detection, small RNA character-
ization, detection of alternative splicing events, direct 
RNA sequencing, and approaches that enable profiling 
of small RNA quantities. Also reviewed are methods 
and tools developed for preprocessing high-throughput 
RNA-seq data and the analysis of differential gene 
expression.

►► RNA-seq: a revolutionary tool for transcriptomics.272

►► RNA sequencing: advances, challenges and 
opportunities.273

►► From RNA-seq reads to differential expression 
results.274

These articles outline a historical timeline of transcrip-
tomics, summarize various protocols and computational 
tools for RNA-seq, discuss the potential clinical utility of 
transcriptomic approaches, provide a useful toolbox with 
resources to analyze cancer transcriptomics, outline the 
lack of appropriate reference standards for validating 
RNA-seq, and illustrate the overabundance of competing 
computational tools.

►► Cancer transcriptome profiling at the juncture of clin-
ical translation.275

►► Translating RNA sequencing into clinical diagnostics: 
opportunities and challenges.276

►► Reference standards for next-generation 
sequencing.277

This article provides links to resources (Ensembl 
Compara, Gencode, Mouse Genomes Project, Mouse 
Phenome Database, OMIM (Online Mendelian Inher-
itance in Man), Rfam (RNA families database), Blueprint, 
ENCODE (Encyclopedia of DNA Elements), FANTOM 
(Functional Annotation of the Mammalian Genome), 
GTEx (Genotype-Tissue Expression) project, Human 
Cell Atlas Consortium, and so on) to help interrogate 
human and mouse transcriptomics.

►► Comparative transcriptomics in human and mouse.278

EdgeSeq
EdgeSeq is a gene expression analysis platform developed 
by HTG which combines quantitative nuclease protec-
tion assay technology with NGS, using small amounts 
of starting material and delivering reproducible GEPs 
from poor-quality formalin-fixed paraffin-embedded 
(FFPE) tissue samples including haematoxylin and eosin 
(H&E)-stained tumor specimens. The EdgeSeq platform 
is capable of generating reliable expression data for thou-
sands of genes from as little as 1 mm2 FFPE tissue and 
crude FFPE tissue lysates equivalent to surface areas as 
low as 0.31 mm2 of a 5 mm section, and can be particu-
larly useful to interrogate biomarkers in oncology clinical 
trials, which often lack a sufficient amount of high-quality 
tumor tissue for other techniques.

►► Reliable gene expression profiling from small and 
hematoxylin and eosin-stained clinical formalin-
fixed, paraffin-embedded specimens using the HTG 
EdgeSeq platform.279

►► EMT- and stroma-related gene expression and resist-
ance to PD-1 blockade in urothelial cancer.168

Conclusions
RNA-seq is an open platform technology that has a 
number of potential advantages over gene expression 
microarrays, including an increased dynamic range of 
expression, measurement of focal changes (such as single 
nucleotide variants, insertions, and deletions), detec-
tion of different transcript isoforms, splice variants, and 
chimeric gene fusions (including previously unidentified 
transcripts and/or RNA species such as circular RNAs), 
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and application to samples obtained from any biological 
species. As the cost of RNA-seq continues to decrease, 
this platform will most likely replace many applications 
focused on the analysis of transcriptome structure and 
dynamics. RNA-seq-based assays also have the potential 
to become a diagnostic platform in different therapeutic 
areas, including oncology. However, the establishment of 
appropriate quality standards and the adoption of best 
practices will be necessary to transform this exciting tech-
nology from a purely exploratory tool into a reliable diag-
nostic platform.

Single-cell gene expression analysis
The application of RNA-seq to single cells was first 
published here.

►► mRNA-seq whole-transcriptome analysis of a single 
cell.280

The following two articles provide an overview of 
scRNA-seq applications in immunology; the second paper 
contains links to useful databases such as the Differen-
tiation Map (DMAP) project, Hematopoietic Stem and 
Progenitor Cell Atlas, Illumina Body Map Expression 
Atlas, Immunological Genome Project, and Portal for 
multiple scRNA-seq data.

►► A single-cell sequencing guide for immunologists.281

►► Single-cell RNA sequencing to explore immune cell 
heterogeneity.282

scRNA-seq has the potential to identify rare immune 
cell subsets as well as unique cell populations and tran-
scriptomic signatures associated with response or resist-
ance to immunotherapy in humans and mice.

►► Single-cell transcriptomics in cancer immunobiology: 
the future of precision oncology.283

►► Single-cell RNA-seq reveals new types of human blood 
dendritic cells, monocytes, and progenitors.284

►► A cancer cell program promotes T cell exclusion and 
resistance to checkpoint blockade.173

►► Defining T cell states associated with response to 
checkpoint immunotherapy in melanoma.150

►► High-dimensional analysis delineates myeloid and 
lymphoid compartment remodeling during successful 
immune-checkpoint cancer therapy.285

These articles provide an overview of currently avail-
able scRNA-seq methods and describe methods for the 
isolation of individual cells for scRNA-seq, construction 
of cDNA libraries, and computational analysis. They also 
discuss current applications and challenges associated 
with scRNA-seq.

►► Single-cell RNA-seq: advances and future challenges286

►► The technology and biology of single-cell RNA 
sequencing.287

►► Design and analysis of single-cell sequencing 
experiments.288

A number of biological and technical factors should be 
taken into consideration to measure the transcriptomic 
profiles of single cells, and computational methods can 
be developed to remove technical effects and dissect 
factors underlying biological variation.

►► Revealing the vectors of cellular identity with single-
cell genomics.289

►► Exponential scaling of single-cell RNA-seq in the past 
decade.290

►► Computational and analytical challenges in single-cell 
transcriptomics.291

►► Design and computational analysis of single-cell RNA-
sequencing experiments.292

►► Challenges in unsupervised clustering of single-cell 
RNA-seq data.293

Clustered regularly interspaced short palindromic 
repeats (CRISPR)-based genetic screens have been 
increasingly used in basic research and drug discovery; 
their use, however, has been restricted to the analysis 
of simple cellular phenotypes in bulk cell populations. 
Multiple screening strategies are currently focused on 
combining CRISPR-based gene alterations with scRNA-seq 
to enable high-content molecular analysis with single-cell 
resolution, including cell lineage tracing.

►► Dissecting immune circuits by linking CRISPR-pooled 
screens with single-cell RNA-seq.294

►► Perturb-Seq: dissecting molecular circuits with scal-
able single-cell RNA profiling of pooled genetic 
screens.295

►► A multiplexed single-cell CRISPR screening platform 
enables systematic dissection of the unfolded protein 
response.296

►► Whole-organism clone tracing using single-cell 
sequencing.297

►► Simultaneous lineage tracing and cell-type identifica-
tion using CRISPR-Cas9-induced genetic scars.298

►► Simultaneous single-cell profiling of lineages and cell 
types in the vertebrate brain.299

Multimodal data are generated by single-cell transcrip-
tomics, genomics, epigenomics, and proteomics methods 
to enable integrative analyses. Emerging technologies also 
allow spatial single-cell gene expression analysis by RNA 
in situ or other methods such as STARmap, SpatialDE, or 
trendsceek to allow assessment of the spatial organization 
of individual cells within a tissue. STARmap is a combina-
tion of hydrogel-tissue chemistry, targeted signal ampli-
fication, and in situ sequencing which enables mRNA 
quantification in single cells and positional mapping of 
cell types. SpatialDE and trendsceek employ statistical 
methods from geostatistics, astronomy, and materials 
physics to develop clustering approaches that enable 
spatial gene expression analysis.

►► Integrative single-cell analysis.300

►► Spatially resolved transcriptomics and beyond.301

►► Three-dimensional intact-tissue sequencing of single-
cell transcriptional states.302

►► SpatialDE: identification of spatially variable genes.303

►► Identification of spatial expression trends in single-
cell gene expression data.304

Conclusions
Single-cell transcriptomic analysis is rapidly transforming 
the field of biomedical research. While the promise and 
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potential of this technology are apparent, several chal-
lenges remain. Efforts are underway to improve single-
cell partitioning and whole transcriptome amplification, 
and to increase the sensitivity of scRNA-seq, which would 
allow detection of low-abundance RNAs and rare cells 
in the presence of biological and technical noise. An 
appropriate sample size and measurement of sufficient 
numbers of single-cell events are equally important to 
increase the accuracy and precision of scRNA-seq analyses. 
There is also a need for standardized scRNA-seq proto-
cols, harmonized computational pipelines (including 
methods capable of resolving spatial single-cell transcrip-
tomics), integrated single-cell data across experiments or 
modalities, and repositories dedicated to the massive and 
constantly increasing amounts of scRNA-seq data.

Hybridization and PCR-based gene expression platforms
Transcriptome profiling with microarrays
While commonly used DNA arrays have become quickly 
outdated with the advent of RNA-seq, more advanced 
gene expression microarrays (eg, Affymetrix Human 
Transcriptome Array V.2.0 (HTA V.2.0), Clariom D and 
S arrays), which leverage the latest transcriptome data 
from multiple databases, are simple and fast tools for 
whole-transcriptome expression profiling and biomarker 
discovery. The Clariom D array is based on differential 
exon usage resulting from alternative splicing; this plat-
form may be advantageous for the assessment of millions 
of distinct sequences and could be particularly useful in 
detecting and quantifying low abundance transcripts, or 
rare alternative splice variants. It is also worth noting that 
Clariom D arrays require very low RNA input and are 
compatible with formalin-fixed biological samples.

►► https://www.​thermofisher.​com/​us/​en/​home/​life-​
science/​microarray-​analysis/​transcriptome-​profiling-​
microarrays/​arrays-​rna-​seq.​html305

HTA V.2.0 was used for gene expression profiling to 
allow analysis of coding as well as non-coding and alter-
natively spliced transcripts in peripheral T cells isolated 
from patients with melanoma treated with anti-PD-1, 
anti-CTLA-4, and combinations of both antibodies. The 
results of this analysis revealed quantitatively and qualita-
tively distinct gene expression signatures associated with 
monotherapy or combination treatment.

►► Combination therapy with anti-CTLA-4 and anti-PD-1 
leads to distinct immunologic changes in vivo.176

nCounter and Digital Spatial Profiler
The nCounter gene expression system developed by 
NanoString enables enumeration of individual mRNAs 
using unique barcoding technology. Advantages over 
existing platforms include direct measurement of 
mRNA expression levels without enzymatic reactions, 
sensitivity coupled with high multiplex capability (up 
to 800 transcripts), and digital readout. Because detec-
tion probes in the nCounter analysis target relatively 
short mRNA sequences, this platform demonstrates 
outstanding performance in FFPE tissue samples and can 

be run on both purified RNA and tissue/cell lysates. It 
has also demonstrated utility in preclinical research using 
different species (mouse, rhesus/cynomolgus monkey) 
and sample types (tumor tissue, whole blood).

►► Direct multiplexed measurement of gene expression 
with color-coded probe pairs.306

►► The CDK4/6 inhibitor abemaciclib induces a T cell 
inflamed tumor microenvironment and enhances the 
efficacy of PD-L1 checkpoint blockade.307

►► A conserved transcriptional response to intranasal 
Ebola virus exposure in nonhuman primates prior to 
onset of fever.308

►► Evaluating robustness and sensitivity of the NanoS-
tring technologies nCounter platform to enable multi-
plexed gene expression analysis of clinical samples.309

The nCounter platform has been used to interrogate 
predictive and pharmacodynamic biomarkers in immuno-
oncology clinical trials.

►► IFN-γ-related mRNA profile predicts clinical response 
to PD-1 blockade.164

►► Pan-tumor genomic biomarkers for PD-1 checkpoint 
blockade-based immunotherapy.118

►► Analysis of immune signatures in longitudinal tumor 
samples yields insight into biomarkers of response 
and mechanisms of resistance to immune checkpoint 
blockade.143

Digital Spatial Profiler (DSP) is another platform 
developed by NanoString aimed at assisting with posi-
tional information about mRNA/protein expression in a 
tissue sample. DSP is essentially a variation of multiplex 
mRNA in situ hybridization and IHC, but is based on the 
nCounter barcoding technology. The platform is capable 
of providing spatially resolved, digital characterization of 
proteins or mRNA in a highly multiplexed (up to 1000-
plex) assay. The following two articles exemplify the trans-
lational utility of the DSP assay.

►► Neoadjuvant immune checkpoint blockade in high-
risk resectable melanoma.310

►► Neoadjuvant vs adjuvant ipilimumab plus nivolumab 
in macroscopic stage III melanoma.311

QuantiGene Plex
The QuantiGene Plex (QGP) gene expression assay 
combines branched DNA (bDNA) technology with the 
Luminex fluorescent microbead-based platform. It uses 
cooperative hybridization, which allows for an exception-
ally high degree of assay specificity by using multiple probes 
that hybridize to the same gene. The QGP assay is amenable 
to high-throughput analysis in a 96-well or 384-well format 
and is capable of multiplexing up to 80 targets in one 
well. Similar to nCounter, this platform is compatible with 
formalin-fixed material or samples with degraded RNA and 
can be run on both purified RNA and tissue/cell lysates.

►► A multiplex branched DNA assay for parallel quantita-
tive gene expression profiling.312

►► QuantiGene Plex represents a promising diagnostic 
tool for cell-of-origin subtyping of diffuse large B-cell 
lymphoma.313

https://www.thermofisher.com/us/en/home/life-science/microarray-analysis/transcriptome-profiling-microarrays/arrays-rna-seq.html
https://www.thermofisher.com/us/en/home/life-science/microarray-analysis/transcriptome-profiling-microarrays/arrays-rna-seq.html
https://www.thermofisher.com/us/en/home/life-science/microarray-analysis/transcriptome-profiling-microarrays/arrays-rna-seq.html
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►► The CDK4/6 inhibitor abemaciclib induces a T cell 
inflamed tumor microenvironment and enhances the 
efficacy of PD-L1 checkpoint blockade.307

High-throughput quantitative PCR
The microfluidics-based Biomark HD (Fluidigm) is a 
moderate/high-throughput qPCR system which is capable 
of analyzing the expression of multiple genes across 
multiple samples (up to 96×96) on a single plate with an 
integrated fluidic circuit format. Compared with plate-
based high-throughput qPCR platforms, the Biomark 
HD provides excellent flexibility coupled with time-
effectiveness and cost-effectiveness to explore a range of 
transcriptomic biomarkers in clinical samples. It is capable 
of analyzing samples with very low RNA input. However, as 
has been observed with all PCR assays, the Biomark HD 
demonstrates superior performance on RNA isolated from 
snap-frozen rather than formalin-fixed tissue samples.

The below referenced articles provide examples of 
high-throughput qPCR analysis of formalin-fixed tumor 
biopsy samples using Biomark HD as part of biomarker 
assessments in clinical trials of anti-PD-L1 (atezolizumab).

►► Predictive correlates of response to the anti-PD-L1 
antibody MPDL3280A in cancer patients.87

►► Atezolizumab versus docetaxel for patients with previ-
ously treated non-small-cell lung cancer (POPLAR): 
a multicentre, open-label, phase 2 randomised 
controlled trial.33

Conclusions
Although RNA-seq has been increasingly used in biomed-
ical research and may be advantageous in biomarker 
discovery as an agnostic hypothesis-generating tool, under 
certain circumstances the aforementioned gene expres-
sion platforms may provide significant value, particularly 
in situations when limited amounts of tissue material or 
formalin-fixed tissue samples are available. While exon 
junction (Clariom D) arrays and nCounter assays allow 
broad interrogation of transcriptomic changes, QGP and 
high-throughput-qPCR assays are more fit for hypoth-
esis testing or interrogation of specific transcriptomic 
biomarkers or signatures.

Proteomic biomarkers discovery: detection techniques
ELISPOT
ELISPOT allows the detection of functionally active, 
antigen-specific immune cells on the single cell level by 
capturing the released analyte of interest on a membrane, 
which is then made visible for enumeration. The assay 
format as used today for the detection of cytokine-
secreting cells was first described in 1988.

►► Reverse ELISPOT assay for clonal analysis of cytokine 
production. I. Enumeration of gamma interferon-
secreting cells.314

As a generally easy-to-perform assay with exceptional 
sensitivity, ELISPOT has remained a common assay 
choice for basic, translational, and clinical applications in 
a variety of fields, with surprisingly little change to the 

basic procedure. A comprehensive review of the tech-
nique can be found here.

►► Elispot for rookies (and experts too), techniques in 
life science and biomedicine for the non-expert.315

ELISPOT has been the subject of broad harmonization 
efforts.

►► Results and harmonization guidelines from two 
large-scale international Elispot proficiency panels 
conducted by the Cancer Vaccine Consortium (CVC/
SVI).316

►► Guidelines for the automated evaluation of Elispot 
assays.317

With the introduction of fluorophores for spot detec-
tion (FluoroSpot), multiplexing is now possible and is 
currently being used for the polyfunctional assessment of 
cells for up to four different cytokines, resulting in the 
potential detection of 15 subpopulations. The applica-
tion of peptide-tagged antigen and anti-tag detection anti-
bodies can be used to identify multiple antibody-secreting 
cells with different antigen specificities.

►► An antigen-specific, four-color, B-cell FluoroSpot assay 
utilizing tagged antigens for detection.318

While the analysis of ELISPOT and FluoroSpot has 
largely depended on image analyzers, a new analysis algo-
rithm uses data directly from the camera chip, avoiding 
any evaluation bias and providing spot volume data, a 
relative measure of the amount of cytokine released by 
a single cell.

►► Cell detection by functional inverse diffusion and 
non-negative group sparsity—part I-II.319

An ELISPOT-specific statistical test for response defini-
tion has been developed, and an online tool is available to 
the community for free.

►► http://www.​scharp.​org/​zoe/​runDFR/320

Many publications exist using ELISPOT for immune 
monitoring purposes in immunotherapeutic cancer 
trials, including the neoantigen arena.

►► An immunogenic personal neoantigen vaccine for 
patients with melanoma.321

The monitoring of antigen-specific immune responses 
in patients undergoing immunotherapy can be performed 
using ex vivo isolated T cells without the bias of in vitro 
stimulation.

►► Immunological markers and clinical outcome of 
advanced melanoma patients receiving ipilimumab 
plus fotemustine in the NIBIT-M1 study.322

Conclusions
ELISPOT and FluoroSpot are useful tools for functionally 
assessing immune cells at the single cell level, and also 
allow the polyfunctional analysis of cells. It is, however, 
generally not possible to do phenotypic analysis of cells 
with these methods.

ELISA
The Enzyme Linked Immunosorbent Assay (ELISA) is 
a method first described by Weiland323 in 1978 to detect 

http://www.scharp.org/zoe/runDFR/
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and quantify the presence of analytes, including anti-
bodies, antigens, proteins, and glycoproteins in biological 
samples.

►► The enzyme-linked immunosorbent assay (ELISA)--a 
new serodiagnostic method for the detection of para-
sitic infections.323

This method has been widely used for routine diagnosis 
of viral diseases, such as HIV or HBV infection, but also 
for pregnancy tests and quantification of soluble mole-
cules in patients’ serum, plasma, urine, or cellular super-
natants. ELISAs can be performed in 48-well, 96-well, 
and 384-well plates, allowing concomitant interrogation 
of multiple samples, as well as monitoring of changes in 
analyte concentration at different timepoints.

The most common types of ELISA are the (1) indirect 
and (2) sandwich methods. The indirect ELISA is generally 
used to detect antibodies in the serum, plasma, or super-
natants. Cancer patients’ humoral immune responses 
against specific tumor-associated antigens (TAAs) have 
been assessed with the aim of monitoring changes in 
immune responses over the course of treatments and to 
find possible associations with clinical outcome. Humoral 
responses against shared TAAs, such as NY-ESO-1, p53, 
and SOX2, have been monitored in serum or plasma of 
patients with cancer using ELISAs.

►► Autoantibodies against cancer antigens.324

►► Integrated NY-ESO-1 antibody and CD8+ T cell 
responses correlate with clinical benefit in advanced 
melanoma patients treated with ipilimumab.325

►► Ipilimumab increases activated T cells and enhances 
humoral immunity in patients with advanced 
melanoma.326

►► Mechanistic insight into the TH1-biased immune 
response to recombinant subunit vaccines deliv-
ered by probiotic bacteria-derived outer membrane 
vesicles.327

The sandwich method allows the detection of soluble 
antigens. In this technique, an analyte-specific antibody is 
coated on the microtiter well. The sample to be analyzed 
is then added to the well, forming an antigen-antibody 
complex. A second enzyme-conjugated antibody specific 
for a different epitope on the antigen is added and, in 
the presence of an enzyme-specific substrate, the color-
imetric reaction is developed. This method allows detec-
tion of soluble factors in serum or plasma, including 
cytokines, immunomodulating molecules, and growth 
factors, as well as their changes in association with the 
clinical outcome of patients with cancer undergoing 
immunotherapy treatments.

►► Contribution of humoral immune responses to the 
antitumor effects mediated by anthracyclines.328

►► Soluble NKG2D ligands are biomarkers associated 
with the clinical outcome to immune checkpoint 
blockade therapy of metastatic melanoma patients.329

►► Immunological markers and clinical outcome of 
advanced melanoma patients receiving ipilimumab 
plus fotemustine in the NIBIT-M1 study.322

►► A pilot phase I study combining peptide-based vacci-
nation and NGR-hTNF vessel targeting therapy in 
metastatic melanoma.330

The sensitivity of ELISA can be augmented through 
the amplified luminescent proximity homogeneous 
assay (ALPHA). This chemiluminescence-based method 
can detect analytes at the level of femtograms, reduces 
washing steps, and is based on the usage of acceptor 
beads coated with the primary antibody specific for the 
defined antigen, streptavidin-coated donor beads, and 
the secondary antibody conjugated to streptavidin.

Conclusions
ELISA is a simple methodology that provides rapid 
results. No antigen purification is required prior to 
measurement and specificity is increased by using two 
antibodies. Flexibility and sensitivity are increased by the 
application of ALPHA technology, allowing the usage of a 
minimal amount (5–20 µL) of starting material and large-
scale screening (96-well, 384-well, or 1536-well format). 
However, these methods are limited by the detection of 
one analyte at a time and do not allow multiplex high-
throughput screening.

Multiplexed immunoassays
In the late 1990s, the recently founded Luminex Corpo-
ration proposed a commercial FlowMetrix platform for 
the simultaneous detection of up to 64 analytes using a 
conventional flow cytometer. The technology relied on 
64 distinct sets of fluorescent beads, each coupled with 
either an antigen, or an antibody, or a nucleic acid, and 
used as the solid phase of immunoassays or hybridization. 
The mixing of these distinct sets allowed for the simul-
taneous monitoring of independent assays using a flow 
cytometer equipped with digital signal processing.

►► Advanced multiplexed analysis with the FlowMetrix 
system.331

This seminal publication laid the basis of the future 
development of high dimension protein and nucleic 
acid profiling platforms. In its current implementa-
tion, the Luminex platform is able to monitor 500 
simultaneous assays. The versatility of the platform has 
given rise to several applications in cancer research. A 
comprehensive review of the origin and evolution of 
multiplex assays has recently been discussed by Graham 
H et al.332

►► The genesis and evolution of bead-based 
multiplexing.322

The simplest application consists of the evaluation of 
cytokine and chemokine profiles in the serum or plasma 
of patients affected by cancers.

►► The plasma levels of 12 cytokines and growth factors 
in patients with gastric cancer.333

►► Cytokine comparisons between women with breast 
cancer and women with a negative breast biopsy.334

Luminex assays or other multiplexed bead array embod-
iments, such as the Cytokine Bead Array (Becton Dick-
inson), performed on peripheral blood or other body 
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fluids, have been used as prognostic/diagnostic tools in 
several cancers.

Ovarian cancer
►► Serum cytokine profiling as a diagnostic and prog-

nostic tool in ovarian cancer: a potential role for inter-
leukin 7.335

►► Diagnostic markers for early detection of ovarian 
cancer.336

►► Multiplexed bead-based immunoassay of four serum 
biomarkers for diagnosis of ovarian cancer.337

►► Serum expression level of cytokine and chemokine 
correlates with progression of human ovarian 
cancer.338

Breast cancer
►► The multiplex bead array approach to identifying 

serum biomarkers associated with breast cancer.339

Nasopharyngeal carcinoma
►► Prognostic role of serum cytokines in patients with 

nasopharyngeal carcinoma.340

Gastric cancer
►► Serum biomarker panels for diagnosis of gastric 

cancer.341

Colorectal cancer
►► Diagnostic performance of a novel multiplex immu-

noassay in colorectal cancer.342

Non-Hodgkin lymphoma
►► Cytokines in serum in relation to future non-Hodgkin 

lymphoma risk: evidence for associations by histologic 
subtype.343

Non-small cell lung carcinoma
►► A novel detection method of non-small cell lung 

cancer using multiplexed bead-based serum 
biomarker profiling.344

►► Determination of 16 serum angiogenic factors in 
stage I non-small cell lung cancer using a bead-based 
multiplex immunoassay.345

►► Salivary cytokine panel indicative of non-small cell 
lung cancer.346

►► Evaluation of saliva and plasma cytokine biomarkers 
in patients with oral squamous cell carcinoma.347

Multiplexed immunoassays have entered the arena of 
personalized medicine to monitor response to therapy in 
patients affected by NSCLC.

►► Differential expression of circulating biomarkers of 
tumor phenotype and outcomes in previously treated 
non-small cell lung cancer patients receiving erlotinib 
vs cytotoxic chemotherapy.348

In addition to biomarker discovery, multiplexed bead 
assays have been used to characterize the phosphoryl-
ation pathways whose dysregulation is often involved 
in carcinogenesis. A technical chapter describing this 
approach can be found in the following.

►► Utilizing the Luminex magnetic bead-based suspen-
sion array for rapid multiplexed phosphoprotein 
quantification.349

The ability of Luminex assays to monitor DNA hybrid-
ization has been exploited to characterize mutations in 
cancer cells.

►► Clinical validation of newly developed multiplex 
kit using Luminex xMAP technology for detecting 
simultaneous RAS and BRAF mutations in colorectal 
cancer: results of the RASKET-B study.350

Bead multiplexing and PCR multiplexing have been 
combined in multiplex liquid bead arrays used for the 
molecular characterization of circulating tumor cells 
(CTCs).

►► Molecular characterization of circulating tumor cells 
in breast cancer by a liquid bead array hybridization 
assay.351

►► Development and validation of multiplex liquid bead 
array assay for the simultaneous expression of 14 
genes in circulating tumor cells.352

Another multiplex immunoassay platform, Olink, uses 
proximity extension assay (PEA) technology to achieve 
specificity for 92 analytes in a single panel, with multiple 
disease-specific panels available. PEA uses a pair of non-
cross-blocking antibodies for each target, which are tagged 
with complementary oligonucleotides. Binding of the anti-
body pair allows for the complementary sequences to pair 
and to be extended to create a PCR template. Readout 
is on the Fluidigm Biomark microfluidic qPCR platform, 
using a 96.96 array (96 assay targets × 96 samples/controls). 
Because of the availability of an immune oncology panel, 
Olink is being used with increasing frequency in immuno-
therapy trial monitoring, including in the CIMAC/CIDC 
network. For example, this CAR T cell study used Olink 
to find multiple plasma proteins that correlated with 
responder status, including IL-12.

►► A phase I/IIa trial using CD19-targeted third-
generation CAR T cells for lymphoma and leukemia.353

Conclusions
Multiplexed bead arrays are a useful tool in cancer 
research, with applications ranging from diagnosis, disease 
monitoring, predictive and prognostic biomarkers, to the 
molecular characterization of cancer cells at the tran-
scriptome and protein levels.

Cytometry-based methods
Flow cytometry remains a very powerful tool for multi-
parameter analysis of immune cells in both blood and 
tumor tissue. This section highlights advances in flow 
cytometry-related methodology that impacts the field of 
immunotherapy.

High-parameter flow cytometry
The number of parameters that can be measured in 
parallel by multicolor flow cytometry has grown rapidly 
in the last 8 years, mostly due to the development of 
new polymer-based dyes with tunable emission peaks, as 
described in the following.
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►► Brilliant violet fluorophores: a new class of ultrabright 
fluorescent compounds for immunofluorescence 
experiments.354

At the same time, new instrumentation has now made 
it possible to perform flow cytometry with over 18 colors 
(the previous limit), the limiting factor currently being 
the fluorochromes. This has allowed the simultaneous 
monitoring of a large number of immune checkpoint 
molecules on a wide array of immune cell types, as shown 
with this 28-color panel.

►► OMIP-050: A 28-color/30-parameter fluorescence 
flow cytometry panel to enumerate and characterize 
cells expressing a wide array of immune checkpoint 
molecules.355

Another notable development in the field is flow cytom-
eters that use spectral deconvolution rather than a single 
bandpass filter/detector for each fluorochrome. In 
effect, spectral cytometry uses the shape of the complete 
emission spectrum to determine the signals derived from 
each fluorochrome on each cell. This has allowed resolu-
tion of fluorochromes that would otherwise be very diffi-
cult to distinguish. A review of how this method has been 
applied to cells derived from solid tissues, a common 
application for tumor immune monitoring, is given in 
the following.

►► Spectral cytometry has unique properties allowing 
multicolor analysis of cell suspensions isolated from 
solid tissues.356

The use of standardized multicolor immune monitoring 
panels to profile immune cell phenotypes and functions 
in blood and tumor is exemplified in this recent publica-
tion in breast cancer.

►► Examining peripheral and tumor cellular immunome 
in patients with cancer.357

Conclusions
Fluorescence-based flow cytometry continues to evolve, 
with new dyes and new instrumentation, including spec-
tral flow cytometers that increase the number of parallel 
parameters that can be measured, as well as the resolu-
tion of those parameters.

Mass cytometry
Flow cytometry is performed using fluorescently tagged 
antibodies and other fluorescent probes. More recently, 
the use of heavy metal ion tags, which are chelated to 
a polymer backbone and read out using time-of-flight 
mass spectrometry, has been introduced. This method 
is known as mass cytometry, or CyTOF (Cytometry by 
Time of Flight). While offering a significantly slower 
throughput than fluorescence cytometry, it provides the 
dual advantages of allowing for more antibody specifici-
ties to be used in parallel, along with much reduced spill-
over between detector channels. The method was first 
described in the following papers.

►► Development of analytical methods for multiplex 
bio-assay with inductively coupled plasma mass 
spectrometry.358

►► Flow cytometer with mass spectrometer detection for 
massively multiplexed single-cell biomarker assay.359

CyTOF technology was first applied to the study of the 
immune system in 2010, using a panel of 32 antibodies on 
human bone marrow cells.

►► Single-cell mass cytometry of differential immune 
and drug responses across a human hematopoietic 
continuum.360

The number of available mass tags has since grown 
to over 40, with many publications in different disease 
settings. It has been used to study signaling in leukemic 
cells, as well as immune signatures in PBMCs in the 
context of immunotherapy, as in the following represent-
ative publications.

►► Mass cytometric functional profiling of acute myeloid 
leukemia defines cell-cycle and immunophenotypic 
properties that correlate with known responses to 
therapy.361

►► Data-driven phenotypic dissection of AML reveals 
progenitor-like cells that correlate with prognosis.362

►► Distinct predictive biomarker candidates for response 
to anti-CTLA-4 and anti-PD-1 immunotherapy in 
melanoma patients.54

Mass cytometry has also been applied to the study of 
immune cells infiltrating tumor tissue, as in the following 
recent publications.

►► Interlesional diversity of T cell receptors in melanoma 
with immune checkpoints enriched in tissue-resident 
memory T cells.363

►► An immune atlas of clear cell renal cell carcinoma.364

A review of technology and important concepts for 
CyTOF data analysis has been recently published.

►► The anatomy of single cell mass cytometry data.365

The above review also links to a website containing a 
tutorial on mass cytometry data analysis and various tools 
for the same.

►► http://​cytof.​biosurf.​org/366

A recent study has made available an ‘Antibody Staining 
Data Set’ which shows the estimated expression level of 
326 cell-surface proteins on 28 different immune cell 
types, on fresh or fixed cells. The interactive heat map 
tool can be viewed at the following.

►► https://​app.​astrolabediagnostics . ​com/​anti -
body_​staining_​data_​set%​23:~:​text=​The_​Anti-
body_​Staining_​Data_​Set,​subsets_​at_​single-​cell_​
resolution367

Conclusions
Mass cytometry, while posing some technical challenges, 
allows for the use of more antibody specificities than 
fluorescence flow cytometry, and with much less spillover 
between detector channels. It is well suited to compre-
hensive analyses of immune cells in tissues such as blood, 
lymph nodes, or tumor. However, see multiplexed ion 
beam imaging in the ‘Mass spectrometry for tissue multi-
plexing’ section for an alternative approach to highly 
multiplexed analysis of tumor tissue, which preserves the 
spatial orientation of the tissue cells.

http://cytof.biosurf.org/
https://app.astrolabediagnostics.com/antibody_staining_data_set%23:~:text=The_Antibody_Staining_Data_Set,subsets_at_single-cell_resolution
https://app.astrolabediagnostics.com/antibody_staining_data_set%23:~:text=The_Antibody_Staining_Data_Set,subsets_at_single-cell_resolution
https://app.astrolabediagnostics.com/antibody_staining_data_set%23:~:text=The_Antibody_Staining_Data_Set,subsets_at_single-cell_resolution
https://app.astrolabediagnostics.com/antibody_staining_data_set%23:~:text=The_Antibody_Staining_Data_Set,subsets_at_single-cell_resolution
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Multimers
Multimeric forms of MHC–peptide complexes can be 
identified to stain T cells specific for a given MHC–
peptide combination. This was first demonstrated using 
tetrameric forms of MHC–peptide, bound together using 
fluorescently labeled streptavidin.

►► Phenotypic analysis of antigen-specific T 
lymphocytes.368

From this work, the term ‘tetramer’ emerged as a 
common name for these reagents. However, other 
versions of peptide–MHC multimers have also been 
made, with backbones other than streptavidin, and with 
differing resulting valencies. The timeline of develop-
ment of various MHC multimer reagents is reviewed 
here.

►► Interrogating the repertoire: broadening the scope of 
peptide-MHC multimer analysis.369

More recent efforts have focused on the parallel use of 
many different MHC–peptide multimers, which is facili-
tated by combinatorial staining of each multimer species 
using a different ‘barcode’ or combination of fluorescent 
labels.

►► Simultaneous detection of many T-cell specificities 
using combinatorial tetramer staining.370

►► Parallel detection of antigen-specific T-cell responses 
by multidimensional encoding of MHC multimers.371

Such parallelization has also been accomplished using 
heavy metal-tagged tetramers and mass cytometry.

►► Combinatorial tetramer staining and mass cytom-
etry analysis facilitate T-cell epitope mapping and 
characterization.372

►► Multiplexed peptide-MHC tetramer staining with 
mass cytometry.373

Application of barcoded tetramers, along with nano-
particle display to increase avidity, has been applied to 
the tracking of neoantigen-specific T cells in tumors and 
blood.

►► Sensitive detection and analysis of neoantigen-specific 
T cell populations from tumors and blood.374

To create many different MHC–peptide multimers for 
a given MHC protein, one can use a peptide-exchange 
approach. With this method, a single MHC protein is 
produced with an invariant peptide in its binding groove. 
This is then exchanged for any peptide of interest, as 
described here.

►► Design and use of conditional MHC class I ligands.375

Arrays of MHC–peptide multimers can be used to 
screen heterogeneous T cell populations for binding. 
This provides a way to determine the specificities of T 
cells for neoantigens, for example.

►► High throughput determination of the antigen specif-
icities of T cell receptors in single cells.376

Conclusions
The use of MHC–peptide multimers to identify T cell 
specificities is limited by the fact that each multimer 

reagent identifies T cells specific for a single epitope 
in the context of a single MHC allele. Historically, this 
has restricted their use in tumor immune monitoring to 
settings such as peptide vaccination, where the patient’s 
human leukocyte antigen (HLA) type is selected, and 
there is only one or a few specificities of interest. More 
recently, the specificity limitation has been partly over-
come by the use of many multimer reagents in parallel; 
these reagents can be barcoded with unique combinations 
of fluorescent or mass labels, to minimize the number of 
detection channels required. The production of many 
multimers using the same MHC protein is in turn facil-
itated by a peptide exchange manufacturing approach. 
Once created, an array of peptide–MHC multimers can 
be used to efficiently screen patient T cells for their spec-
ificity to different neoantigen epitopes.

Phospho-flow
The use of antibodies to specific phosphoepitopes, in 
combination with flow cytometry phenotyping, was 
pioneered in the lab of Garry Nolan, and has been called 
‘phospho-flow’. The earliest papers from the Nolan lab 
described the use of this technique to profile intracellular 
signaling in either immune or cancer cells.

►► Intracellular phospho-protein staining techniques 
for flow cytometry: monitoring single cell signaling 
events.377

►► Single cell profiling of potentiated phospho-protein 
networks in cancer cells.378

►► Multiparameter analysis of intracellular phosphoe-
pitopes in immunophenotyped cell populations by 
flow cytometry.379

Conclusions
Identification of signaling anomalies by phospho-flow 
can be useful for probing both tumor and immune cells. 
See the ‘Mass cytometry’ section for recent studies using 
CyTOF-based phospho-flow to distinguish outcome 
groups in acute myeloid leukemia based on signaling 
properties.

AbSeq/CITE-seq
In order to analyze the binding of many antibody spec-
ificities in parallel on single cells, high-throughput 
sequencing-based approaches have been developed. 
These methods use nucleic acid-tagged antibodies and 
barcoding of single cells with indexing beads, which 
capture the nucleic acid tags from each cell for high-
throughput sequencing. This approach, dubbed AbSeq 
(antibody-based sequencing), was first published in 
2017.

►► Abseq: Ultrahigh-throughput single cell protein 
profiling with droplet microfluidic barcoding.380

It is possible to combine AbSeq with transcriptomic 
profiling, a method termed cellular indexing of transcrip-
tomes and epitopes by sequencing (CITE-seq) or RNA 
expression and protein sequencing (REAP-seq).
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►► Simultaneous epitope and transcriptome measure-
ment in single cells.381

►► Multiplexed quantification of proteins and transcripts 
in single cells.382

A protocol for performing such combined proteomic 
and transcriptomic profiling on a microchip-based single-
cell genomics platform has been recently published.

►► Protein- and sequencing-based massively parallel 
single-cell approaches to gene expression profiling.383

Conclusions
AbSeq has the potential to profile many more antibody 
specificities in parallel than either fluorescence or mass 
cytometry. In theory, the number of antibodies used is 
limited only by cross-blocking of epitopes. However, it is 
still an expensive method, and is generally performed on 
a few thousand, but not millions, of cells per sample. It is 
also not well suited to the study of intracellular proteins, 
because fixation interferes with the ability to sequence the 
nucleic acid tags. Combining AbSeq with transcriptomic 
analysis, for example, CITE-seq, provides a novel way to 
assess both RNA and protein expression in a highly multi-
plexed manner on single cells. It may be especially well 
suited to extracting maximal information about immune 
cells infiltrating a tumor.

Real-time functional assays
The xCELLigence technology (Acea Biosciences) has 
been developed for cell-based electric impedance assays 
to monitor and quantify cell proliferation, toxicity, and 
morphology changes. This platform allows the moni-
toring of changes in the behavior and adhesion prop-
erties of cells through the measurement of impedance, 
using gold-plated base biosensors in the bottom of culture 
wells. Cellular status is monitored by label-free and real-
time automated reading.

This application can assess cell viability perturba-
tions and determine either cell toxicity and cell death 
or modification of cell proliferation on treatment with 
compounds or drugs. Its real-time acquisition of data is 
suitable to identify the optimal timepoints for a defined 
cellular activity and to understand the related mecha-
nisms. The xCELLigence technology has increasingly 
been applied to immunotherapy in order to better 
understand the complex interaction of immune cells with 
tumor cells and to verify the efficacy of different immuno-
therapy approaches or their combinations. Examples are 
the treatment of cells with either biological agents (eg, 
agonist or antagonist monoclonal antibodies, or bispe-
cific T cell engagers) or through coculture with effector 
cells (eg, T, NK, or CAR T cells).

►► xCELLigence system for real-time label-free moni-
toring of growth and viability of cell lines from hema-
tological malignancies.384

►► Application of real-time cell electronic analysis system 
in modern pharmaceutical evaluation and analysis.385

►► In vitro immunotherapy potency assays using real-
time cell analysis.386

►► Avidity characterization of genetically engineered 
T-cells with novel and established approaches.387

Conclusions
The xCELLigence platform can provide real-time quan-
titative determination of functional changes in cells, 
providing highly reproducible results with a simple work-
flow. It represents a useful tool to investigate and monitor 
the mechanisms of action of immunotherapy approaches. 
This method allows the monitoring of the functional 
properties of immune cells and other biological drugs, 
although no extensive results are available regarding its 
usage to either predict or correlate with the in vivo activity 
of these therapeutic tools. The combination of xCEL-
Ligence with highly dimensional immune phenotype 
profiling is warranted to achieve deep characterization 
of immune responses associated with immunotherapy 
interventions.

Proteomic biomarkers discovery: target identification and 
immunomonitoring
Minimum residual disease detection
Highly sensitive, standardized techniques are necessary 
for the detection of minimal residual disease (MRD) 
in order to assess therapy responses and provide more 
accurate prognoses, leading to improved personalized 
treatments. Molecular techniques, such as allele-specific 
oligonucleotide quantitative PCR (ASO-qPCR), represent 
the traditional approaches.

►► High applicability of ASO-RQPCR for detection of 
minimal residual disease in multiple myeloma by 
entirely patient-specific primers/probes.388

A major drawback of ASO-qPCR, namely the necessity 
of using patient-specific probes for B cell malignancies 
exhibiting somatic hypermutation (eg, multiple myeloma 
(MM)), is overcome by NGS (also known as deep 
sequencing or high-throughput sequencing) of immuno-
globulin genes.

►► Prognostic value of deep sequencing method for 
minimal residual disease detection in multiple 
myeloma.389

►► A clinical perspective on immunoglobulin heavy 
chain clonal heterogeneity in B cell acute lympho-
blastic leukemia.390

Flow cytometry classically provided lower sensitivity 
than molecular techniques. However, next-generation 
flow cytometry (NGF) approaches reach sensitivities 
comparable with molecular methods, and have the advan-
tage of faster turnaround times, broader applicability, 
and lower cost.

►► Next generation flow for highly sensitive and stand-
ardized detection of minimal residual disease in 
multiple myeloma.391

►► ClonoSEQ assay for the detection of lymphoid 
malignancies.392

While MRD detection is an established tool in the 
management of hematological malignancies, highly 
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sensitive liquid biopsy assays for the assessment of dissemi-
nated tumor cells in the context of solid tumors have been 
developed more recently. These probe for CTCs or circu-
lating tumor-derived factors such as ctDNA, as for example, 
Natera’s Signatera assay, which provides early disease recur-
rence prediction based on ctDNA. Since CTCs are rare 
events, marker-dependent (such as Menarini’s DEPArray) 
or marker-independent techniques (eg, microfiltration) 
are applied to enrich them prior to downstream analysis.

►► Analysis of plasma cell-free DNA by ultradeep 
sequencing in patients with stages I to III colorectal 
cancer.393

►► Liquid biopsy and minimal residual disease – latest 
advances and implications for cure.394

These techniques as well as additional techniques such 
as droplet digital PCR (ddPCR), positron emission tomog-
raphy (PET)-CT, PET-MRI, CyTOF, and monoclonal 
immunoglobulin rapid accurate mass measurement 
(miRAMM) are being explored as complementary or 
alternative approaches for MRD assessment as discussed 
here.

►► Droplet digital PCR for minimal residual disease 
detection in mature lymphoproliferative disorders.395

►► Minimal residual disease in multiple myeloma: 
impact on response assessment, prognosis and tumor 
heterogeneity.396

Conclusions
Detection and monitoring of MRD play an important role 
in the management of patients with hematological malig-
nancies. The somatic hypermutation seen in MM means 
that many molecular approaches, although exhibiting 
high sensitivities, are not applicable to all patients, and 
that false-negatives remain a challenge. With the advent 
of standardized NGF that is applicable to all patients and 
reaches comparable sensitivities with molecular tech-
niques, turnaround times and costs are vastly reduced. 
All of these assays rely on blood or bone marrow samples 
and are therefore prone to sampling errors, as they 
ignore spatial heterogeneity in clones. Complementing 
molecular or flow cytometry-based assays with imaging 
techniques will enrich MRD readouts, improving clinical 
follow-up. Highly sensitive techniques are also starting to 
be harnessed for the detection of tumor-derived material 
or single tumor cells disseminated from primary solid 
tumor lesions in liquid biopsies.

Neoantigens
Neoantigens are potentially immunogenic epitopes that 
are created by tumor mutations or chromosomal rearrange-
ments in the course of an individual’s cancer development. 
They have emerged as an important target of antitumor 
T cells, and this reactivity may be important both in the 
context of ICIs as well as adoptive cell therapy (ACT).

Detection of neoantigens and neoantigen-specific T cells
Robbins PF et al397 described a method to identify mutated 
proteins in patient tumors that may be targets of antitumor 

T cell immunity using whole-exome sequencing data and 
MHC binding algorithms.

►► Mining exomic sequencing data to identify mutated 
antigens recognized by adoptively transferred tumor-
reactive T cells.397

In a study by Linnemann C et al,398 autologous immor-
talized B lymphoblastoid cell lines and in silico predic-
tion models are used to demonstrate recognition of 
neoepitopes by CD4+ T cells.

►► High-throughput epitope discovery reveals frequent 
recognition of neo-antigens by CD4+ T cells in human 
melanoma.398

As mentioned in the ‘Multimers’ section, stable 
tetramers can be synthesized using ultraviolet-mediated 
peptide exchange. This method has been applied to iden-
tify neoantigen-specific T cells.

►► Generation of peptide MHC class I complexes 
through UV mediated ligand exchange.399

Various methods have been used to screen for the 
targets of TCRs identified in tumor tissues or other 
settings. These include screening of yeast display libraries 
bearing peptide-human leukocyte antigen (pHLA), lenti-
viral delivery of antigen libraries for display by HLA, iden-
tification of pHLA that appropriate TCRs from T cells via 
trogocytosis, and use of signaling and antigen-presenting 
bifunctional receptors.

►► Antigen identification for orphan T cell receptors 
expressed on tumor-infiltrating lymphocytes.400

►► T-Scan: a genome-wide method for the systematic 
discovery of T cell epitopes.401

►► T cell antigen discovery via trogocytosis.402

►► T cell antigen discovery via signaling and antigen-
presenting bifunctional receptors.403

Another approach uses tetramer-associated TCR-seq 
to link TCR sequences to their cognate antigen in single 
cells. This approach has the potential advantage of high-
throughput evaluation of antigen specificities.

►► High throughput determination of the antigen specif-
icities of T cell receptors in single cells.376

The evolving dynamic of tumor targeting by neoantigen-
specific T cells and resulting escape of tumor cells lacking 
the neoantigen(s) contributes to ‘immunoediting’, 
described in this seminal publication.

►► Neoantigen landscape dynamics during human mela-
noma-T cell interactions.404

In view of the complexity of cancer genomes, there is 
a need to explore unbiased approaches to identify the 
full range of immunogenic peptides presented by tumors 
(the ‘immunopeptidome’). These strategies have typi-
cally relied on mass spectrometry, immunoprecipitation, 
or peptide elution, for example.

►► Predicting immunogenic tumour mutations 
by combining mass spectrometry and exome 
sequencing.405

In this approach, whole exome and transcriptome 
data were combined with mass spectrometry and in silico 
methods to identify immunogenic mutations.
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►► Antigen presentation profiling reveals recognition of 
lymphoma immunoglobulin neoantigens.406

Another strategy combined exome sequencing with 
MHC isolation and peptide identification to uncover 
tumor neoantigens from ovarian carcinoma cell lines.

►► The immunopeptidomic landscape of ovarian 
carcinomas.407

This approach uses chemical methods followed by mass 
spectrometry analysis to identify HLA binding peptides 
from direct analysis of tumor cells. Candidate antigens 
are then validated with complementary methods.

►► HLA ligandome analysis identifies the under-
lying specificities of spontaneous antileukemia 
immune responses in chronic lymphocytic leukemia 
(CLL).408

Conclusions
Strategies for unbiased identification of HLA-binding 
and/or immunogenic peptides from tumor cells have 
the potential to provide targets for novel vaccine strat-
egies. These have also led to the identification of both 
mutated as well as non-mutated peptides as targets for 
immunotherapy.

Role of neoantigens in immunotherapy
Please refer to the TMB section for the role of neoan-
tigens in the response to ICIs. In addition, unique or 
shared neoantigen-directed, genetically engineered cells 
have been used as a cellular immunotherapy and have led 
to regression of tumors.

►► Cancer immunotherapy based on mutation-specific 
CD4+ T cells in a patient with epithelial cancer.409

►► T-cell transfer therapy targeting mutant KRAS in 
cancer.410

►► Mutated nucleophosmin 1 as immunotherapy target 
in acute myeloid leukemia.411

►► Neoantigen screening identifies broad TP53 
mutant immunogenicity in patients with epithelial 
cancers.412

Conclusions
In view of the growing importance of neoantigen-specific 
T cells in tumor immunity, several approaches to identify 
and expand these cells have been developed. These strat-
egies also demonstrate the feasibility of harnessing these 
T cells for cancer therapy.

Proliferation and cytotoxicity assays
Ex vivo or in vitro cell proliferation can be determined by 
multiple technologies. The earliest approach is to label 
cells with [3H]-thymidine and quantify proliferation by 
a gamma counter, which corresponds to DNA synthesis, 
and has been used to monitor ex vivo immune responses 
to cancer vaccines. Bromodeoxyuridine (BrdU) incor-
poration assays use absorbance as the readout and avoid 
radiolabeled dyes. Other cell proliferation assays use dyes 
that measure the metabolic activity of cells (eg, MTT 
(using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazol

ium bromide), WST-1 (using water-soluble tetrazolium 
salts)) by permeabilizing the cells and reacting with 
enzymes or other metabolic factors.

►► Assays for monitoring cellular immune responses to 
active immunotherapy of cancer.413

►► Immunotherapy of metastatic malignant melanoma 
by a vaccine consisting of autologous interleukin-
2-transfected cancer cells: outcome of a Phase I 
study.414

►► Generation of immunity to the HER-2/neu oncogenic 
protein in patients with breast and ovarian cancer 
using a peptide-based vaccine.415

Fluorescent dyes can be used to monitor cell popu-
lations with different rates of division and prolifera-
tion. Carboxyfluorescein succinimidyl ester (CFSE) has 
been commonly used to assess lymphocyte division and 
proliferation by flow cytometry. CFSE can covalently 
label intracellular molecules, and CFSE concentra-
tion is proportionally diluted in cell progeny according 
to the number of subsequent cell divisions. DELFIA 
(dissociation-enhanced lanthanide fluorescence immu-
noassay) is based on the measurement of time-resolved 
fluorescence intensity. These fluorescence-based dyes 
are compatible with multiparametric staining with other 
fluorochromes.

►► The use of carboxyfluorescein diacetate succin-
imidyl ester (CFSE) to monitor lymphocyte 
proliferation.416

►► Role of STAT3 in CD4+ CD25+ FOXP3+ regulatory 
lymphocyte generation: implications in graft-versus-
host disease and antitumor immunity.417

The efficiency of in vitro expansion of T cells engi-
neered to express exogenous antigen-specific CAR or 
TCR measured by proliferation assays can represent a 
relevant parameter and a surrogate marker of possible in 
vivo persistence.

►► Adoptive cell transfer therapy following non-
myeloablative but lymphodepleting chemotherapy 
for the treatment of patients with refractory meta-
static melanoma.418

►► CAR T cell immunotherapy for human cancer.419

►► CARs on track in the clinic.420

Cytotoxicity assays measure cell death induced by cyto-
toxic stimuli, environmental changes, or cell-mediated 
killing. They are based on cell membrane integrity, 
using vital dyes that allow the exclusion of viable cells, 
or assessing the release of markers from dying cells (eg, 
CFSE). In addition, metabolic activity measurements, for 
example, MTT, lactate dehydrogenase (LDH), or ATP 
assays, are also used to measure cell viability. A reliable 
cell-mediated cytotoxicity assay based on radiolabeled 51Cr 
release has been substituted by the development of the 
assays mentioned above. DELFIA also represents a reliable 
and simple technology to asses either antibody-dependent 
cell-mediated cytotoxicity (ADCC) or cell-mediated cyto-
toxic assays. These assays have been applied to the func-
tional characterization of antitumor and antigen-specific 
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T and NK cell responses, highlighting relevant therapeutic 
implications.

►► Optimization of cytotoxic assay by target cell reten-
tion of the fluorescent dye carboxyfluorescein diace-
tate (CFDA) and comparison with conventional 51CR 
release assay.421

►► WT1 peptide-specific T cells generated from periph-
eral blood of healthy donors: possible implications for 
adoptive immunotherapy after allogeneic stem cell 
transplantation.422

►► Preparation of cytokine-activated NK cells for use in 
adoptive cell therapy in cancer patients: protocol opti-
mization and therapeutic potential.423

Conclusions
Cell proliferation and cytotoxic assays can monitor 
cell-mediated immunity in patients with cancer. Crit-
ical considerations include selection of target cells 
and baseline controls for the assays, and the limita-
tions in applying these techniques to high-throughput 
screening studies. Nevertheless, in specific cases, for 
example, characterization of cell-mediated antitumor 
responses, the integration of cytokine release determi-
nation with proliferation and cytotoxic assays should be 
considered.

Assessment of ex vivo antigen-specific immune responses
TAAs are recognized by T cells in the form of MHC/
peptide complexes. The discovery and molecular charac-
terization of TAAs allowed the identification and catego-
rization of three main types of antigens.
1.	 Differentiation antigens that are specific to the cellu-

lar lineage. These antigens are overexpressed by tumor 
cells but also shared with normal tissue (eg, carcinoem-
bryonic antigen (CEA), epithelial cell adhesion mole-
cule (Ep-CAM), mucin-1 (MUC-1), melanoma antigen 
recognized by T cells-1 (MART-1/Melan-A), glycopro-
tein 100 (gp100), and tyrosinase (Tyr)).

2.	 Cancer-Testis (CT) antigens (eg, MAGE, GAGE, 
LAGE, and NY-ESO-1) are expressed in tumors with 
different histological origins and their expression in 
normal tissues is limited to testicular germ cells and 
placenta.

3.	 Mutated antigens or neoantigens derived from non-
synonymous somatic mutations. These TAAs are not 
expressed by normal cells and display superior immu-
nogenic potency as compared with differentiation/self 
or CT antigens. Details of these TAAs have been pro-
vided above.

Single or multiple peptides derived from the TAAs 
mentioned above have been administered in the context 
of phase I/II clinical studies for vaccination of patients 
with different types of tumors. However, cancer vaccines 
have not been associated with durable clinical responses 
in patients with cancer, possibly as a result of low immu-
nogenic potency and the pre-existence in patients’ body 
of tolerogenic/anergic T cells specific for these TAAs. 
Nevertheless, antigen-specific T cell responses could be 

detected in the circulation of up to 50% of patients with 
cancer undergoing vaccination. Of note, antigen-specific 
T cell responses in the circulation of patients with cancer 
could be detected ex vivo with, in some cases, association 
with their clinical outcome.

►► Progress in the development of immunotherapy for 
the treatment of patients with cancer424

►► Cancer/testis antigens, gametogenesis and cancer.425

►► Therapeutic vaccines for cancer: an overview of clin-
ical trials.426

The monitoring of circulating antigen-specific T cell 
responses in patients with cancer can be performed by 
ex vivo coculture of peripheral blood lymphocytes with 
either peptides containing TAA-derived epitopes or HLA-
matched antigen-presenting cells loaded with peptides. 
Cytokine release assays, such as ELISA, ELISPOT, or 
intracellular staining by flow cytometry, have been used 
as readouts of antigen-specific reactivity by T cells. These 
methods have been described above. The majority of 
studies assessed the effector functions of antigen-specific 
T cells by measuring the release of IFN-γ, but in some 
cases also analyzed the multifunctional properties of 
T cells by assessing the release of multiple cytokines. 
Multimer staining in combination with flow cytometry 
has been used to determine the antigen-specific reactivity 
of T cells.

►► Flow cytometric determination of intracellular or 
secreted IFNgamma for the quantification of antigen 
reactive T cells.427

►► Immunologic monitoring of cancer vaccine trials 
using the ELISPOT assay.428

►► MHC class II tetramer analyses in AE37-vaccinated 
prostate cancer patients reveal vaccine-specific poly-
functional and long-lasting CD4+ T-cells.429

►► Anti-CTLA-4 antibody therapy: immune moni-
toring during clinical development of a novel 
immunotherapy.430

Cancer vaccine studies based on the usage of neoanti-
gens as a source of immunization also showed both the 
expansion of pre-existing T cell responses and the induc-
tion of new T cells reactive against this type of antigen in 
patients with objective clinical responses.

The ex vivo assessment of antigen-specific reac-
tivity, including neoantigens, could also be successfully 
performed for TILs, and represented the rationale for 
ACT protocols for patients with solid tumors (eg, mela-
noma, CRC, and breast cancer). The efficient recogni-
tion by TILs of mutated antigens expressed by autologous 
tumor cells has been associated with tumor regressions 
following ACT.

►► Somatically mutated tumor antigens in the quest for a 
more efficacious patient-oriented immunotherapy of 
cancer.431

►► Exploiting the curative potential of adoptive T-cell 
therapy for cancer.432

►► Tumor exome analysis reveals neoantigen-specific 
T-cell reactivity in an ipilimumab-responsive 
melanoma.120
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Conclusions
Ex vivo TAA-specific T cells can be detected in patients with 
cancer, either as naturally occurring immune responses 
or as a result of therapeutic interventions through cancer 
vaccines or immune checkpoint blockade. In some cases, 
the detection of antigen-specific T cells in the circulation 
or at the tumor site could be associated with patients’ 
clinical outcome, and might represent a biomarker for 
clinical responses to immunotherapy. However, this meth-
odology requires the knowledge of a patient’s HLA type, 
the availability of sufficient TAA-specific TILs at the tumor 
site, and the identification and immunogenic validation 
of HLA-restricted TAA-derived epitopes, and cannot be 
performed in a high-throughput manner. Development 
of methods that allow large-scale investigations and stan-
dardization is warranted for high-throughput ex vivo 
assessment of antigen-specific T cell responses.

Immune contexture biomarker discovery
Multiplex immunofluorescent staining
Tissue IHC, a century-old technology, has undergone a 
major technological revolution in recent years. With the 
advancement of three major components, (1) biomarker 
staining methods, (2) whole slide imaging (WSI) tech-
niques, and (3) image analysis software, multiplexing 
technologies are slowly replacing conventional single-
plex IHC assays. Tissue multiplexing technologies play a 
vital role in understanding the complex TME in cancer 
immunotherapy. Staining multiple protein biomarkers 
on a single tissue section facilitates an understanding 
of complex cell–cell interactions, cell migration and 
infiltration of immune cells, and cellular distance and 
density.

Staining methods
Three different staining methods are gaining popularity: 
(1) chromogenic multiplexing, (2) fluorescent multi-
plexing, and (3) mass spectrometry.

Chromogenic multiplexing
Duplex IHC assay: The clinical significance of locating 
two immune populations (CD3+ and CD8+) in and 
around a tumor initiated the concept of Immunoscore, 
the first validated immune-based assay from FFPE tissue 
for cancer classification. This standardized assay from 
HalioDx stains two sequential sections with CD3+ and 
CD8+, respectively, scans the slides, and digitally coregis-
ters the markers.

►► Biomarkers immune monitoring technology primer: 
Immunoscore Colon.21

The Halioseek assay from HalioDx identifies PD-L1 
expression and CD8+ populations in the TME from a 
single slide to help define treatment options for patients 
with NSCLC. Halioseek is currently a CE-IVD assay (in 
vitro diagnostic assay certified in the European Economic 
Area).

In a research setting, a chromogenic multiplex method 
evaluating 12 biomarkers simultaneously on single FFPE 

sections of 38 SCCHN cases was used for comprehensive 
immune phenotyping:

►► Quantitative multiplex immunohistochemistry reveals 
myeloid inflamed tumor-immune complexity associ-
ated with poor prognosis.433

The availability of new chromogenic dyes of vivid colors 
is opening up new possibilities for the chromogenic 
multiplexing field. New series of chromogenic detection 
kits from Roche (DISCOVERY Teal, DISCOVERY Purple, 
DISCOVERY Yellow) and Biocare Medical (Viva Green, 
Bajoran Purple, Ferangi Blue) are entering multiplexing 
research.

►► Covalently deposited dyes: a new chromogen para-
digm that facilitates analysis of multiple biomarkers 
in situ.434

►► Chromogenic multiplex immunohistochemistry 
reveals modulation of the immune microenviron-
ment associated with survival in elderly patients with 
lung adenocarcinoma.435

Conclusions
Duplex chromogenic assays involving a simple workflow 
are rapidly entering the clinic to support cancer immu-
notherapy. However, to develop higher order chromo-
genic multiplexing assays with a panel of coexpressing 
biomarkers, advancements in chromogenic dye chem-
istry, automated stainers, whole slide scanners, and 
sophisticated image analysis software are necessary and 
are currently being developed.

Fluorescent multiplexing
Multiplex immunofluorescent staining technology allows 
multiple biomarkers tagged with distinct fluorescent dyes 
to be interrogated separately or in combination, and has 
exhibited exponential growth in recent years. Although 
fluorescent multiplex assays are predominantly research 
use only or lab-derived test, future clinical adoption is 
anticipated. The technology requires investment in fluo-
rescent microscopes and scanners, and relies heavily on 
image analysis software for downstream analysis and effec-
tive outcomes.

This section highlights three different fluorescent 
staining methodologies:

Simultaneous multiplexing
The simultaneous multiplexing staining method involves 
the application of a cocktail of primary and secondary 
antibodies to the tissue, thereby simplifying the staining 
process and saving time.

The UltraPlex staining technology from Cell IDx can 
detect four to six biomarkers in a single tissue section 
using a simultaneous multiplexing method. The staining 
assay uses the standard two-step staining process where 
cocktails of primary and secondary antibodies are used. 
Each primary antibody is conjugated to a unique modi-
fied hapten and each hapten-specific secondary antibody 
is labeled with a distinct fluorescent dye.
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►► Hapten-anti-hapten technique for two-color IHC 
detection of phosphorylated EGFR and H2AX 
using primary antibodies raised in the same host 
species.436

The InSituPlex staining technology from Ultivue 
involves the repeated application of antibody cocktails 
(up to four antibodies per round of staining) labeled 
with unique DNA barcodes to a tissue section, which, 
following an amplification step, are detected by hybrid-
ization with complementary DNA barcodes tagged with 
distinct fluorophores.

►► DNA barcoded labeling probes for highly multiplex 
Exchange-PAINT imaging.437

The CODEX (CO-Detection by indEXing) staining 
technology from AKOYA Biotechnology enables higher 
orders of multiplexing (39-plex) on a single tissue section. 
Here, the primary antibodies are conjugated to propri-
etary barcodes, each with its unique oligonucleotide 
sequence. The dye-labeled reporter targets the barcode 
with high specificity. Although the primary antibody 
staining is a single step, signals are detected by sequential 
scanning and imaging of three fluorescent reporters in 
each round.

►► Deep profiling of mouse splenic architecture with 
CODEX multiplexed imaging.438

Morphology-driven higher order multiplexing of the 
tumor inflammation signature that simultaneously meas-
ures DNA, RNA, and protein using GeoMax DSP tech-
nology is available from NanoString.

►► New tools for pathology: a user’s review of a highly 
multiplexed method for in situ analysis of protein and 
RNA expression in tissue.439

Sequential multiplexing
The sequential multiplex-staining method involves 
multiple (5 to 8) biomarker detection on a single tissue 
section. The most commonly used method consists of 
staining with unmodified primary antibody and horse-
radish peroxidase-conjugated secondary antibody 
followed by enzyme-mediated deposition of tyramide-
fluorophores on the epitope of interest. A heat deac-
tivation step is applied between each staining round. 
Recent adoption of these staining protocols to automated 
staining platforms (DISCOVERY ULTRA from Roche, 
BOND RX from Leica Biosystems) has reduced the 
staining time significantly. Two commonly used sequen-
tial multiplexing staining methods are described here:

►► Fully automated 5-plex fluorescent immunohisto-
chemistry with tyramide signal amplification and 
same species antibodies.440

►► An automated staining protocol for seven-color 
immunofluorescence of human tissue sections for 
diagnostic and prognostic use.441

Cyclic multiplexing technology
The cyclic multiplexing technology MultiOmyx from 
NeoGenomics (originally developed by GE Global 
Research) is capable of higher order multiplexing of 

up to 60 biomarkers on a single tissue section. Each 
staining/detection round involves tissue incubation 
with a cocktail of two to four primary antibodies directly 
conjugated to unique fluorescent dyes, followed by tissue 
imaging, chemical deactivation of the fluorescent dyes, 
and rescanning to capture the background image. This 
technology requires dedicated scanners and image anal-
ysis platforms.

►► Highly multiplexed single-cell analysis of formalin-
fixed, paraffin-embedded cancer tissue.442

Mass spectrometry for tissue multiplexing
Mass spectrometry is used for identifying multiple 
biomarkers from a single tissue section. Typically, the 
tissue section is incubated with a cocktail of antibodies 
tagged with unique metal tags, each targeting a different 
protein of interest. Such methodologies are supported by 
dedicated imaging systems and image analysis software. 
Two technologies available in the market are highlighted 
here.

Imaging mass cytometry (IMC)
Fluidigm has combined mass cytometry or CyTOF with 
the Hyperion Imaging System to perform multiplexing 
on tissue sections. IMC on the Hyperion Imaging System 
enables simultaneous analysis of 4–37 protein markers 
from a single tissue scan. The process, however, leads 
to vaporization of the biological material during the 
scan.

►► histoCAT: analysis of cell phenotypes and interactions 
in multiplex image cytometry data.443

Multiplexed ion beam imaging (MIBI) technology
The MIBI technology from IONpath uses a cocktail of 
antibodies, each tagged to different lanthanides for tissue 
staining. The ion beam imaging scope (MIBIscope can 
identify up to 40+ markers simultaneously from the tissue. 
The sample undergoes raster scanning with an ion beam 
that allows multiple rescannings of the tissue at different 
resolutions.

►► Structured tumor-immune microenvironment in 
triple negative breast cancer revealed by multiplexed 
ion beam imaging.444

Conclusions
Multiple multiplexing methods are available to iden-
tify up to hundreds of biomarkers from a single tissue 
section. However, most of these technologies are 
extensively used in biomarker exploratory studies for 
cancer immunotherapy. Over time, the immunotherapy 
community may adopt a few key technologies for clinical 
practice.

Whole slide imaging and image analysis
Whole slide scanners
Although various multiplexing staining techniques are 
currently available, the staining outcome is heavily depen-
dent on scanning platforms and downstream analysis 
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software. In the field of immunotherapy, the general 
consensus is leaning toward WSI, as it is more informa-
tive than a selected number of regions of interest (ROIs) 
from a stained tissue section. However, WSI is limited by 
throughput and remains one of the key bottlenecks in the 
turnaround time of the workflow.

Some tissue multiplexing technologies provide comple-
mentary scanners along with an image analysis platform 
such as CODEX from AKOYA Biosciences, MultiOmyx 
from NeoGenomics, and mass spectrometry multiplexing 
from Fluidigm and IONpath.

Multi-filter-based fluorescent whole slide scanners 
currently available in the market include the Zeiss Axio 
Scan Z1, NanoZoomer series from Hamamatsu, Aperio 
VERSA from Leica Biosystems, Olympus V120, and so 
on. The Vectra and Polaris scanner series from Phenop-
tics (AKOYA Biosciences) have additional multispectral 
imaging capabilities. These research instruments are 
capable of performing both bright field and fluorescent 
WSI scans.

Philips IntelliSite Pathology Solution is the first WSI 
system approved (in 2017) by the FDA for primary diag-
nosis in surgical pathology. Some of the key players in 
the space are Roche, Leica Biosystems, 3DHistech, and 
Hamamatsu. Clinical implications and the future of WSI 
are discussed in the following paper.

►► US Food and Drug administrative approval of whole 
slide scan for primary diagnosis: a key milestone is 
reached or new questions are raised.445

Image analysis platforms
Various image analysis software systems are tailored for 
analyzing multiplex slides. Indica Lab’s HALO contains 
a multiplex IHC module for chromogenic multiplex 
and a Highplex FL module for fluorescent multiplex 
image analysis. Visiopharm offers the Phenomap multi-
plexing image analysis software, while Phenoptics’ 
inForm image analysis software is another commonly 
used tool. Some additional analysis platforms are AQUA-
nalysis from HistoRx, MultiOmyx from NeoGenomics, 
HistoQuant from 3DHistech, and Tissue Studio from 
Definiens.

With the advent of artificial intelligence (AI) in the 
digital pathology space, rapid developments are antici-
pated. The challenges and opportunities of the field have 
been described in the following review articles.

►► Artificial intelligence and digital pathology: Chal-
lenges and opportunities.446

►► Artificial intelligence in digital pathology—new tools 
for diagnosis and precision oncology.447

Conclusions
The availability of new tools and technologies is opening 
up new options for WSI and image analysis. However, 
major improvements are required in workflow scalability, 
high-throughput scanners, ease of use protocols, scan 
turnaround time, high-quality image capture, and rapid 
image analysis algorithms. Computer vision and AI may 

transform the digital pathology landscape in the next few 
years.

Application of tissue multiplexing technology
Different groups have successfully applied the complex 
multiplexing workflow to answer key questions in the 
field of cancer immunotherapy. The following are some 
of the recent publications.

►► Systems pathology by multiplexed immunohistochem-
istry and whole-slide digital image analysis.448

►► Validation of multiplex immunofluorescence panels 
using multispectral microscopy for immune-profiling 
of formalin-fixed and paraffin-embedded human 
tumor tissues.449

►► Multispectral fluorescence imaging allows for 
distinctive topographic assessment and subclassifica-
tion of tumor-infiltrating and surrounding immune 
cells.450

►► Multiplex immunohistochemistry for molecular and 
immune profiling in lung cancer-just about ready for 
prime time?451

A comprehensive review of complex tissue multiplexing 
technology is provided here.

►► State-of-the-art of profiling immune contexture in 
the era of multiplexed staining and digital analysis to 
study paraffin tumor tissues.452

Conclusions
Tissue multiplexing technology holds promise for clin-
ical adoption. Chromogenic duplex assays, a whole slide 
scanner, and digital pathology algorithms have obtained 
clinical approval in recent years. Maturation of this field 
will provide enormous benefits for the field of cancer 
immunotherapy.

Software and tools for data analysis
Gene expression analysis tools
Data analyses of gene expression profiling can be cate-
gorized depending on the study objectives, that is, class 
discovery, class comparison, class prediction, and survival 
analysis.

►► Design and analysis of DNA microarray 
investigations.453

Class discovery is an unsupervised method with the goal 
of discovering clusters among specimens or among genes. 
Hierarchical clustering algorithms, principal component 
analysis, a self-organizing map, and non-negative matrix 
factorization are popular methods to find clusters of 
samples or genes.

►► Cluster analysis and display of genome-wide expres-
sion patterns.454

►► Principal components analysis to summarize 
microarray experiments: application to sporulation 
time series.455

►► Analysis of gene expression data using self-organizing 
maps.456

►► Knowledge-based gene expression classification via 
matrix factorization.457
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Class comparison aims to identify genes differentially 
expressed between two or more different tissue types or 
experimental conditions. For microarray gene expres-
sion data, a Student’s t-test is generally used to iden-
tify significantly differentially expressed genes between 
two phenotype classes, assuming the log-transformed 
ratio or intensity data are approximately normally 
distributed. A multiple testing problem occurs during 
class comparison due to the simultaneous testing of all 
genes. The false discovery rate method is commonly 
used to control for false discoveries in a set of identi-
fied genes.

►► Microarrays, empirical Bayes methods, and false 
discovery rates.458

►► Significance analysis of microarrays applied to tran-
scriptional responses to ionizing radiation.459

►► Controlling the false discovery rate: a practical and 
powerful approach to multiple testing.460

Class prediction is used to predict the phenotype 
of new samples from their gene expression. Popular 
prediction methods include diagonal linear discri-
minant analysis, K-nearest neighbors, support vector 
machine, and random forest. Lasso and least angle 
regression (LARS) can be used to build prediction 
models with continuous outcomes. Cross validation 
needs to be properly performed to avoid overfitting, 
and the final model always needs to be evaluated on 
independent data sets.

►► Regularized linear discriminant analysis and its appli-
cation in microarrays.461

►► Diagnosis of multiple cancer types by shrunken 
centroids of gene expression.462

►► Gene selection for sample classification based on 
gene expression data: study of sensitivity to choice of 
parameters of the GA/KNN method.463

►► Knowledge-based analysis of microarray gene expres-
sion data by using support vector machines.464

►► Gene selection and classification of microarray data 
using random forest.465

►► The elements of statistical learning: data mining, 
inference, and prediction (Springer Series in 
Statistics).466

►► The lasso method for variable selection in the Cox 
model.467

►► A paradigm for class prediction using gene expression 
profiles.468

Gene expression-based survival analyses address two 
major areas: (1) identifying signatures that are associ-
ated with survival, and (2) building a prognostic and/
or predictive model based on survival data. One method 
uses a Cox proportional hazards model to relate survival 
time to k ‘supergene’ expression groups. The ‘supergene’ 
expression levels are the first k principal component, that 
is, linear combinations of expression levels of the subset 
of genes that are univariately correlated with survival. 
Another method uses a penalized Cox regression model 
to find genes related to survival, which can be done using 
the R package glmnet.

►► Diagnostic and prognostic prediction using gene 
expression profiles in high-dimensional microarray 
data.469

►► ‘Gene shaving’ as a method for identifying distinct 
sets of genes with similar expression patterns.470

►► Regularization paths for Cox’s proportional hazards 
model via coordinate descent.471

The R statistical programming language together 
with the Bioconductor repository provides over 1000 
packages for the analysis of high-throughput genomic 
data including gene expression. For users with limited 
or no programming skills, a more suitable choice may 
be GEO2R, which can provide simple data analysis on 
a curated National Center for Biotechnology Informa-
tion (NCBI) GEO data set. Such users can also use a 
general-purpose software that can handle more sophis-
ticated data analyses. For example, BRB-ArrayTools is 
a Windows desktop application with a graphical inter-
face designed for use by researchers who want to use 
state-of-the-art statistical methods for gene expression 
analysis.

►► Bioinformatics and computational biology solutions 
using R and Bioconductor.472

►► GEOquery: a bridge between the Gene Expression 
Omnibus (GEO) and BioConductor.473

►► Analysis of gene expression data using 
BRB-ArrayTools.474

WES and RNA-seq data analysis tools
The first step in the workflow of WES/RNA-seq data 
is mapping. Raw sequence data are commonly saved 
in the FASTQ format, which needs to be mapped to a 
reference genome by using an alignment algorithm. 
Popular mapping/alignment tools include Burrows-
Wheeler Aligner (BWA)-Maximal Exact Match (MEM) 
and Subread for DNA-seq data, and TopHat2 and spliced 
transcripts alignment to a reference (STAR) for RNA-seq 
data.

►► TopHat2: accurate alignment of transcriptomes 
in the presence of insertions, deletions and gene 
fusions.475

►► STAR: ultrafast universal RNA-seq aligner.476

►► The Subread aligner: fast, accurate and scalable read 
mapping by seed-and-vote.477

►► Aligning sequence reads, clone sequences and 
assembly contigs with BWA-MEM.478

Next, variant calling can be conducted on both aligned 
RNA-seq and DNA-seq data using Samtools or Genome 
Analysis Toolkit best practices pipeline tools. For WES 
data with tumor/normal pairs, somatic mutations are 
called using tools such as MuTect (for SNPs) and Mutect2 
(for indels). The variant call format files containing 
variant information are finally annotated using tools such 
as ANNOVAR, SnpEff, and variant effect predictor (VEP).

►► From FastQ data to high confidence variant calls: the 
Genome Analysis Toolkit best practices pipeline.479

►► The sequence alignment/map format and 
SAMtools.480
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►► Sensitive detection of somatic point mutations in 
impure and heterogeneous cancer samples.481

►► ANNOVAR: functional annotation of genetic variants 
from high-throughput sequencing data.482

►► A program for annotating and predicting the effects 
of single nucleotide polymorphisms, SnpEff: SNPs in 
the genome of Drosophila melanogaster strain w1118; 
iso-2; iso-3.483

►► The Ensembl variant effect predictor.484

Further levels of analyses based on WES data include 
using tools such as Sequenza to generate allele-specific 
copy numbers from the mapped reads and PyClone to 
generate the tumor clonal distribution. To get an esti-
mate of tumor purity and ploidy, fraction and allele-
specific copy number estimates from tumor sequencing 
(FACETS) can be applied on mapped reads. In addition, 
PolySolver can be used to predict patient HLA types, and 
the MSI status can be detected using a method called 
microsatellite instability by NGS (mSINGS). Finally, 
multiple pipelines have been developed to predict 
neoantigens based on annotated variants in the trans-
lated protein sequence.

►► Sequenza: allele-specific copy number and mutation 
profiles from tumor sequencing data.485

►► PyClone: statistical inference of clonal population 
structure in cancer.486

►► FACETS: allele-specific copy number and clonal 
heterogeneity analysis tool for high-throughput DNA 
sequencing.487

►► Comprehensive analysis of cancer-associated somatic 
mutations in class I HLA genes.488

►► Microsatellite instability detection by next generation 
sequencing.489

►► Applications of immunogenomics to cancer.490

To generate quantitative measurements from the 
aligned RNA-sequence data, the high-throughput 
sequencing (HTSeq) method and featureCounts soft-
ware can be applied to generate count data. Similar 
tools include RNA-seq by expectation maximization 
(RSEM) and Salmon. Due to the nature of RNA-seq data, 
differential expression analysis for sequence count data 
(DESeq), DESeq2, Cuffdiff, and EdgeR use a negative 
binomial distribution with generalized linear models 
to determine the significance of genes that are differ-
entially expressed between classes. The mapped reads 
from RNA-seq data can be further explored to study the 
immune repertoire of the TCR and B cell receptor using 
tools such as TCR repertoire utilities for solid tissue/
tumor (TRUST), and to analyze immune cell compo-
sition using tools such as cell type identification by 
estimating relative subsets of RNA transcripts (CIBER-
SORT) and the tumor immune estimation resource 
(TIMER).

►► HTSeq-a Python framework to work with high-
throughput sequencing data.491

►► featureCounts: an efficient general-purpose 
program for assigning sequence reads to genomic 
features.492

►► RSEM: accurate transcript quantification from RNA-
seq data with or without a reference genome.493

►► Salmon provides fast and bias-aware quantification of 
transcript expression.494

►► Differential expression analysis for sequence count 
data.495

►► Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2.496

►► edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. 
Bioinformatics.497

►► Differential gene and transcript expression analysis of 
RNA-seq experiments with TopHat and Cufflinks.498

►► Antigen receptor repertoire profiling from RNA-seq 
data.499

►► Profiling tumor infiltrating immune cells with 
CIBERSORT.500

►► Comprehensive analyses of tumor immunity: implica-
tions for cancer immunotherapy.501

For scRNA-seq data, scalability and technical noise are 
two main bioinformatics challenges. Certain methods 
that were developed for bulk cell RNA-seq cannot 
be applied directly and require adaptation. Many 
methods and tools have been developed specifically for 
scRNA-seq data. For example, Scater, SCnorm, Seurat, 
and SCANPY are R or Python packages developed 
to facilitate rigorous preprocessing, quality control, 
normalization, and visualization of scRNA-seq data. 
Depending on the experimental design, protocol, and 
platform, SCONE uses a data-driven approach to allow 
the user to select an appropriate normalization strategy 
for scRNA-seq data. Falco is a cloud-based scRNA-seq 
processing framework which provides a scalable and 
efficient computational solution. For data visualization, 
many tools, such as t-distributed stochastic neighbor 
embedding (t-SNE), uniform manifold approximation 
and projection (UMAP), and single-cell interpretation 
via multi-kernel learning (SIMLR) can be used as a 
dimensionality reduction step for visualizing scRNA-seq 
data in two dimensions. A typical scRNA-seq analysis by 
Luecken and Theis502 serves as a strong example of best 
practices for this technique.

►► Computational and analytical challenges in single-cell 
transcriptomics.291

►► Scater: pre-processing, quality control, normalization 
and visualization of single-cell RNA-seq data in R.503

►► SCnorm: robust normalization of single-cell RNA-seq 
data.504

►► Integrating single-cell transcriptomic data across 
different conditions, technologies, and species.505

►► SCANPY: large-scale single-cell gene expression data 
analysis.506

►► Performance assessment and selection of normaliza-
tion procedures for single-cell RNA-seq.507

►► Falco: a quick and flexible single-cell RNA-seq 
processing framework on the cloud.508

►► Dimensionality reduction for visualizing single-cell 
data using UMAP.509
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►► Visualization and analysis of single-cell RNA-seq data 
by kernel-based similarity learning.510

►► Current best practices in single-cell RNA-seq analysis: 
a tutorial.502

Multiparameter cytometric data analysis
One of the main goals of multiparameter cytometry data 
analysis is to identify the proportion of immune cell subpop-
ulations (eg, memory CD8+ T cells, Th1 cells, and so on) 
and their properties (eg, expression of activation markers 
or cytokines, antigen-specificity of T cells, and so on).

Analysis of flow cytometry data starts from data prepro-
cessing (compensation, batch effect assessment and 
removal, curation of data sets, and exclusion of dead cells 
and doublets) followed by placing the ‘gates’ to identify 
cell subsets and obtain property information of those 
subsets. Postprocessing entails comparison of groups and 
aims to find significantly altered subpopulations of cells 
with appropriate statistical methods.

►► Guidelines for the use of flow cytometry and cell 
sorting in immunological studies.511

Traditionally, flow cytometric data are manually 
analyzed using a dedicated software with a graphical user 
interface, for example:

►► https://www.​flowjo.​com/512

►► https://www.​denovosoftware.​com/513

►► h t t p s : / / w w w . ​a c e a b i o . ​c o m / ​p r o d u c t s /​
novoexpress-​software/514

►► https://www.​vsh.​com/​products/​winlist/​index.​asp515

►► https://www.​miltenyibiotec.​com/​US-​en/​products/​
macs-​flow-​cytometry/​software/​flowlogic-​software.​
html516

►► https://www.​beckman.​com/​flow-​cytometry/​soft-
ware/​kaluza517

Similar to flow cytometry data analysis, mass cytometry 
data also require preprocessing (eg, transformation of ion 
counts, normalization and batch correction, and so on).

►► The anatomy of single cell mass cytometry data.365

Recent developments in both multiparameter flow 
and mass cytometry enable the interrogation of up to 40 
parameters at the single cell level. This high dimension-
ality requires sophisticated computational approaches 
when analyzing data to gain worthwhile insights from 
information-rich data sets. As the list of available analysis 
tools continues to grow, it is worthwhile to start from a 
high-level overview. There are supervised and unsuper-
vised approaches. We will cover unsupervised approaches 
first, followed by supervised approaches.

The most commonly used unsupervised analyses are 
nicely summarized here.

►► Algorithmic tools for mining high-dimensional cytom-
etry data.518

►► Computational flow cytometry: helping to make sense 
of high-dimensional immunology data.519

►► The end of gating? An introduction to automated 
analysis of high dimensional cytometry data.520

Unsupervised approaches for multiparametric flow or 
mass cytometry have a significant overlap with those for 

single-cell NGS data sets. In general, these can be classi-
fied as (1) data visualization, (2) cell type identification, 
(3) differential analysis, and (4) network and multiomics 
data integration.

►► A beginner’s guide to analyzing and visualizing mass 
cytometry data.521

►► Computational approaches for high-throughput 
single-cell data analysis.522

►► Advancing systems immunology through data-driven 
statistical analysis.523

►► Mass cytometry: a powerful tool for dissecting the 
immune landscape.524

While most analysis tools are written in open source 
programing languages such as R, Python, or others, fee-
based platform services are available for multiparametric 
cytometry data.

►► https://www.​cytobank.​org/525

►► https://www.​astrolabediagnostics.​com/526

Benchmark assessment of algorithms is a helpful 
resource when deciding what algorithms to use, although 
it is recommended to use multiple algorithms to ensure 
the validity of analysis results.

►► Critical assessment of automated flow cytometry data 
analysis techniques.527

►► Comparison of clustering methods for high-
dimensional single-cell flow and mass cytometry 
data.528

A supervised approach is also useful if population and 
biomarker candidates are well defined with the tradi-
tional cascaded gating strategy. In this case, automated 
gating reduces both interanalysts’ variabilities and time 
spent for manual gating.

►► Flow cytometry bioinformatics.529

►► Standardizing flow cytometry immunophenotyping 
analysis from the human immunophenotyping 
consortium.530

►► A standardized immune phenotyping and automated 
data analysis platform for multicenter biomarker 
studies.531

►► Implementation and validation of an automated 
flow cytometry analysis pipeline for human immune 
profiling.532

Software and tools for function and pathway analysis
Functional enrichment and pathway analysis are essen-
tial tasks for the interpretation of gene lists derived 
from large-scale genetic, transcriptomic and proteomic 
studies. Two of the most popular resources for under-
standing high-level functions and utilities of the biolog-
ical system are the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and BioCarta. A comprehensive 
list of available tools is provided at the Gene Ontology 
website. ImmuneSigDB is a comprehensive compen-
dium of 5000 gene sets pertaining to immune biology, 
which may provide the systems immunologist with a 
useful resource for analysis of gene expression in the 
immune system.

https://www.flowjo.com/
https://www.denovosoftware.com/
https://www.aceabio.com/products/novoexpress-software/
https://www.aceabio.com/products/novoexpress-software/
https://www.vsh.com/products/winlist/index.asp
https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/software/flowlogic-software.html
https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/software/flowlogic-software.html
https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/software/flowlogic-software.html
https://www.beckman.com/flow-cytometry/software/kaluza
https://www.beckman.com/flow-cytometry/software/kaluza
https://www.cytobank.org/
https://www.astrolabediagnostics.com/
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►► http://www.​geneontology.​org533

►► KEGG: Kyoto Encyclopedia of Genes and Genomes.534

►► The Gene Ontology (GO) database and informatics 
resource.535

►► Compendium of immune signatures identifies 
conserved and species-specific biology in response to 
inflammation.536

Genomic, proteomic, and metabolomic data typically 
result in lists of interesting genes or proteins. Translating 
these gene sets into an understanding of the underlying 
biological mechanism is a fundamental need in biolog-
ical research. A popular resource that can help unravel 
the mechanism behind a specific set of mutations is the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID). Pathway Commons is another tool 
used by computational biologists to download custom 
subsets of pathway data for analysis, or to incorporate 
powerful biological pathway and network information 
retrieval and query functionality into websites and soft-
ware. One widely used commercial product is Ingenuity 
Pathway Analysis, which allows the user to access many 
different algorithms to identify the most significant path-
ways and discover potential novel regulatory networks 
and causal relationships associated with experimental 
data.

►► DAVID: https://​david.​ncifcrf.​gov537

►► Pathway Commons: http://www.​pathwaycommons.​
org/​pc2538

►► DAVID bioinformatics resources: expanded annota-
tion database and novel algorithms to better extract 
biology from large gene lists.539

►► Pathway Commons, a web resource for biological 
pathway data.540

►► Causal analysis approaches in Ingenuity Pathway 
Analysis.541

Gene set enrichment analysis (GSEA) is a computa-
tional method that determines whether a specific set of 
genes shows statistically significant, concordant differ-
ences between two biological states. The gene-level 
statistics for all genes in a pathway are aggregated into 
a single pathway-level statistic. Finally, statistically signif-
icant pathways can be identified. The tools for this kind 
of analysis are distributed as either stand-alone desktop 
applications or as packages for R (eg, R-GSEA). Gene 
set analysis (GSA) is an R function that differs from 
GSEA in its use of the ‘maxmean’ statistic, which is often 
more powerful than the modified Kolmogorov-Smirnov 
statistic used in GSEA. GSA can also handle more than 
two groups, such as multiple classes, survival times, and 
quantitative outcomes. Both GSEA and GSA approaches 
can help identify the most promising pathways or gene 
sets to be used as predictive or prognostic biomarkers in 
immunotherapy.

►► Ten years of pathway analysis: current approaches and 
outstanding challenges.542

►► Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression 
profiles.543

►► Exploring gene expression data with class scores.544

►► On testing the significance of sets of genes.545

Conclusions
The advancement of high-throughput technologies has 
provided an unprecedented opportunity to conduct 
comprehensive analyses of genes, transcripts, proteins, 
and other significant biological molecules for biomarker 
identification. However, it has also complicated the 
process of finding meaningful markers from these 
complex data sets. It is time-consuming and challenging 
to validate the accuracy of each step involved in the anal-
ysis workflow. In order to obtain reproducible results, 
it is imperative to harmonize not only sample prepara-
tion and assay execution protocols but also data analysis 
procedures.

Many software packages and pipelines have been 
developed that have allowed us to effectively process 
WES/RNA-seq data and multiparameter cytometry 
data, as well as to perform gene set/pathway analyses. 
However, depending on the methods used in each data 
processing and analysis step, substantially different 
results and conclusions may be developed from 
the same data set. These results should be assessed 
and validated carefully with different methods and 
experiments.

In vivo imaging (non-invasive and whole body)
Strict anatomical imaging criteria may be insufficient 
to cover the spectrum of response to immunotherapy. 
Updated immune-related response criteria are required 
that incorporate imaging patterns observed with 
immunotherapy.

►► Guidelines for the evaluation of immune therapy 
activity in solid tumors: immune-related response 
criteria.546

►► Personalized tumor response assessment in the era 
of molecular medicine: cancer-specific and therapy-
specific response criteria to complement pitfalls of 
RECIST.547

Tumor metabolic processes precede structural 
changes in anatomical imaging and as such may 
provide sensitive indicators of early response to 
therapy. It remains a challenge, however, to distin-
guish between neoplasms and infectious or inflamma-
tory processes. This is particularly problematic in the 
midst of irAEs.

►► Ipilimumab-induced immune-mediated adverse 
events: possible pitfalls in 18F-FDG-PET/CT 
interpretation.548

►► Bacillus Calmette-Guerin injections for melanoma 
immunotherapy: potential for a false-positive PET/
CT.549

There are relatively few clinical trials involving immu-
notherapy that include molecular imaging, but those that 
do target immune cells or functional markers.

http://www.geneontology.org
https://david.ncifcrf.gov
http://www.pathwaycommons.org/pc2
http://www.pathwaycommons.org/pc2
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Imaging cytotoxic lymphocytes
►► Synthesis of 2’-deoxy-2’-[18F]fluor-9-beta-D-

arabinofuranosylguanine: a novel agent for imaging 
T cell activation with PET.550

►► Molecular imaging of lymphoid organs and immune 
activation by positron emission tomography with a 
new 18F-labeled 2’-deoxycytidine analog.551

►► Noninvasive detection of therapeutic cytolytic T cells 
with 18F-FHBG PET in a patient with glioma.552

Imaging immunosuppressive factors and cells
►► TGF-β antibody uptake in recurrent high-grade 

glioma imaged with 89Zr-fresolimumab PET.553

►► Clinical applications of iron oxide nanoparticles for 
magnetic resonance imaging of brain tumors.554

►► Antibody positron emission tomography imaging in 
anticancer drug development.555

Preclinical studies continue to explore molecular 
imaging probes that enable visualization of immune 
responses within tumors. Immuno-PET, the use of anti-
bodies or antibody fragments to target PET radionu-
clides, introduces increased specificity to imaging, with 
new probes appearing with increasing frequency.

►► An effective immuno-PET imaging method to monitor 
CD8-dependent responses to immunotherapy.556

Antibody engineering optimizes in vivo pharmacoki-
netics and provides improved blood clearance for imaging 
at early timepoints with high tissue specificity.

►► Engineered antibody fragments for immuno-PET 
imaging of endogenous CD8+ T cells in vivo.557

►► Targeting T and B lymphocyte with radiola-
beled antibodies for diagnostic and therapeutic 
applications.558

►► Noninvasive imaging of immune responses.559

Immuno-PET probes targeted to cytokines (eg, IL-1β 
and IFN-γ) show increased tissue specificity over probes 
targeted at immune cell types that show significant uptake 
in secondary lymphoid tissues.

►► Immuno-PET of innate immune markers CD11b and 
IL-1β detect inflammation in murine colitis.560

►► IFN-γ PET Imaging as a predictive tool for monitoring 
response to tumor immunotherapy.561

Radiolabeling of anti-PD-L1 antibodies and small non-
antibody therapeutics allows for the in vivo distinction of 
PD-L1 positive and negative tumors.

►► Noninvasive imaging of tumor PD-L1 expression 
using radiolabeled anti-PD-L1 antibodies.562

►► Engineering high affinity PD-1 variants for optimized 
immunotherapy and immuno-PET imaging.563

Given the intensity of work on CAR T cell therapy, 
significant efforts are underway to generate reporter 
systems to track the distribution, persistence, and in situ 
function of transferred T cells.

►► [18F]FHGB PET/CT imaging of CD34-TK75 trans-
duced donor T cells in relapsed allogeneic stem cell 
transplant patients: safety and feasibility.564

►► Quantitative imaging of the T cell antitumor response 
by positron-emission tomography.565

►► Imaging TCR-dependent NFAT-mediated T-cell acti-
vation with positron emission tomography in vivo.566

Finally, a growing mechanistic understanding of T cell 
metabolism in TME enables in vivo quantification of 
effector T cell accumulation pretherapy and post-therapy 
through metabolite detection.

►► Lactate chemical exchange saturation transfer 
(LATEST) imaging in vivo a biomarker for LDH 
activity.567

►► Molecular imaging biomarkers for cell-based 
immunotherapies.568

Conclusions
Molecular imaging allows non-invasive profiling of whole 
primary tumors, distal metastases, and involved lymph 
nodes, potentially aiding patient selection for given ther-
apies and evaluation of response. Molecular imaging is 
just starting to be used to monitor therapy in immuno-
oncology, and preclinical models indicate the potential 
to monitor specific cellular processes in a longitudinal 
manner independent of biopsy bias.

Predictive metabolic biomarkers in tumor immunotherapy
While select metabolic enzymes and their byproducts have 
been investigated as prognostic biomarkers in various 
cancers, the use of metabolic biomarkers as predic-
tive guides for cancer immunotherapy is an emerging 
concept that is currently in its infancy. There is a signifi-
cant amount of evidence supporting the role of the meta-
bolic enzyme, indoleamine 2,3-dioxygenase (IDO-1), in 
immune tolerance. However, the ECHO-301/KEYNOTE-
252 study recently showed no significant improvement in 
the clinical outcome of patients with stage IV melanoma 
with the addition of the IDO-1-selective inhibitor, epaca-
dostat, to pembrolizumab (anti-PD-1 antibody) compared 
with pembrolizumab alone. In addition to the emerging 
field of immunometabolism and the realization that meta-
bolic pathways play critical roles in directing immune 
cell function, the results of this clinical trial support the 
need for additional studies designed to identify metabolic 
biomarkers capable of predicting responses to immuno-
therapeutic combination regimens.

Tryptophan-degrading enzymes
The metabolic by-products of tryptophan (Trp) degra-
dation including kynurenine (kyn) have been impli-
cated as playing an important role in the generation of 
immune tolerance. Given that IDO-1 is upregulated in 
more inflamed environments due to its regulation by IFN 
signaling, expression levels often correlate with PD-L1 
expression and numbers of infiltrating CD8+ T cells. As 
a result, several studies have found positive associations 
between IDO-1 expression and response to checkpoint 
blockade.

►► A prospective phase II trial exploring the associa-
tion between tumor microenvironment biomarkers 
and clinical activity of ipilimumab in advanced 
melanoma.141
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►► An immune-active tumor microenvironment favors 
clinical response to ipilimumab.569

►► High IDO-1 expression in tumor endothelial cells is 
associated with response to immunotherapy in meta-
static renal cell carcinoma.570

These data seemingly contradict additional studies 
that have also linked IDO-1 expression by certain tumor 
models with resistance to anti-CTLA-4 antibody immu-
notherapy. Consistent with this finding, IDO-1 can 
promote the recruitment of myeloid-derived suppressor 
cells (MDSCs), making these tumors more susceptible to 
agents blocking MDSC recruitment.

►► Indoleamine 2, 3-dioxygenase is a critical resistance 
mechanism in antitumor T cell immunotherapy 
targeting CTLA-4.571

►► Targeting myeloid-derived suppressor cells with 
colony stimulating factor-1 receptor blockade can 
reverse immune resistance to immunotherapy in 
indoleamine 2,3-dioxgenase-expressing tumors.572

The IDO-1 enzyme converts Trp to a series of meta-
bolic by-products including kyn. While this process 
starves effector T cells of the essential amino acid Trp 
and suppresses their proliferation, kyn drives regulatory 
T cell differentiation and promotes immune tolerance. 
Indeed, the following reference describes serum kyn/
Trp ratios and quinolinic acid concentrations based on 
high-performance liquid chromatography-mass spec-
trometry (HPLC-MS) and MS analyses as being associated 
with diminished PFS in patients with NSCLC undergoing 
nivolumab (anti-PD-1 antibody) immunotherapy.

►► Can IDO activity predict primary resistance to anti-
PD-1 treatment in NSCLC?.573

Notably, these data are also consistent with a recent 
study demonstrating that adaptive increases in serum kyn/
Trp ratio are associated with inferior OS in patients with 
advanced melanoma and RCC undergoing nivolumab 
immunotherapy.

►► Metabolomic adaptations and correlates of survival to 
immune checkpoint blockade.574

Adenosine
Adenosine is an immunosuppressive nucleoside that 
has been demonstrated to negatively regulate antitumor 
immunity by directly suppressing effector T cell and 
NK cell functions. CD73 is an ecto-5’-nucleotidase that 
controls levels of adenosine in the TME by catalyzing 
the breakdown of adenosine monophosphate (AMP). 
Preclinical studies indicate that tumor expression of 
CD73 is associated with inferior responses to check-
point inhibitor immunotherapy and increased respon-
siveness to the inhibition of adenosine signaling. CD73 
can also be cleaved from the cell surface and found 
in the serum. Recent work has shown that the enzy-
matic activity of soluble CD73 in the serum correlates 
with response to nivolumab in patients with metastatic 
melanoma.

►► Antimetastatic effects of blocking PD-1 and the aden-
osine A2A receptor.575

►► Adenosine receptor 2A blockade increases the effi-
cacy of anti-PD-1 through enhanced antitumor T cell 
responses.576

►► Soluble CD73 as biomarker in metastatic melanoma 
patients treated with nivolumab.577

Tumor glycolysis and oxidative phosphorylation
The metabolic landscape of the TME has been shown to 
contribute to immunotherapy resistance in a variety of 
contexts. The elevated glycolytic capacity of malignant 
tissues has been associated with T cell glucose starvation 
and diminished antitumor immune responses. Indeed, 
circulating levels of LDH, which may serve as a surrogate 
for glycolytic levels in the TME, also correlate with infe-
rior responses to checkpoint inhibitor therapy.

►► Increased tumor glycolysis characterizes immune 
resistance to adoptive T cell therapy.578

►► Targeting tumor-associated acidity in cancer 
immunotherapy.579

Other studies have indicated that the process of oxida-
tive phosphorylation can also be associated with resist-
ance to anti-PD-1 blockade in both melanoma cell lines 
and clinical melanoma specimens.

►► Tumor cell oxidative metabolism as a barrier to PD-1 
blockade immunotherapy in melanoma.580

Oxidative phosphorylation of tumors has been associ-
ated with the development of tumor hypoxia, a process 
that has also correlated with resistance to pembrolizumab 
immunotherapy in preclinical models and patients with 
advanced melanoma.

►► Genomic and transcriptomic features of response to 
anti-PD-1 therapy in metastatic melanoma.166

►► Efficacy of PD-1 blockade is potentiated by metformin-
induced reduction of tumor hypoxia.581

Fatty acid oxidation (FAO) drives oxidative phospho-
rylation and in local myeloid cells within the TME this 
process may contribute to tumor-mediated immune 
evasion. Consistent with an important role for FAO 
in the regulation of tumor immunity, the genetic 
silencing and systemic pharmacological inhibition of this 
pathway in preclinical models enhance the efficacy of 
immunotherapy.

►► Inhibition of fatty acid oxidation modulates immuno-
suppressive functions of myeloid-derived suppressor 
cells and enhances cancer therapies.582

►► Paracrine Wnt5a-β-catenin signaling triggers 
a metabolic program that drives dendritic cell 
tolerization.583

Conclusions
In light of the emerging data highlighting the critical 
role of cellular metabolism in the regulation of anti-
tumor immunity, the role of metabolic biomarkers in the 
development of novel immunotherapy strategies is likely 
to expand. The development of methods to more readily 
study in situ metabolic biomarkers in a cell type-specific 
manner would greatly facilitate the use of metabolic 
biomarkers in clinical trial development.
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Table 2  Online resources: tools for the bench and other useful websites
Resource Description URL link

CIMAC/CIDC 
network

The Cancer Immune Monitoring and Analysis Centers (CIMAC) and the Cancer Immunologic Data Commons (CIDC) are NCI-
funded academic centers for advanced clinical trial immune monitoring.

https://cimac-network.org/

PACT The Partnership for Accelerating Cancer Therapies (PACT) is a public–private collaboration that extends the CIMAC/CIDC 
activities to include additional non-NCI clinical trials.

https://fnih.org/what-we-
do/programs/partnership-
for-accelerating-cancer-
therapies

Links to FDA 
biomarker 
approval

The FDA’s Center for Drug Evaluation and Research works with stakeholders to identify and develop new biomarkers, review 
biomarkers for use in regulatory decision-making, and qualify biomarkers for specific contexts of use.

https://www.fda.gov/
drugs/drug-development-
tool-qualification-
programs/cder-biomarker-
qualification-program

Public 
databases

ImmPort is a data repository and sharing tool built by NIAID for immunology-related assay data of various types. http://www.immport.org

The Cancer Genome Atlas is a database of sequences from over 20,000 cancer and matched normal tissues. https://portal.gdc.cancer.
gov

Transcription 
factors 
binding sites 
prediction 
software

Transcription factor (TF) binding site prediction is very important in deciphering gene regulation at a transcriptional level. TF 
binding sites are typically identified by either matching to a consensus sequence or using position-specific scoring matrices 
(PSSMs). PSSMs can be obtained from resources including the commercial transcription factor database (TRANSFAC) and the 
open access database JASPAR:

►► Computer methods to locate signals in nucleic acid sequences.584

►► TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.585

►► JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.586

In 2005, Tompa M et al587 evaluated 13 algorithms designed to identify cis-regulatory sites using TF binding sites from 
TRANSFAC. Their results revealed that the Weeder algorithm performed best:

►► Assessing computational tools for the discovery of transcription factor binding sites.587

A set of de novo motif discovery tools, namely rGADEM (R-based genetic algorithm-guided formation of spaced dyads coupled 
with an expectation-maximization (EM) algorithm for motif discovery), HOMER (hypergeometric optimization of motif enrichment), 
MEME-ChIP (multiple EM for motif elicitation-chromatin immunoprecipitation), and ChIPMunk (a modification of the classical EM 
approach), were also evaluated using ChIP-seq data ENCODE. The study showed that rGADEM was the best-performing tool 
for creating PSSMs from high-throughput ChIP-seq data. FIMO (Find Individual Motif Occurrences) and MCAST (Motif Cluster 
Alignment and Search Tool) were the best-performing TF binding site prediction tools for scanning PSSMs against DNA:

►► Evaluating tools for transcription factor binding site prediction.588

Tools for 
neoantigen 
prediction

Neoantigens are small peptides derived from mutated proteins in cancer cells that can be recognized as foreign by immune cells 
and trigger an immune response. There are many challenges in computational methods/tools to identify neoantigens and to 
predict which may serve as optimal targets for the development of immunotherapy approaches:

►► Neoantigens in cancer immunotherapy589

►► Computational genomics tools for dissecting tumour-immune cell interactions.590

►► Applications of immunogenomics to cancer.490

MHC binding has been considered a necessary step for neoantigens to be recognized by T cell receptors. The MHC binding 
prediction methods can be categorized as binding motif-based, position-specific score-based or matrix-based, and machine 
learning-based, such as artificial neural networks (ANN) or support vector machines. Because of the polymorphic nature of MHC 
class II molecules and variations in accepted peptide length, the prediction results for MHC class II binding are less accurate than 
those for MHC class I. Many existing MHC binding peptide and T cell epitope databases could potentially serve as a training data 
pool to develop prediction models. A good example is the Immune Epitope Database (IEDB), which provides a comprehensive 
resource for experimental data on antibody and T cell epitopes studied in multiple diseases:

►► SYFPEITHI: database for MHC ligands and peptide motifs.591

►► Profile analysis: detection of distantly related proteins.592

►► Gapped sequence alignment using artificial neural networks: application to the MHC class I system.593

►► NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and 
peptide length datasets.594

►► NetMHCpan, a method for MHC class I binding prediction beyond humans.595

►► Application of support vector machines for T-cell epitopes prediction.596

►► SVMHC: a server for prediction of MHC-binding peptides.597

►► The immune epitope database and analysis resource: from vision to blueprint.598

►► The immune epitope database (IEDB) 3.0.599

►► IEDB: http://tools.iedb.org/main/datasets600

Not all MHC binding peptides are immunogenic. Combination approaches have been developed to use additional information 
(eg, proteasome cleavage) in order to reduce the false positive rate. Since the stability of the peptide–MHC interaction has 
experimentally been shown to be more strongly correlated to T cell immunogenicity, netMHCstabpan (pan-specific prediction 
of peptide–MHC class I complex stability) uses a neural network approach based on a data set of stability values calculated for 
different peptide–MHC class I complexes, rather than their binding affinity values:

►► Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity.601

Many pipelines have been developed for neoantigen prediction from WES sequencing data via integration of multiple methods. 
For example, MuPeXI (mutant peptide extractor and informer) is a program to identify tumor-specific peptides from sequencing 
data and assess their potential to be neoantigens. The peptides are sorted according to a priority score which is intended to 
roughly predict immunogenicity. A flexible, streamlined computational workflow for identification of personalized Variant Antigens 
by Cancer Sequencing (pVACSeq) integrates tumor mutation and expression data:

►► MuPeXI: prediction of neo-epitopes from tumor sequencing data.602

►► pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens.603

IEDB: http://tools.iedb.
org/main/datasets

CTRs ►► USA: https://www.clinicaltrials.gov
►► Europe: https://www.clinicaltrialsregister.eu/

ANN, artificial neural networks; CIDC, Cancer Immunologic Data Commons; CIMAC, Cancer Immune Monitoring and Analysis Centers; CTR, clinical trial registry; EM, expectation maximization; FDA, Food and Drug 
Administration; FIMO, Find Individual Motif Occurrences; HOMER, hypergeometric optimization of motif enrichment; IEDB, Immune Epitope Database; MCAST, Motif Cluster Alignment and Search Tool; MHC, major 
histocompatibility complex; MuPeXI, mutant peptide extractor and informer; NCI, National Cancer Institute; NIAID, National Institute of Allergy and Infectious Diseases; PACT, Partnership for Accelerating Cancer 
Therapies; PSSM, position-specific scoring matrix; pVACSeq, peronsalized Variant Antigens by Cancer Sequencing; rGADEM, R-based genetic algorithm-guided formation of spaced dyads coupled with an EM 
algorithm for motif discovery; TF, transcription factor; WES, whole exome sequencing.
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