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Layer‑wise relevance propagation 
of InteractionNet explains 
protein–ligand interactions 
at the atom level
Hyeoncheol Cho, Eok Kyun Lee* & Insung S. Choi*

Development of deep-learning models for intermolecular noncovalent (NC) interactions between 
proteins and ligands has great potential in the chemical and pharmaceutical tasks, including 
structure–activity relationship and drug design. It still remains an open question how to convert the 
three-dimensional, structural information of a protein–ligand complex into a graph representation in 
the graph neural networks (GNNs). It is also difficult to know whether a trained GNN model learns the 
NC interactions properly. Herein, we propose a GNN architecture that learns two distinct graphs—one 
for the intramolecular covalent bonds in a protein and a ligand, and the other for the intermolecular 
NC interactions between the protein and the ligand—separately by the corresponding covalent and 
NC convolutional layers. The graph separation has some advantages, such as independent evaluation 
on the contribution of each convolutional step to the prediction of dissociation constants, and facile 
analysis of graph-building strategies for the NC interactions. In addition to its prediction performance 
that is comparable to that of a state-of-the art model, the analysis with an explainability strategy 
of layer-wise relevance propagation shows that our model successfully predicts the important 
characteristics of the NC interactions, especially in the aspect of hydrogen bonding, in the chemical 
interpretation of protein–ligand binding.

The approach of deep learning has recently been adopted to the chemistry discipline for tackling diverse chemi-
cal tasks, such as prediction of physicochemical properties, protein–ligand interactions, and retrosynthetic 
analysis1–4,11–14. Human-curated heuristics and descriptors have been used for decades in cheminformatics includ-
ing early machine learning methods, and it is the representation learning of three-dimensional molecules that 
is one of the recent endeavors of deep-learning chemistry. The direct learning of molecular structures for the 
prediction of target properties, without prior assessment on the structures or quantum-chemical calculations, 
has been enabled by the remarkable discriminative ability of deep neural networks (DNNs)5,6. Compared with 
the physics-based computational methods for calculating molecular properties, the deep-learning approach 
offers a fast, but still powerful, option for estimating diverse characteristics of molecules through the data-driven 
discovery of molecular patterns7,8.

The recent rise of graph neural networks (GNNs) has upscaled deep-learning capability in chemistry with 
the easy handling of molecules as molecular graphs, which are defined by two sets of vertices and edges9,10. The 
molecular graphs contain the structural information on molecules in two-dimensional (2D) space, with atoms 
as vertices and bonds as edges in the graphs. In the GNN, the neurons in a layer are connected to their graph 
neighborhoods, and layer stacking generates broader local structures in molecules. Many GNN models have 
been developed for the prediction of molecular energies7,8, physical properties11,12, protein interactions13,14, and 
biochemical functions15,16. Since the pioneering report by Baskin et al.17 on the utilization of molecular graphs 
for the prediction of physicochemical properties of hydrocarbons and other molecules, Duvenaud et al.11 and 
Kearnes et al.15 have examined the GNN approaches on the prediction of molecular properties, and the GNN 
architecture has further been refined to message-passing neural networks (MPNNs) that outperform other 
machine-learning methods based on molecular fingerprints7. Moreover, the expansion of the GNN architecture 
into the 3D space for modeling the actual molecular structures has recently been explored, and the efficacy of 
the GNN approach on the problems requiring 3D molecular structures has been proven14,18.

One of the focused fields of deep learning in chemistry is the replacement of the scoring function on the struc-
ture-based drug design with data-driven DNN models13,14,19–23. The essence of DNN models for deep-learning 
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scoring compared to the force field energy functions and scoring functions is the appropriate database to learn 
molecular patterns and their relationship to binding affinity, and they are strongly linked to prediction perfor-
mance. The PDBbind database24,25 is the most widely used dataset, which is a curation of 3D protein–ligand 
structures obtained from X-ray crystallography and multidimensional NMR techniques with complementary 
binding affinities, for training DNN models on prediction of the binding constant from a complex structure. 
Many DNN models were developed based on the PDBbind database and can be classified into two categories: 
convolutional neural networks (CNNs) with voxelized images and GNNs working on graph representations of 
complexes.

Rapid development of high-performance and deeply-stacked CNN models in computer science has dra-
matically raised the prediction performance of binding constants through enhanced pattern recognition of the 
3D molecular images22,23,26,27. Protein–ligand complexes were transferred into the angstrom-level voxel grid 
and used for training the CNN models. Meanwhile, the GNN models13,14, which focused on the interpretation 
of molecular bonding (i.e., covalent bonds) as graph edges, was utilized after the success of CNN models by 
incorporating noncovalent (NC) interactions as graph edges in molecular graphs, which play significant roles in 
the programmed formation of 3D molecular structures of biomolecules (e.g., proteins, nucleic acids, and lipid 
bilayers) and polymers and their dynamics28–30. In the GNN models, NC connectivity was utilized in conjunction 
with covalent connectivity for post-refinement of atomic features after the convolution with covalent-bond con-
nectivity. Gaussian decay functions have been used to mimic decreased influences from distant atoms, or multiple 
kernels for distance bins have been adopted for simulating NC interactions8,13,31. These approaches enrich the 
graphic representation of molecules by adding topological information and acquiring the shape-awareness, which 
has only been feasible in the CNNs. In addition to the decay simulation, an approximation of the entire atomic 
contribution to a smaller subset was widely utilized14,20–22. Due to the extremely large number of atoms in the 
protein–ligand complex compared to other molecules in molecular property datasets, training the complex data 
is challenging for both CNN and GNN models. By limiting the protein atoms into a spatial neighborhood of 
the ligand molecule, the complex can be greatly reduced into smaller sizes and trained efficiently without losing 
important interactions. Owing to the aforementioned advanced approaches, the GNN models became a com-
petitive option for developing deep-learning scoring models with a direct interpretation of molecular structures.

In this paper, we propose a GNN architecture, denoted as InteractionNet, that directly learns molecular graphs 
without any physical parameters, wherein the NC interactions are encoded as graphs along with the bonded 
adjacency that models covalent interactions. We utilize the PDBbind dataset for evaluation of the concept and 
examine the model performance on predicting the binding constant from a complex structure. Specifically, we 
divide the convolutional layers in InteractionNet into two, the covalent and NC convolution layers (CV[C] and 
CV[NC] layers, respectively), and evaluate the significance of NC convolution. There have been reports on the 
incorporation of NC connectivity in GNN models, but in strict combination with covalent connectivity. Here, 
we apply the covalent and NC connectivity separately to investigate the importance of each convolution layer, 
which has not been explored. In extreme cases, only CV[NC] is used, without any CV[C] layers, and compared 
to other models. Moreover, we investigate the optimal cropping strategy for downsizing the protein–ligand 
structure and efficient training. Based on the findings, we further investigate the explanations for the predic-
tions of the trained model, i.e., how the trained model predicts for the first time from the given input data in the 
protein–ligand complexation problem. By performing decomposition-based, layer-wise relevance propagation 
(LRP)32,33 on behalf of explainable AI34–36 and visualizing the obtained atomic contribution for the prediction 
of the protein–ligand complex, we explore the relationship between machine-predicted NC interactions and 
knowledge-based NC interactions from the molecular structures.

Results and discussion
InteractionNet architecture.  For graphic representation of a protein–ligand complex, InteractionNet 
employs two adjacency matrices for the complex, denoted the covalent and NC adjacency matrices ( A[C] and A
[NC]), similar to the PotentialNet reported by Feinberg et al.13 A[C] and A[NC] are defined by the combination of 
molecular graphs for a protein and a ligand but with different connectivity strategies. The covalent adjacency 
matrix, A[C], consists of the bond connectivity in the protein and the ligand, and is constructed by a disjoint 
union of the protein and the ligand graphs, maintaining the bond connectivity only within each molecule. The 
NC adjacency matrix, A[NC], defined by a graph having full connectivity between the vertices of the protein and 
the ligand graphs, contains all the possible edges between the protein and the ligand but not within the same 
molecule (Fig. 1a). Based on the notation used by Feinberg et al.13, each adjacency matrix can be decomposed 
into four blocks, AL:L , AL:P , AP:L , and AP:P , that correspond to smaller adjacency matrices encoding the connec-
tivity between ligand–ligand, ligand–protein, protein–ligand, and protein–protein atoms, respectively (Eq. 1). 

where Aij is whether the node i and j are adjacent, and N is the number of atoms inside the complex. For A[C], only 
the AL:L and AP:P blocks are filled with the existence of a covalent bond between atoms, and the remaining AL:P 
and AP:L blocks are filled with 0. In the case of A[NC], AL:P and AP:L blocks are filled with 1, implying all possible 
NC interactions between atoms, and the rest are filled with 0. These adjacency strategies assume that there is no 
covalent bond between the protein and the ligand, and NC interactions within the same molecule are ignored. 
Obtained adjacency matrices are used as-is through the neural network without training the adjacency matrix 
itself or requiring modification during the propagation.
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InteractionNet is built to utilize the A[C] and A[NC], consecutively, for the end-to-end prediction of dissocia-
tion constants from the molecular structures (Fig. 1b). It consists of five functional layers: node-embedding 
layers, CV[C] layers, CV[NC] layers, a global pooling (GP) layer, and fully-connected (FC) layers. The node-
embedding layers update the atomic feature matrix X into XNE through fully-connected neural networks that 
mix the features assigned for each atom (Eq. 2). The CV[C] and CV[NC] layers receive the node-embedded XNE 
and combine the graph adjacency with node embedding for local aggregation of the information. Compared 
with the PotentialNet13, we separate the graph convolution layers utilizing the two adjacency matrices, A[C] 
and A[NC], one-by-one at each layer (Eqs. 3, 4), whereas they are combined and utilized in a single layer in the 
PotentialNet. By applying the two adjacency matrices for the graph convolution separately, we simulate the 
importance of each step on the prediction of the dissociation constant independently. For each convolution step, 
InteractionNet utilizes the corresponding adjacency matrix and updates the representation additively by residual 
connections26. After the convolution steps, the GP layer aggregates the atomic features distributed across the 
atoms in a permutation-invariant way and generates a molecular vector. Sum pooling was utilized for the GP 
mechanism to aggregate atomic feature matrix XNC obtained from the convolutions into molecular vector XGP 
(Eq. 5). With the obtained molecular vector XGP , the FC layers transform the representation into the dissociation 
constant of a protein–ligand complex (Eq. 6).

where W and b represent the trainable weight matrix and the bias in each linear combinations, respectively. ReLU 
is the rectified linear unit, and 1 denotes all-ones vector.

Model training.  We examined the efficacy of the CV[C] and CV[NC] layers by three variants of Interaction-
Net with different compositions of CV layers. Four other functional layers of InteractionNet were used with the 
same number of layers and composition across the variants. By incorporating only one type of the CV layers 
for InteractionNet, we built InteractionNet[C], utilizing only CV[C] layers, and InteractionNet[NC], utilizing only 
CV[NC] layers. The variant that incorporated both CV layers sequentially was coined as InteractionNet[C-NC]. In 
the chemists’ points of view, InteractionNet[C] focused on the covalent bonds within each ligand and protein 
molecule for prediction, InteractionNet[NC] did this on NC interactions between the ligand and the protein, and 
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Figure 1.   (a) Schematic illustrations for modeling NC interactions within a graphic representation, and (b) 
architecture of InteractionNet for predicting the dissociation constant from the covalent and NC graphs. (a) 
Structure of the protein–ligand complex converted into two graph representations, encoded by covalent ( A[C]) 
and NC adjacency matrices ( A[NC]), defined by covalent bond connectivity and all possible edges between the 
protein and the ligand, respectively. (b) InteractionNet learns the two aforementioned adjacency matrices, A[C] 
and A[NC], and predicts the dissociation constant of the complex through a graphic neural network consisting of 
five functional layers.
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InteractionNet[C-NC] observed covalent bonds first and then used the generated information for the secondary 
refinement through NC interactions. We chose the dissociation constant of the protein–ligand complex (Kd) 
as our prediction target because the protein–ligand binding is governed primarily by the NC interactions, not 
covalent bonds, which is important in investigating the efficacy of the proposed architecture. We conducted a 
20-fold-cross-validated experiment on the refined set of the PDBbind v2018 dataset24,25, consisting of 4186 com-
plexes and their experimental Kd values.

In the data preprocessing for model training, we cropped the protein structure for faster training and less 
memory consumption. The binding pockets of the proteins in the refined PDBbind set contained a maximum of 
418 atoms, which was almost 16 times larger than the ligands that had only 26 atoms at maximum. We thought 
that the interactions between a protein and a ligand could be simulated with a smaller subset of atoms in the pro-
tein because the number of atoms that participated in the protein–ligand binding is much less than the maximum 
value. The appropriate cropping strategy, without any loss in performance, is also highly important for efficient 
training, considering the exponential increase in the memory consumption of the training data. We utilized the 
spatial atom filtering for simplification of protein structures, which excluded the atoms of a protein distant from 
a ligand by the range cutoff. In detail, the shortest distance of a protein atom to the ligand atoms was measured, 
and the protein atom was excluded if the distance exceeded the predefined range cutoff. By spatial cropping with 
the range cutoff, we obtained a subset of the protein structures, similar to the shape of the van der Waals surface 
of the ligand but with a much larger radius, and used the subset for the generation of the molecular graphs.

For investigating the influence of the cutoff applied to crop the protein structure into the ligand neighbor-
hoods, we compared the averaged model performance and the training time using InteractionNet[C-NC] by chang-
ing the cutoff with 1-Å increment. The number of atoms included in the cropped complex increased linearly 
with respect to the cutoff, while the data size for the training dataset increased exponentially (Fig. 2a,b). The 
averaged performance was saturated from 4 Å, confirmed by the one-way analysis of variance (ANOVA) with 
the posthoc Tukey HSD test (Fig. 2c). The corresponding training time increased dramatically as the cutoff 
increased (Fig. 2d). Based on the observation, the 5-Å cutoff was considered the most appropriate for our system 
and used for further investigations.

Prediction of dissociation constants.  The root-mean-square error (RMSE) results from the cross-
validation experiments, based on the 5-Å filtering of protein structures, confirmed that the CV[NC] layers 
played a significant role in the Kd prediction from the molecular graphs (Table  1). InteractionNet[C-NC] and 
InteractionNet[NC] outperformed InteractionNet[C], regardless of the number of CV layers. For example, the 
RMSE values for InteractionNet[C-NC] and InteractionNet[C] were 1.321 and 1.379, respectively, showing a 4% 
improvement by incorporating CV[NC] layers (p < 0.005; one-way ANOVA with the posthoc Tukey HSD test). 
The performance of InteractionNet[C-NC] was measured to be slightly higher than InteractionNet[NC], but the dif-
ference was not significant in statistical analysis (p = 0.450). These results indicated that the interactions between 
a protein and a ligand could be simulated accurately, even with a single CV[NC] layer, without any help from 
previous covalent-refinement steps. We compared the performance of InteractionNet with that of PotentialNet, 
which was the state-of-the-art GNN model for prediction of protein–ligand affinity. For the comparison, we 
built an in-house PotentialNet model according to the original paper13. In detail, we replaced the CV[C] and 
CV[NC] layers of InteractionNet with the stages 1 and 2 of PotentialNet, respectively, and trained the in-house 

Figure 2.   Influence of the protein cutoff range from 3 to 6 Å on (a) the average number of atoms included 
in a complex, (b) the size of the training data, (c) the root-mean-squared-error for the predictions from the 
trained model, and (d) the average single-fold training time. Error bars indicate standard deviations for each 
measurement. **p < 0.005.
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PotentialNet model with the same dataset used in InteractionNet. The averaged RMSE value for the test set was 
measured to be 1.343 in the case of the PotentialNet, which was comparable to that of InteractionNet (statisti-
cally insignificant; one-way ANOVA with the posthoc Tukey HSD test).

For visualization of the prediction trends of the model, we selected the cross-validation trial, the measured 
RMSE value of which was most similar to the average of 20 repetitive trials, and used the test set in the selected 
trial as a representative set for obtaining a scatterplot and an error histogram. The scatterplot for the predicted 
Kd values revealed a high correlation with the experimental Kd in a linear relationship (Fig. 3a), and the error 
distribution showed a Gaussian-like, zero-centered shape (Fig. 3b). It is to be noted that 20 cross-validation trials 
showed similar trends in the scatterplot and the error histogram, but had small differences in pattern (Fig. S1).

Layer‑wise relevance propagation (LRP).  The explainability techniques interpret the trained model or 
their predictions into explanations in human terms, which can be assessed by knowledge-based analysis. By ana-
lyzing the system with explainability techniques, the models that fail to learn appropriate knowledge to perform 
predictions based on valid information and fall into the “Clever Hans” decision made by fragmentary knowledge 
could be identified35. To explore the explainability of the trained InteractionNet model on the Kd prediction, we 
conducted the post hoc explanation on individual predictions by the LRP32,33. The LRP calculates the relevance 

Table 1.   Twenty-fold cross-validation results for InteractionNet on the refined set of the PDBbind v2018. 
Root-mean-square-errors were measured for each trial and averaged (mean ± standard deviation). The best 
results were highlighted in boldface.

Model Train Validation Test

InteractionNet[C] 1.115 ± 0.085 1.355 ± 0.060 1.379 ± 0.057

InteractionNet[NC] 1.035 ± 0.077 1.328 ± 0.042 1.340 ± 0.044

InteractionNet[C-NC] 0.950 ± 0.032 1.313 ± 0.107 1.321 ± 0.045

PotentialNet 0.956 ± 0.105 1.307 ± 0.054 1.343 ± 0.037

Figure 3.   (a) Scatterplot and (b) error distribution of predicted and experimental Kd values for 419 complexes 
included in the test set. (a) The scatterplot for predicted versus experimental Kd is depicted with the trend line (a 
solid line). (b) The error histogram (orange) and distribution (black) for predictions from the test set. The most 
similar trial in performance to the average was selected for depicting the graphs in the cross-validation trials.
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for every neuron by reversely propagating, through the network, from the predicted output to the input level, 
and the relevance represents the quantitative contribution of a given neuron to the prediction. We used three 
LRP rules, LRP-0, LRP-ε, and LRP-γ, sequentially from the output layer to the input layer for production of the 
relevance for the neurons (Eqs. 7–9)

where j and k represent neurons at two consecutive layers, R is the relevance, a denotes lower layer activations, 
w+ is a positive weight, and ǫ and γ are the parameters used in each LRP rule. Once we obtained the relevance 
for the atomic features in the Kd prediction, it was converted to the atomic contributions by summation of rel-
evance for individual features of the same atom. Finally, we compared the relevance with the knowledge-based 
analysis data from the information on hydrogen bonds and hydrophobic contacts within the complex (Fig. 4, 
see “Methods” for detail). Three protein–ligand complexes from the test set, PDB codes 1KAV, 3F7H, and 4IVB, 
were sampled and analyzed (Figs. 5–7).

PDB 1KAV: human tyrosine phosphatase 1B and a phosphotyrosine‑mimetic inhibitor (ChEMBL1161222).  As 
seen in the 3D structure, half of the ligand is surrounded by the protein pocket with substantial hydrogen 
bonding on one of the phosphate groups. The half with the other phosphate is exposed freely to the exterior 
(Fig. 5a,b). On the knowledge-based protein–ligand interaction analysis, 6 hydrogen bonds were observed on 
the phosphate group from Ser216, Ile219, Gly220, and Arg221, and 5 hydrophobic contacts were expected on 
Tyr46, Phe182, and Ala217 with the aliphatic chain in the middle part of the ligand structure. ChEMBL1161222 
is structurally symmetric, and it is highly important to examine whether a model properly distinguishes the 
two phosphate groups present in different surroundings. The heat map for the obtained atomic contributions of 
ChEMBL1161222 from the trained InteractionNet, arguably, showed a high correlation between human under-
standing and the machine-provided explanation (Fig. 5d). Notably, InteractionNet focused on only one phos-
phate group, which resided inside the protein pocket, predicted its high contribution to the increase in binding 
affinity. In comparison, the heat map of PotentialNet (Fig. 5c) considered the other phosphate group, exposed 
to the outside, as the one that increased the binding affinity, in addition to the one internal to the pocket. The 
influence of hydrophobic contacts was not observed in both heat maps of 1KAV.
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Figure 4.   Schematic illustration of atomic contributions obtained by applying layer-wise relevance propagation 
(LRP) on InteractionNet and its comparison with knowledge-based protein–ligand interactions.
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PDB 3F7H: baculoviral IAP repeat‑containing protein 7 with an azabicyclooctane‑based antagonist 
(ChEMBL479725).  ChEMBL479725 can be divided into two parts by azabicyclooctane, the amide chain with 
one secondary amine, and the diphenylacetamide group. On the knowledge-based analysis, the amine and amide 
parts bound to 3F7H by four hydrogen bonds with their carboxyl and amide groups, and the diphenylacetamide 
group did not have interactions, except for one hydrophobic contact (Fig. 6a,b). InteractionNet showed a highly 
positive focus on the terminal amine that participated in two hydrogen bonds (Asp138 and Glu143), which 
was not observed in the heat map of PotentialNet (Fig. 6c,d). Compared with the strong positive relevance in 
InteractionNet, the LRP result of PotentialNet predicted the affinity-decreasing influence of the amine in 3F7H. 
A small positive focus on the azabicyclooctane ring that participated in two hydrophobic contacts with the 
indole (Try147) and isobutyl (Leu131) groups was observed in both models. The diphenylacetamide group was 
predicted to slightly decrease the Kd value, and the amide groups in the azabicyclooctane ring and the dipheny-
lacetamide group had a negligible contribution to Kd, which concurred with the knowledge-based observation.

PDB 4IVB: tyrosine‑protein kinase JAK1 with an imidazopyrrolopyridine‑based inhibitor (ChEMBL2386633).  In 
the 4IVB complex, ChEMBL2386633 resided in between the two lobes of JAK1 and was expected to have four 
hydrogen bonds, i.e., two in the imidazopyrrolopyridine group and two in the hydroxyl group and three hydro-
phobic contacts with JAK1 (Fig. 7a,b). The ChEMBL2386633 heat maps from both models showed a similar 
contribution pattern, predicting a highly positive contribution from the oxygen atom of primary alcohol, which 
participated in two hydrogen bonds with Ser963 and Glu966 of JAK1. All the four nitrogen atoms in imidazo-
pyrrolopyridine were given a positive contribution in InteractionNet, although only two nitrogen atoms par-
ticipated in the hydrogen bond. In comparison, the contributions of the nitrogen atoms to binding affinity were 
not observed in PotentialNet. The prediction on the cyanocyclohexyl group was not influential to the Kd in both 
models, which corresponded with the 3D structure showing the exposure of the group to the exterior.

Figure 5.   (a) Three-dimensional structure of the protein–ligand complex, 1KAV. The protein is depicted in 
a cartoon (green), and the ligand is depicted in color-coded ball-and-stick. Atom colors: gray (carbon), red 
(oxygen), orange (phosphorus), and light green (fluorine). (b) Knowledge-based estimation of protein–ligand 
interactions. Hydrogen bonds are depicted in red dashed lines, and hydrophobic contacts are depicted in 
gray dashed lines. (c) Heat map for the atomic contributions on the Kd prediction, obtained from the LRP 
on PotentialNet. (d) Heat map for the atomic contributions on the Kd prediction, obtained from the LRP on 
InteractionNet. The contributions are illustrated with color intensity of red (positive influence), white (zero 
influence), and blue (negative influence) colors.

Figure 6.   (a) Three-dimensional structure of the protein–ligand complex, 3F7H. The protein is depicted in 
a cartoon (green), and the ligand is depicted in color-coded ball-and-stick. Atom colors: gray (carbon), red 
(oxygen), and blue (nitrogen). (b) Knowledge-based estimation of protein–ligand interactions. Hydrogen bonds 
are depicted in red dashed lines, and hydrophobic contacts are depicted in gray dashed lines. (c) Heat map for 
the atomic contributions on the prediction of Kd, obtained from the LRP on PotentialNet. (d) Heat map for the 
atomic contributions on the prediction of Kd, obtained from the LRP on InteractionNet. The contributions are 
illustrated with color intensity of red (positive influence), white (zero influence), and blue (negative influence) 
colors.
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The LRP results strongly showed the advantages of InteractionNet in two distinct points: the easily recogniz-
able explanation powered by graph-based approach compared with image-based CNN models; the better cor-
relation between knowledge-based and machine-generated explanation. The LRP technique could be applied 
similarly to the CNN models, but the relevance outcomes correspond to the voxels in the image, whereas those 
in the GNN models directly correspond to the nodes in the molecular graph. For generating the atomic influ-
ence on binding affinity prediction, careful separation of each voxel into atoms is necessary in the CNN models, 
but ambiguity in separation would be inevitable. In contrast, because the relevance in the GNN models corre-
sponds to the node in a graph, the obtained relevance can be directly interpreted as the atomic influence. In the 
comparison with PotentialNet, which is another GNN model used for the prediction of protein–ligand affinity, 
InteractionNet showed better explanation performance on relating of the binding affinities with the hydrogen 
bonds between proteins and ligands. Both models exhibited good accuracy in the identification of the atoms that 
participated in the protein–ligand interactions, but the heat maps obtained from InteractionNet provided more 
precise explanations in match with the hydrogen bond patterns generated by chemical knowledge.

Through the LRP experiment and consequent visualization on the deep-learning predictions, we performed 
the qualitative assessment on the prediction basis of InteractionNet. The successful recognition of actual hydro-
gen-bond sites between proteins and ligands by InteractionNet implied two successfully learned features—rec-
ognition of hydrogen-bond-available functional groups and recognition of contact surface between the mol-
ecules. In the heat maps from the LRP experiment, the significant preference of positive contribution for the 
hydrogen-bond-participating heteroatoms was observed, compared with the near-zero or negative contributions 
of hydrocarbon chains and benzyl groups, which indicated the proper aggregation of local structures from 
atomic information. Distinguishing the functional groups from a given molecular graph is not only essential for 
efficiently modeling the protein–ligand complex formation, but also beneficial in diverse chemical tasks having 
both unimolecular and multimolecular characteristics. Moreover, it is indispensable for the precise prediction 
of binding affinity to recognize the absolute proximity of a functional group in the ligand to the active site of a 
protein. Our heat map analysis showed that the functional groups that existed the outside of contact surface did 
not increase the binding-affinity prediction in the case of protein–ligand complex having multiple hydrogen 
bond donor and acceptors, which indicated the InteractionNet’s recognizing ability for actual hydrogen bonds 
from a spatial structure.

Conclusions
In conclusion, we presented a graph neural network (GNN) that modeled the noncovalent (NC) interactions 
and discussed the in-depth analysis of the model combined with the explainability technique for understanding 
deep-learning prediction. In the graph-based deep-learning models, there has been less attention to the NC 
interactions compared with the bonded interactions because of the ambiguity of NC connectivity. InteractionNet, 
presented herein, showed satisfactory predictive-ability for predicting the dissociation constant with RMSE of 
1.321 on the PDBbind v2018 dataset. The NC convolution layers enhanced InteractionNet’s prediction accuracy, 
even without the utilization of the traditional bonded connectivity. We further demonstrated that Interaction-
Net successfully captured the important NC interactions between a protein and a ligand from a given complex 
through posthoc LRP analysis. The visualization of the atomic contributions showed a strong correlation with 
the actual hydrogen bonds in the complex. In the case of the ligand that had multiple hydrogen-bond donors and 
acceptors, the positive atomic contributions were observed only on the atoms participating in the actual hydrogen 
bonds. We believe that our model would widen the applicable tasks of the chemical, deep-learning models to the 
problems beyond the bonded interactions within a single molecule and also provide a meaningful explanation 
for the prediction, enabling the real-world applications that require prediction evidence and reliability.

Figure 7.   (a) Three-dimensional structure of the protein–ligand complex, 4IVB. The protein is depicted in 
a cartoon (green), and the ligand is depicted in color-coded ball-and-stick. Atom colors: gray (carbon), red 
(oxygen), and blue (nitrogen). (b) Knowledge-based estimation of protein–ligand interactions. Hydrogen bonds 
are depicted in red dashed lines, and hydrophobic contacts are depicted in gray dashed lines. (c) Heat map for 
the atomic contributions on the prediction of Kd, obtained from the LRP on PotentialNet. (d) Heat map for the 
atomic contributions on the prediction of Kd, obtained from the LRP on InteractionNet. The contributions are 
illustrated with color intensity of red (positive influence), white (zero influence), and blue (negative influence) 
colors.
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Methods
Dataset.  We employed the PDBbind v2018 dataset for the evaluation target of our InteractionNet models24,25. 
We used the refined set from the provided dataset, consisting of 4462 protein–ligand complexes with their exper-
imentally measured Kd values. Initially, all protein–ligand data were loaded by RDKit 2019.09.237 and Openbabel 
3.0.038, and inspected for improper conformation. During the inspection process, the molecules that failed for 
loading were excluded from the training dataset for further tensorization. We also excluded the complexes that 
had the interatomic distance below 1 Å and/or the atomic collisions in the provided 3D molecular structures. 
Our inspection on the sanity of the molecular structure was performed to avoid any misguided training of the 
model with chemically abnormal data. The noncovalent adjacency relied heavily on the distances between the 
atoms in the complex, and the model without the sanity check would lead to inappropriate conclusions. After 
inspection, 4186 protein–ligand complexes were obtained (see the Supporting Information for entire list of the 
PDB codes). The protein structure was cropped by retrieving the atoms of a protein within the range cutoff (3, 
4, 5, or 6 Å), and the size of the protein–ligand complex structure was reduced for faster training. Only heavy 
atoms were considered in the entire preparation. Atomic features for building the feature matrix are listed in 
Table S1. For cross-validation of the model performance, we applied the 20-fold repeated random sub-sampling 
strategy, in which the refined set was randomly split into a training set, a validation set, and a test set on an 8:1:1 
ratio in each cross-validation experiment. Twenty results were obtained through 20-fold cross-validation, and 
the averaged results were reported.

Network training and evaluation.  All models were implemented by using TensorFlow 2.0.039 on Python 
3.6.9. The training was controlled by learning-rate scheduling, early-stopping techniques, and gradient norm 
scaling. The learning rate was initially set to 0.00015 and lessened by a factor of 0.75 when the validation loss did 
not decrease within the previous 200 epochs, and the termination proceeded when the loss stopped decreasing 
for the previous 400 epochs. To avoid gradient exploding, a clipping parameter of 0.5 was used for gradient norm 
scaling. For the loss function, mean-squared-error (MSE) was used and optimized by the Adam optimizer40. The 
list of hyperparameters explored is described in Table S2. All experiments were conducted on an NVIDIA GTX 
1080Ti GPU, an NVIDIA RTX 2080Ti GPU, or an NVIDIA RTX Titan GPU. Source code is publicly available at 
the author’s GitHub repository (https​://githu​b.com/black​mints​/Inter​actio​nNet).

Layer‑wise relevance propagation (LRP).  We performed the LRP as a post-modeling explainability 
method. Three LRP rules, LRP-0, LRP-ε, and LRP-γ, were used for the calculation of relevance on each layer 
from the trained model. We adopted the LRP-0 for the output layer, LRP-ε for the FC layers, and the LRP-γ 
for the CV[C] and CV[NC] layers, based on the guideline described elsewhere32,33. Obtained relevance for the 
atomic feature was reduced to the atomic contribution by summation across features. The graph-embedding 
layers were omitted for the relevance calculation, because the graph-embedding layers only redistributed the 
relevance between features, not between atoms, resulting in the same atomic contribution before and after redis-
tribution. For the parameters ε and γ, 0.25 was used for all LRP-ε, and 100 was used for all LRP-γ layers. The 
cross-validation trial that was most similar to the average in root-mean-squared-error (RMSE) was used for 
LRP analysis, and the LRP examples were chosen from the test set of the trial, which were predicted accurately, 
for comparison with knowledge-based analysis. Three-dimensional visualization of the molecular structure was 
obtained by Mol*41, and the expected hydrogen bonds and hydrophobic contacts were determined by the rules 
RCSB PDB use42–45.

Received: 18 May 2020; Accepted: 19 November 2020

References
	 1.	 Butler, K. T. et al. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
	 2.	 Mater, A. C. & Coote, M. L. Deep learning in chemistry. J. Chem. Inf. Model. 59, 2545–2559 (2019).
	 3.	 Peiretti, F. & Brunel, J. M. Artificial intelligence: the future for organic chemistry?. ACS Omega 3, 13263–13266 (2018).
	 4.	 Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engi-

neering. Science 361, 360–365 (2018).
	 5.	 Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: methods and applications. https​://arxiv​.org/

abs/1709.05584​ (2017).
	 6.	 Faber, F. A. et al. Prediction errors of molecular machine learning models lower than hybrid DFT error. J. Chem. Theory Comput. 

13, 5255–5264 (2017).
	 7.	 Gilmer, J. et al. Neural message passing for quantum chemistry. in Proceedings of the 34th International Conference on Machine 

Learning-Volume 70, 1263–1272 (2017).
	 8.	 Schütt, K. T. et al. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890. https​://doi.org/10.1038/

ncomm​s1389​0 (2017).
	 9.	 Zhou, J. et al. Graph neural networks: a review of methods and applications. https​://arxiv​.org/abs/1812.08434​ (2018)
	10.	 Bonchev, D. & Rouvray, D. H. Chemical Graph Theory: Introduction and Fundamentals (Abacus Press, New York, 1991).
	11.	 Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural. Inf. Process. Syst. 1, 

2224–2232 (2015).
	12.	 Coley, C. W. et al. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 

57, 1757–1772 (2017).
	13.	 Feinberg, E. N. et al. PotentialNet for molecular property prediction. ACS Cent. Sci. 4, 1520–1530 (2018).
	14.	 Lim, J. et al. Predicting drug–target interaction using a novel graph neural network with 3D structure-embedded graph representa-

tion. J. Chem. Inf. Model. 59, 3981–3988 (2019).

https://github.com/blackmints/InteractionNet
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://arxiv.org/abs/1812.08434


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21155  | https://doi.org/10.1038/s41598-020-78169-6

www.nature.com/scientificreports/

	15.	 Kearnes, S. et al. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595–608 (2016).
	16.	 Altae-Tran, H., Ramsundar, B., Pappu, A. S. & Pande, V. Low data drug discovery with one-shot learning. ACS Cent. Sci. 3, 283–293 

(2018).
	17.	 Baskin, I. I., Palyulin, V. A. & Zefirov, N. S. A neural device for searching direct correlations between structures and properties of 

chemical compounds. J. Chem. Inf. Model. 37, 715–721 (1997).
	18.	 Cho, H. & Choi, I. S. Enhanced deep-learning prediction of molecular properties via augmentation of bond topology. ChemMed‑

Chem 14, 1604–1609 (2019).
	19.	 Cang, Z. & Wei, G. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property 

predictions. PLoS Comput. Biol. 13, e1005690. https​://doi.org/10.1371/journ​al.pcbi.10056​90 (2017).
	20.	 Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S. & De Fabritiis, G. DeepSite: protein-binding site predictor using 3D-con-

volutional neural networks. Bioinformatics 33, 3036–3042 (2017).
	21.	 Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J. & Koes, D. R. Protein–ligand scoring with convolutional neural networks. J. Chem. 

Inf. Model. 57, 942–957 (2017).
	22.	 Jiménez, J., Škalič, M., Martínez-Rosell, G. & De Fabritiis, G. KDEEP: protein-ligand absolute binding affinity prediction via 3D-con-

volutional neural networks. J. Chem. Inf. Model. 58, 287–296 (2018).
	23.	 Zheng, L., Fan, J. & Mu, Y. OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-

ligand binding affinity prediction. ACS Omega 4, 15956–15965 (2019).
	24.	 Wang, R., Fang, X., Lu, Y., Yang, C.-Y. & Wang, S. The PDBbind database: methodologies and updates. J. Med. Chem. 48, 4111–4119 

(2005).
	25.	 Liu, Z. et al. Forging the basis for developing protein-ligand interaction scoring functions. Acc. Chem. Res. 50, 302–309 (2017).
	26.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, 770–778 (2016).
	27.	 Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE 

conference on computer vision and pattern recognition, 4700–4708 (2017).
	28.	 Stone, A. J. Intermolecular potentials. Science 321, 787–789 (2008).
	29.	 Huang, N., Kalyanaraman, C., Bernacki, K. & Jacobson, M. P. Molecular mechanics methods for predicting protein–ligand binding. 

Phys. Chem. Chem. Phys. 8, 5166–5177 (2006).
	30.	 DiStasio, R. A. Jr., von Lilienfeld, O. A. & Tkatchenko, A. Collective many-body van der Waals interactions in molecular systems. 

Proc. Natl. Acad. Sci. USA 109, 14791–14795 (2012).
	31.	 Lubbers, N., Smith, J. S. & Barros, K. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 

148, 241715. https​://doi.org/10.1063/1.50111​81 (2018).
	32.	 Bach, S. et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, 

e0130140. https​://doi.org/10.1371/journ​al.pone.01301​40 (2015).
	33.	 Montavon, G. et al. Layer-Wise Relevance Propagation: An Overview in Explainable AI: Interpreting, Explaining and Visualizing 

Deep Learning 193–209 (Springer, New York, 2019).
	34.	 Adadi, A. & Berrada, M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–

52160. https​://doi.org/10.1109/acces​s.2018.28700​52 (2018).
	35.	 Baldassarre, F. & Azizpour, H. Explainability techniques for graph convolutional networks. https​://arxiv​.org/abs/1905.13686​ (2019).
	36.	 Lapuschkin, S. et al. Unmasking Clever Hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096. https​

://doi.org/10.1038/s4146​7-019-08987​-4 (2019).
	37.	 RDKit: Open-Source Cheminformatics Software. https​://www.rdkit​.org/ (2019).
	38.	 Open Babel: The Open Source Chemistry Toolbox. http://openb​abel.org/wiki/Main_Page (2019).
	39.	 TensorFlow: An end-to-end open source machine learning platform for everyone. https​://www.tenso​rflow​.org (2020).
	40.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https​://arxiv​.org/abs/1412.6980 (2014).
	41.	 Sehnal, D., Rose, A. S., Kovca, J., Burley, S. K. & Velankar, S. Mol*: towards a common library and tools for web molecular graphics. 

In Proceedings of the Workshop on Molecular Graphics and Visual Analysis of Molecular Data, 29–33 (2018).
	42.	 RCSB PDB. https​://www.rcsb.org/ (2020).
	43.	 Sticke, D. F., Presta, L. G., Dill, K. A. & Rose, G. D. Hydrogen bonding in globular proteins. J. Mol. Biol. 226, 1143–1159 (1992).
	44.	 Zhou, P., Tian, F., Lv, F. & Shang, Z. Geometric characteristics of hydrogen bonds involving sulfur atoms in proteins. Proteins. 76, 

151–163 (2009).
	45.	 Freitas, R. F. D. & Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm 8, 

1970–1981 (2017).

Acknowledgements
This work was supported by the KAIST-funded AI Research Program for 2019.

Author contributions
H.C., E.K.L., and I.S.C. developed the concept, and H.C. constructed the deep-learning architectures and per-
formed the experiments. H.C. wrote the manuscript, and E.K.L. and I.S.C. supervised the work and reviewed 
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-78169​-6.

Correspondence and requests for materials should be addressed to E.K.L. or I.S.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1063/1.5011181
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1109/access.2018.2870052
https://arxiv.org/abs/1905.13686
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://www.rdkit.org/
http://openbabel.org/wiki/Main_Page
https://www.tensorflow.org
https://arxiv.org/abs/1412.6980
https://www.rcsb.org/
https://doi.org/10.1038/s41598-020-78169-6
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21155  | https://doi.org/10.1038/s41598-020-78169-6

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Layer-wise relevance propagation of InteractionNet explains protein–ligand interactions at the atom level
	Results and discussion
	InteractionNet architecture. 
	Model training. 
	Prediction of dissociation constants. 
	Layer-wise relevance propagation (LRP). 
	PDB 1KAV: human tyrosine phosphatase 1B and a phosphotyrosine-mimetic inhibitor (ChEMBL1161222). 
	PDB 3F7H: baculoviral IAP repeat-containing protein 7 with an azabicyclooctane-based antagonist (ChEMBL479725). 
	PDB 4IVB: tyrosine-protein kinase JAK1 with an imidazopyrrolopyridine-based inhibitor (ChEMBL2386633). 


	Conclusions
	Methods
	Dataset. 
	Network training and evaluation. 
	Layer-wise relevance propagation (LRP). 

	References
	Acknowledgements


