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Abstract

We propose a mesh-based technique to aid in the classification of Alzheimer’s disease dementia 

(ADD) using mesh representations of the cortex and subcortical structures. Deep learning methods 

for classification tasks that utilize structural neuroimaging often require extensive learning 

parameters to optimize. Frequently, these approaches for automated medical diagnosis also lack 

visual interpretability for areas in the brain involved in making a diagnosis. This work: (a) 

analyzes brain shape using surface information of the cortex and subcortical structures, (b) 

proposes a residual learning framework for state-of-the-art graph convolutional networks which 

offer a significant reduction in learnable parameters, and (c) offers visual interpretability of the 

network via class-specific gradient information that localizes important regions of interest in our 

inputs. With our proposed method leveraging the use of cortical and subcortical surface 

information, we outperform other machine learning methods with a 96.35% testing accuracy for 

the ADD vs. healthy control problem. We confirm the validity of our model by observing its 

performance in a 25-trial Monte Carlo cross-validation. The generated visualization maps in our 

study show correspondences with current knowledge regarding the structural localization of 

pathological changes in the brain associated to dementia of the Alzheimer’s type.
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1 Introduction

Alzheimer’s disease dementia (ADD) is a clinical syndrome characterized by progressive 

amnestic multidomain cognitive impairment [27]. The causative underlying pathology is 

Alzheimers disease (AD), defined as the co-occurrence of neurofibrillary tangles and 

amyloid-beta plaques. Globally, the number of individuals living with AD is expected to 

reach 1 out of 85 people by the year 2050 [4]. Automated methods for the computer-aided 

clinical diagnosis of ADD has been an area of interest in the medical imaging community 

for the development of assistive tools aiding in the visual inspection of structural 

information captured by magnetic resonance imaging (MRI).

Previous studies in the neuroanatomical pathologies of AD have demonstrated correlations 

in cortical folding pattern [5] and different neurodegenerative pathologies. Specific patterns 

of atrophy in the cortex and subcortical structures have been linked to AD [21, 25]. For 

example, [5] discusses a potential to focus on high variability in association cortices like the 

intermediate sulcus of Jensen. As [28] also points out, widespread cortical thinning and a 

greater rate of atrophy is present in temporal lobe regions, primarily the left 

parahippocampal gyrus, for subjects with AD. Furthermore, Jong et al. [6] discuss 

irregularities like reduced putamen and thalamus volumes for subjects with AD. In studies 

such as ADNI, it is common to find bias towards more left-sided atrophy because of the 

verbal language tests given to assess memory function [8]. For example, if asymmetrical 

atrophy of the language network is more prominent, subjects may perform worse on verbal 

tests and be diagnosed with dementia earlier.

Machine learning (ML) methods have been a growing area of interest in the automated 

clinical diagnosis for ADD. [2, 24, 38] discuss the use of support vector machines (SVMs) 

in unimodal and multimodal imaging pipelines for the automated classification of ADD 

using MRI, PET, and cerebrospinal fluid (CSF). In [23, 30], the use of MRI and PET 

imaging in multimodal convolutional neural networks (CNNs) for ADD diagnosis is 

discussed. SVM-based approaches, like those used in [2, 24, 38], have historically been hard 

to interpret, expensive to train, and often serve as the logical choice only when there is 

enough domain expertise to construct meaningful kernels. Multimodal volumetric CNNs like 

[30], often require a lot of memory and frequently are limited to smaller-batch operations or 

using lower resolution 3D volumes.

Motivated by 3D object detection via surfaces [26], cortical and subcortical irregularities 

correlated with ADD, our work uses mesh manifolds of the cortex and subcortical structures 

in the diagnosis of ADD. Our technique leverages a reduction in computational complexity 

offered by [7]. In [29], Parisot et al. leverage this work from [7] to make similar predictions 

for Alzheimer’s disease and Autism using graph convolutional networks (GCNs) on ADNI/

ABIDE subject population graphs. In [31], their convolutional mesh autoencoder (CoMA) 

framework uses the same GCN basis from [7] on human face surface meshes to generate 

new meshes from a learned distribution conditioned on facial expression labels. Their 

network is also able to reconstruct input meshes from compressed 8-dimensional 

representations with a 50% reduction in reconstruction error, while using 75% fewer 

parameters than volumetric models that operate on voxels.
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The interpretability of results from ML models has remained an open issue in highlighting 

regions of interest (ROI) in relation to classification decisions. In this paper we demonstrate 

that it is possible to (1) extract meaningful surface meshes of the cortex and subcortical 

structures, (2) achieve accurate predictions for the clinical binary classification of ADD 

using meshes, (3) extract class-discriminative localization maps for interpretable ROI, and 

(4) reduce the number of learnable parameters.

2 Methods

Data used in the preparation of this article were obtained from the Alzheimers Disease 

Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu). The ADNI was 

launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimers disease (AD).

2.1 Localized Spectral Filtering on Graphs

Spectral-based graph convolution methods inherit ideas from a graph signal processing 

(GSP) perspective as described by [37]. Like [7], our work focuses on using undirected 

graphs defined by a finite set of vertices, V, with N = V  vertices, and a corresponding set 

of edges, ℰ, with scalar edge weights, eij = eji ∈ ℰ, which are stored in the ith rows and jth 

columns of the adjacency matrix, A ∈ ℝN × N. A graph’s node attributes are defined using 

the node feature matrix X ∈ ℝN × F  where each column, xi ∈ ℝN, represents the feature 

vector for a particular shared feature across each of the vertices, vi ∈ V.

A great emphasis in GSP is placed on the normalized graph Laplacian, L = IN − D−1/2AD
−1/2, where IN is the identity matrix and Dii = ∑j Aij is the diagonal matrix of node degrees. 

L can be factored via the eigendecomposition: L = UΛUT, where U ∈ ℝN × N is the 

complete set of orthonormal eigenvectors for L and Λ = diag λ0, …, λN − 1 ∈ ℝN × N is the 

corresponding set of eigenvalues. Given a spectral filter, gθ, defined in the graph’s Fourier 

space [34] as a polynomial of the Laplacian, L, and U’s orthonormality, we can filter x via 

multiplication s.t.

gθ *G x = gθ(L)x = gθ UΛUT x = Ugθ(Λ)UTx, (1)

where θ ∈ ℝN are the parameters of the filter gθ and * G is the spectral convolution operator 

notation borrowed from [7]. Furthermore, UTx is the graph Fourier transform (GFT) of the 

graph signal x, gθ(Λ) is a filter defined using the spectrum (eigenvalues) of the normalized 

Laplacian, L, and the left-sided multiplication with U is the inverse-GFT (IGFT). In this 

context, convolution is implicitly performed by using the duality property of the Fourier 

transform s.t. a spectral filter is first multiplied with the GFT of a signal, and then the IGFT 

of their product is determined.
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Our approach uses Chebyshev polynomials of the first kind [1, 7] to approximate gθ using 

the graph’s spectrum s.t.

gθ(L) = ∑
k = 0

K − 1
θkTk(L), (2)

for the scaled Laplacian L = 2L
λmax

− IN, where λmax is the largest eigenvalue in Λ, and K 

can be interpreted as the kernel size. Chebyshev polynomials of the first kind are defined by 

the recurrence relation, Tk(L) = 2LTk − 1(L) − Tk − 2(L) where T0(L) = I and T1(L) = L as 

shown in [7].

2.2 Mesh Extractions of Cortical & Subcortical Structures

Using FreeSurfer v6.0 [10], all MRIs were denoised followed by field inhomogeneity 

correction, and intensity and spatial normalization. Inner cortical surfaces (interface between 

gray and white matter) and outer cortical surfaces (CSF/gray matter interface) were 

extracted and automatically corrected for topological defects. Additionally, seven subcortical 

structures per hemisphere were segmented (amygdala, nucleus accumbens, caudate, 

hippocampus, pallidum, putamen, thalamus) and modeled into surface meshes using 

SPHARM-PDM (https://www.nitrc.org/projects/spharm-pdm).

Surfaces were inflated, parameterized to a sphere, and registered to a corresponding 

spherical surface template using a rigid-body registration to preserve the cortical [10] and 

subcortical [3] anatomy. Surface templates were converted to meshes using their 

triangulation schemes. A scalar edge weight, eij, was assigned to connect vertices vi and vj 

using their geodesic distance, ψij, s.t.

eij = eji = 1
σ 2πe− 1

2
ψij
σ

2
. (3)

Surface templates were parcellated using a hierarchical bipartite partitioning of their 

corresponding mesh. Starting with their initial mesh representation of densely triangulated 

surfaces, spectral clustering was used to define two partitions. These two groups were then 

each separated yielding four child partitions, and this process was repeated until the average 

distance across neighbor partitions was below 2.5 mm. For each partition, the central node 

was defined as the node whose centrality was highest and the distance across two partitions 

was defined as the geodesic distance (in mm) across the central vertices. Two partitions were 

neighbors if at least one node in each partition were connected. Finally, partitions were 

numbered so that partitions 2i and 2i+1 at level L had the same parent partition i at level L − 

1. Therefore, for each level a graph was obtained s.t. the vertices of the graph were the 

central vertices of the partitions and the edges across neighboring vertices were weighted as 

in Eq. 3. This serves as an improvement upon [7] to ensure that no singleton is ever 

produced by pooling operations for the cortex and subcortical structures. At the finest level, 

meshes had a total of 47, 616 vertices: 32, 768 vertices for the cortex and 14, 848 vertices to 

represent the subcortical structures.
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Vertex features were defined as the Cartesian coordinates of the surface vertices in the 

subjects native space registered to the surface templates. This can create issues if the original 

scans are not registered to the same template, as was also done by Ranjan et al. in [31]. 

Similar studies, like that of Gutirrez-Becker and Wachinger [15], implement “rotation 

network” modules as the first few layers of their neural network (NN) architecture to aid in 

correcting and aligning their samples to a common template. Performing our template 

registration as an additional preprocessing step reduces the complexity of our NN 

architecture and eliminates the need of incorporating an “alignment” term to our cost 

function to optimize later, as was needed in [15].

Cortical vertices were assigned 6 features: the x, y, and z coordinates of both the white 

matter (WM) and gray matter (GM) vertices in the native space. This was decided because 

vertices on these surfaces use the same edge weights and therefore the same “faces” with 

different coordinates for the vertices of the respective triangles. Similar to the cortex, 

subcortical vertices had 3 features: their corresponding x, y, and z coordinates in the native 

space as well. To maintain the same number of features for all vertices per scan, the 

corresponding cortical and subcortical feature matrices were block-diagonalized into a 

single node feature matrix per scan s.t. X ∈ ℝ47, 616 × 9. Sample meshes extracted from a 

randomly selected HC and one with ADD are demonstrated in Figure 1.

2.3 Residual Network Architecture

Inspired by the work of He et al. in [16], we propose an improvement upon ChebNet [7] 

using residual connections within GCNs, which have been shown in prior work to address 

the common “vanishing gradient” problem and improve the performance of deep NNs. 

Typically, these types of residual networks (ResNets) are implemented by using batch 

normalization (BN) [19] before a ReLU activation function, and followed by convolution as 

seen in Fig. 2. Using ResBlocks (Fig. 2), max-pooling operations as described by Defferrard 

et al. [7], and a standard fully connected (FC) layer [32], the total architecture used in our 

study is defined in Fig. 3. An additional ResBlock, which we refer to as a “post-ResBlock,” 

was introduced prior to the FC layer as a linear mapping tool to match the number of FC 

units.

2.4 Grad-CAM Mesh Adaptation

Interpretability of CNNs was addressed by [33] via their gradient-weighted class activation 

map (Grad-CAM) approach. In their work, images are fed to CNNs and gradients for each 

class score (logits prior to softmax) are extracted at the last convolutional layer. Using these 

gradients, they perform a global average pooling (GAP) operation for each feature map per 

class to extract “neuron importance weights,” αc(k) ∈ ℝc × k, whose formulation we readapt 

for meshes s.t.

αc(k) = 1
N ∑

n

∂yc
∂An

(k) , (4)
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where yc corresponds to the class score of class c, and An
(k) refers to the value at vertex n for 

the k-th feature map A(k) ∈ ℝN. A set of neuron importance weights, αc(k), is extracted for 

each k-th feature map, A(k), and projected onto them to get the class activation maps 

(CAMs) s.t.

Mc = ReLU ∑
k

αc(k)A(k) ∈ ℝN . (5)

As a consequence of pooling, CAMs are upsampled to the same number of nodes as the 

input mesh for a direct “overlay” using a trivial interpolation by going backward along the 

hierarchical tree used by the pooling operations.

3 Experimental Design

3.1 Dataset & Preprocessing

T1-weighted MRIs from ADNI [20] were selected with ADD/HC diagnosis labels given up 

to 2 months after the corresponding scan. This was taken as a precaution to ensure that each 

diagnosis had clinical justification. The dataset in our study consisted of 1,191 different 

scans for 435 unique subjects. Section 3.2 outlines our stratified data splitting strategy to 

ensure no data leakage occurs at the subject level across the training, validation, and testing 

sets [12].

Meshes for each MRI were extracted following the process described in Section 2.2. The 

spatial standard deviation from Eq. 3, σ, was set to 2 ad-hoc. The visual quality for each 

mesh was assessed manually via a direct overlay over slices of the corresponding MRI. 

Laplacians for the cortex and each subcortical structure were block-diagonalized to create 

one overall L representing a single mesh with multiple connected components. Extracted 

feature matrices for each sample were min-max normalized per feature to the interval [−1, 1] 

prior to feeding batches of data into the networks. The added zeros during block-

diagonalization (as discussed in Section 2.2) were ignored during each normalization step.

3.2 Network Architecture & Training

Extra care was taken in the shuffling of samples to avoid bias from subject overlap in our 

cross-validation [12]. A custom dataset splitting function was implemented s.t. the 

distribution of labels was preserved amongst each set while also ensuring to avoid subject 

overlap. 20% of the samples were selected at random for the testing set. Of the remaining 

80%, 20% of those were withheld as the validation set, while the remaining belonged to the 

training set. A 25-trial Monte Carlo cross-validation was performed using this data split 

scheme.

The architecture in Fig. 3 was implemented using 16 kernels per convolutional layer (not 

including the post-ResBlock), Chebyshev polynomials of order K = 3, and pooling windows 

of size p = 2. Four alternating ResBlock and pooling layers were cascaded as shown in Fig. 

3 prior to the post-ResBlock. The number of units at the post-ResBlock and FC layer was 

128. Our GCN was optimized by minimizing a standard binary cross-entropy loss function
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ℒ = − 1
N ∑

n = 1

N
ynlog yn + 1 − yn log 1 − yn , (6)

where yn is the predicted class for the nth sample of N total samples and yn is the ground 

truth label for the same sample index, n.

Networks were trained using batches of 32 samples per step for 100 epochs in each Monte 

Carlo trial. The Adam [22] optimizer was used with a learning rate of 5 × 10−4 and a 

learning rate decay of 0.999. Experiments were implemented in Python 3.6 using 

Tensorflow 1.13.4 using an NVIDIA GeForce GTX TITAN Z GPU in a Dell Precision 

Tower 7910 with Linux Mint 19.2.

4 Results & Discussion

4.1 ADD vs. HC Classification

Our cross-validation includes the same multilayer perceptron (MLP) classifier architecture, 

ridge classifier, and a 100-estimator random forest classifier set up by Parisot et al. in [29], 

where a similar graph approach is also used on the classification of ADD based on 

population graphs. The MLP designed was synonymous to the design in [29] s.t. the number 

of hidden layers and parameters was the same as our GCNs. Demonstrated in Figure 4, our 

GCN outperformed other standard classifiers not limited to graph methods on our dataset 

split.

The results in Table 1 highlight comparable metrics of our model versus other studies that 

operate on voxels from full 3D MRI volumes, including [30]. In their work, Punjabi et al. 
train a multi-modal CNN using both volumetric MRI and FDG-PET imaging for the same 

task, which we outperform while training and evaluating on a smaller subset of their subject 

population. Furthermore, volumetric models like those in [30] rely on 3D CNNs with far 

more learned parameters, e.g. [30]’s 200,194,502 weights (×2 for fusion model), in 

comparison to our GCN’s 497,522 learned parameters needed for comparable results. Like 

[31], we also achieve comparable results with far less learning parameters by working on 

meshes and focusing on brain shape instead of working on raw voxels obtained from MRIs 

and using voxel-based approaches.

4.2 Class Activation Map Visualization

By employing Grad-CAM on our best GCN, an average CAM was generated for true 

positive (TP) predictions (Fig. 5). We project our CAM onto the cortical template [11] 

provided by FreeSurfer [10] and the homemade subcortical structure templates detailed in 

[3]. The color scale highlights areas from least-to-most influential in TP predictions. The 

patterns in the CAM match previously described distributions of cortical and subcortical 

atrophy [9, 21]. One reason we may observe a mismatch between the CAM and expected 

atrophy in the inferior parietal lobule could be the degree of variability in highly folded 

association cortex, e.g., the intermediate sulcus of Jensen is found only in some individuals 

[5, 35]. The slightly more left lateralized pattern in the CAM aligns with previous reports 
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that propose greater pathologic burden and neurodegeneration of the language network 

which leads to worsening on verbal-based neuropsychological measures of memory 

resulting in a diagnosis for ADD [8].

5 Conclusion & Future Work

In this work, we demonstrated the effectiveness of using cortical and subcortical surface 

meshes in the context of binary ADD clinical diagnosis and ROI visualization in TP 

predictions. Furthermore, we compared the cross-validation results of our model for the 

same ADD vs. HC problem using other ML models on our data. Additionally, our final 

results were comparable to the results of other studies that use traditional neuroimaging 

modalities as inputs. When compared to the performance of the multimodal approach used 

in [30], our model outperforms their approach, thus potentially indicating the reliability of 

leveraging shape information represented as meshes to perform the same binary 

classification task.

Natural extensions of this work could be to (1) expand our classification problem to include 

a third class from ADNI, mild cognitive impairment (MCI), (2) increase the population in 

our study to include those in ADNI3 [20], (3) work on longitudinal predictions, and (4) 

compare our model’s performance in using only the cortex, subcortical structures, or both. 

Additionally, having a 3D-volume-to-mesh dataset offers the potential for developing 

generative networks, as in [13], for performing the graph extraction preprocessing step 

described in Section 2.2. This will provide more autonomy and limit the need for the manual 

quality assessment (QA) of meshes as a part of our pipeline.
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Fig.1. 
Cortical meshes from a randomly selected HC subject (blue) and meshes of the subcortical 

structures from a randomly selected ADD subject (yellow). Presented are lateral views (a-b) 

of the HC’s left hemisphere (LH) and right hemisphere (RH) cortical meshes respectively. 

Medial views of the ADD subject’s LH and RH subcortical structure meshes are also 

presented (c-d).
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Fig.2. 
Single ResBlock in the GCN architecture used in this study. Linear mapping of Fin to Fout 

channels is implemented using a convolutional layer, * G. This is done to match the number 

of input features to the number of desired feature maps.
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Fig.3. 
Residual GCN used for the binary classification of ADD. In this study, max-pooling 

operations are used to downsample the vertex dimension by a factor of 2.
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Fig.4. 
Monte Carlo cross-validation accuracy results for GCN and baseline model architectures 

from [29] used on brain meshes.
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Fig.5. 
Average TP CAMs on the cortical template from [10, 11] (top) and subcortical structures 

from [3] (bottom) including: (a-b, e-f) lateral-medial views of the LH respectively, (c-d, g-h) 

medial-lateral views of the RH respectively.
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Table 1.

Model comparison to classifiers in studies not limited to surface methods.

Study Data ADD/HC Acc. (%) Sens. (%) Spec. (%) AUC (%)

[30] MRI −/− (723) 73.76 – – –

[30] MRI+PETamyloid −/− (723) 92.34 – – –

[24] MRI+PETFDG 51/52 94.37 94.71 94.04 97.24

[36] MRI+CSF 96/111 91.80 88.50 94.60 95.80

[18] MRI 228/188 84.13 82.45 85.63 90.00

[2] MRI 92/94 93.01 89.13 96.80 93.51

[17] MRI 70/70 97.60 – – –

[14] MRI 200/232 94.74 95.24 94.26 –

Ours MRI 167/265 96.35 92.37 96.74 96.84
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