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Characterization of the Tumor Immune
Microenvironment Identifies
M0 Macrophage-Enriched Cluster as a Poor
Prognostic Factor in Hepatocellular Carcinoma
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abstract

PURPOSEHepatocellular carcinoma (HCC) is characterized by a poor prognosis and a high recurrence rate. The
tumor immune microenvironment in HCC has been characterized as shifted toward immunosuppression. We
conducted a genomic data-driven classification of immune microenvironment HCC subtypes. In addition, we
demonstrated their prognostic value and suggested a potential therapeutic targeting strategy.

METHODSRNA sequencing data from The Cancer Genome Atlas–Liver Hepatocellular Carcinoma was used (n =
366). Abundance of immune cells was imputed using CIBERSORT and visualized using unsupervised hier-
archic clustering. Overall survival (OS) was analyzed using Kaplan-Meier estimates and Cox regression. Dif-
ferential expression and gene set enrichment analyses were conducted on immune clusters with poor OS and
high programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) coexpression. A scoring metric
combining differentially expressed genes and immune cell content was created, and its prognostic value and
immune checkpoint blockade response prediction was evaluated.

RESULTS Two clusters were characterized by macrophage enrichment, with distinct M0Hi and M2Hi subtypes.
M2Hi (P = .038) and M0Hi (P = .018) were independently prognostic for OS on multivariable analysis. Kaplan-
Meier estimates demonstrated that patients in M0Hi and M2Hi treated with sorafenib had decreased OS (P =
.041), and angiogenesis hallmark genes were enriched in the M0Hi group. CXCL6 and POSTN were overex-
pressed in both the M0Hi and the PD-1Hi/PD-L1Hi groups. A score consisting of CXCL6 and POSTN expression
and absolute M0 macrophage content was discriminatory for OS (intermediate: hazard ratio [HR], 1.59; P ≤
.001; unfavorable: HR, 2.08; P = .04).

CONCLUSION Distinct immune cell clusters with macrophage predominance characterize an aggressive HCC
phenotype, defined molecularly by angiogenic gene enrichment and clinically by poor prognosis and sorafenib
response. This novel immunogenomic signature may aid in stratification of unresectable patients to receive
checkpoint inhibitor and antiangiogenic therapy combinations.

JCO Clin Cancer Inform 4:1002-1013. © 2020 by American Society of Clinical Oncology

INTRODUCTION

Of all cancers, hepatocellular carcinoma (HCC) has
the most rapidly increasing incidence of new patients1

despite its risk factors being mostly modifiable.2-4 In-
cidence rates in the United States are projected to
continue increasing through 2030,2 and HCC has the
second-lowest 5-year survival rate of all cancers.1

Cirrhosis progressively reduces liver function, which
limits definitive surgical treatment options and con-
tributes to poor prognosis.5 In those with resectable
disease, median overall survival (OS) is 48 and
44months for women andmen, respectively.6 Patients
treated with resection display a 5-year survival rate of
70%, but a 5-year recurrence rate of 68%.7 Re-
currence is thus a significant cause of morbidity and
mortality in patients with HCC and is classified as either
intrahepatic metastasis (IM) or de novo lesions. IM is

tied to tumor factors such as size and vascular in-
vasion, and de novo recurrence is linked to patient
factors such as cirrhosis and Ishak inflammatory
activity.7

In a meta-analysis evaluating adjuvant therapy, Wang
et al8 found a 5-year recurrence rate of 82% (55%-
94%) after resection, transplantation, or ablation and
a 5-year OS of 48% (29%-75%), regardless of agent or
mode of administration. The high recurrence rate of
HCC necessitates the development of more effective
adjuvant therapies. Therapeutic modalities effective for
advanced primary disease have not demonstrated the
same efficacy after hepatectomy with curative intent.
Sorafenib is the standard of care for advanced disease,9

but when investigated in the postresection setting in the
STORM trial, it failed to improve recurrence-free survival
(RFS) compared with placebo.10 Identification of new
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HCC subclasses based on the tumor microenvironment is
a promising approach to inform an effective biomarker and
therapeutic targeting paradigm.11

The advent of genomic sequencing has enabled more
detailed characterization of the HCC tumor microenviron-
ment at a molecular and cellular level. In a landmark article
describing the HCC molecular landscape, the Cancer
Genome Atlas (TCGA) research network 12 characterized
the immune microenvironment in HCC as shifted from
cytotoxic T cells (CD8+ T cells) to immune-suppressive
CD4+ regulatory T cells (T regs). In addition, tumor tissues
were found to display enrichment of resting mast cells,
dendritic cells, and undifferentiated M0 macrophages,
regardless of hepatitis status.12

The aggressive nature of HCC and poor outcomes in the
postresection setting coupled with the necessity to better
characterize the inflammatory microenvironment to inform
future treatment strategies motivated this study. We lev-
eraged publicly available RNA sequencing (RNASeq) data
from TCGA to impute immune cell subsets within the
HCC cohort using CIBERSORT. We then conducted un-
supervised hierarchic clustering on the individual samples
and identify two macrophage-enriched subgroups, both of
which were found to be prognostic of poor survival and
sorafenib response. We then identified hallmark gene sets
overexpressed in these clusters and used members of
these gene sets and immune content to create a composite
score predictive of immunotherapy response.

METHODS

Study Design and Data Retrieval

We conducted a retrospective analysis of all patients with
a diagnosis of HCC in the TCGA–Liver Hepatocellular
Carcinoma (LIHC) project cohort with available mRNA
expression data (n = 366). No patient with metastatic

disease at the time of pathologic diagnosis was included in
the study. All analyses were performed using the R software
for statistical computing (R Version 3.6.3, Vienna, Austria).

The TCGAbiolinks package was used to retrieve data from
the National Cancer Institute Genomic Data Commons
repository.13-15 Clinical and drug treatment data were re-
trieved using the same process.

Clustering Based on Immune Cell Subpopulations

The TCGA-LIHC dataset contains clinical, genetic, and
pathologic data. A mixture file containing RNASeq analysis
by Expectation-Maximization (RSEM) gene expression data
from the samples in TCGA-LIHC was downloaded from
cBioPortal and processed with the CIBERSORTx in silico
flow cytometry tool.16-18 Configuration for running CIBER-
SORTx is outlined in the Data Supplement. The R pack-
age ComplexHeatmap 19 was used to perform hierarchic
clustering on the individual samples in the dataset; the
clustering distance metric was set to maximum distance
between rows, and the clustering method chosen was
Ward’s minimum variance. Additional visualization of im-
mune cell composition of the samples was accomplished
via the ggplot2 package, and a correlation matrix was
constructed using the ggcorrplot package.

Survival Analysis by Clusters

The primary outcome was OS, defined as the time since
pathologic diagnosis to death or loss to follow-up. In-
formation concerning adjuvant treatment course included
drug name and time elapsed between pathologic diagnosis
and beginning and end of a treatment course. OS after
conclusion of a treatment course was calculated by sub-
tracting end date from date of death or loss to follow-up.
Patients still alive were censored at the time of last follow-
up. Each endpoint was assessed using the Kaplan-Meier
method, and survival curves were compared using the
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Mantel-Cox log-rank test. Multivariable Cox proportional
hazard regression analysis was performed with an endpoint
of OS and visualized by forest plot. Adjuvant drug therapies
received by patients in the TCGA-LIHC cohort are outlined
in the Data Supplement.

Gene Set Enrichment Analysis

Differentially expressed gene (DEG) analysis was performed
using the Shiny web application, GENAVI.20 Raw count and
metadata files were created, and DEG analysis was per-
formed using the DESeq2 method, with cluster 1 as refer-
ence. Log twofold change values were used for downstream
gene set enrichment analysis (GSEA) analysis with MSigDb
pathways, specifically the H: hallmark gene sets collection.21

The ranked gene list was derived using logtwofold change.
The P value cutoff for the GSEA enrichment score was set at
.05. The GSEA was repeated using this methodology for
clusters 2-4, and gene sets that achieved significance were
extracted. The ComplexHeatmap package was then used to
visualize the enrichment scores of significantly over-
represented or underrepresented gene sets in each cluster.

Development of Immunogenomic Signature

To expand the analytic pipeline, the iGEAK tool kit was
leveraged.22 DEG analysis was performed using the limma
package and voom function. Two separate analyses were
performed, one of which used clusters 3 and 4, and the other
used high coexpression of programmed death-1 (PD-1) and
programmed-ligand 1 (PD-L1) as the experimental groups.
Cutoffs for DEG analysis were a fold change of 2 and P value
of .05 (default), adjusted by the Benjamini-Hochberg pro-
cedure. Variables selected for the immunogenomic signa-
ture included M0 macrophages as well as CXCL6 and
POSTN. This scoring methodology was modeled after the
Sullivan’s scoring system, as outlined by Chen et al.23 Ad-
ditional information is included in the Data Supplement.

Prediction of Immunotherapy Response

To overcome the limited publicly available matched tran-
scriptome and immune checkpoint blockade (ICB) treat-
ment data, the Tumor Immune Dysfunction and Exclusion
(TIDE) tool was used. TIDE uses a gene expression sig-
nature to predict response to ICB.24 Z-score transformed
RSEM data were input into the tool. TIDE performance has
been validated on melanoma and non–small-cell lung
cancer datasets, and can be extrapolated to other cancer
types based on the theoretical underlying assumptions of
the model. Output included prediction of immunotherapy
response and scores correlating with expression of gene
signatures associated with immune dysfunction.

RESULTS

Hierarchic Clustering Based on Immune Cell Subsets

Identifies Macrophage-Enriched Clusters

Patients were clustered based on relative fractions of im-
mune cell subsets: cluster 1 (macrophageMid, C4Hi; n =
125; 34%), cluster 2 (macrophageMid, CD8Hi; n = 46; 13%),

cluster 3 (macrophageHi, M2Hi; n = 125; 34%), and cluster
4 (macrophageHi, M0Hi; n = 68; 19%), as shown in Figure 1A.
Absolute immune content is displayed in Figure 1B. M0
macrophages comprise 29% of total immune content in
cluster 4, whereasmeanM2macrophage content in cluster
3 is 34%. The mean absolute immune content score in
clusters 3 (2.83) and 4 (2.63) is lower than in clusters 1
(2.93) and 2 (3.12). Figure 1C displays a correlation matrix
between the immune cell subsets. M0macrophage content
was found to be positively correlated with T regs (R2 = 0.3;
P = 1.1 × 10−6) and negatively correlated with natural killer
cells (R2 = −0.2; P = 1.7 × 10−3]. These same relationships
were not observed for other macrophage classes.

M0 Macrophage Enrichment is Associated With

Decreased OS and Response to Adjuvant Therapy,

Including Sorafenib

A multivariable model including clustering results and
clinical characteristics (Table 1) such as sex, weight, race,
alpha-fetoprotein (AFP), albumin-bilirubin score, and risk
factors including alcohol, hepatitis B and C, and non-
alcoholic fatty liver disease revealed that cluster 3 (hazard
ratio [HR], 2.04; 95%CI, 1.04 to 3.99; P = .04) and cluster 4
(HR, 2.62; 95%CI, 1.18 to 5.84;P = .02) are associatedwith
increased hazard of death. Other significant covariates were
pathologic stage IVA-B (HR, 5.99; 95% CI, 1.55 to 23.23);
P = .01), Asian race (HR, 0.32; 95% CI, 0.14 to 0.75; P =
.009), and hepatitis C (HR, 2.28; 95% CI, 1.10 to 4.73; P =
.027; Fig 2A). Although AFP was not independently asso-
ciated with significantly increased hazard of death (Fig 2A),
when combined with cluster, the group with AFP. 400 and
belonging to cluster 4 displayed an increased hazard of
death (HR, 4.10; 95% CI, 1.77 to 9.5; P , .001; Fig 2B).

The median follow-up time for all patients was 26.5 months
and was similar across clusters (30, 28.2, 25.2, 21) for
clusters 1-4, respectively. Overall, 129 patients (35%) had
died at the time of this study as a result of their HCC.
Median time since pathologic diagnosis to death was 80.7,
81.7, 46.8, and 41.8 months in cluster 1-4, respectively
(P = .019; Fig 3A). When clusters were grouped, median
survival was 80.7 months in cluster 1-2 and 45.6 months in
cluster 3-4 (P = .0025; Fig 3B). In the subset of patients
treated with adjuvant drug therapy (n = 40; 62 unique
treatment events), median time since conclusion of treat-
ment course to death was 33.2 months in cluster 1-2 and
4.4 months in cluster 3-4 (P = .003; Fig 3C). In those
treated with sorafenib (n = 28; 29 unique treatment events),
median time since conclusion of treatment to death was
29.9 months for cluster 1-2 and 2.6 months for cluster 3-4
(P = .041; Fig 3D).

GSEA Identifies Enrichment of Angiogenesis Hallmark

Genes in Cluster 4 and Informs Development of an

Immunogenomic Signature

After identifying that macrophage predominance confers
a poor prognosis, GSEA was performed for clusters 2-4,
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FIG 1. Hierarchic clustering based on immune cell subsets identifies macrophage-enriched clusters. (A) The results of unsupervised hierarchic clustering
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with cluster 1 as the reference. Angiogenesis-related genes
were over-represented in clusters 3 and 4, whereas genes
associatedwithmetabolic processes were under-represented
(Fig 4). Angiogenesis hallmark genes that were overex-
pressed in both cluster 4 and PD-1Hi/PD-L1Hi were CXCL6
and POSTN. Absolute M0 macrophage content, CXCL6
expression, and POSTN expression were combined to create
a prognostic immunogenomic signature. Patients were then
divided into the following score groups: A (low), B (in-
termediate), and C (high). Patients in score group C were
found to have a decreased median survival (30.6 months)
compared with those in score groups A (70.1 months) and B
(58.9 months; P = .003; Fig 5A). The T-cell dysfunction
(Fig 5C) and cancer-associated fibroblast (CAF) signatures
(Fig 5D) calculated using the TIDE tool were higher in group C
than group A (T-cell dysfunction,P= .001; CAF,P= .04). The
score methodology was validated using a GEO data-
set—GSE14520. Again, patients in score group C were found
to have a decreased median survival (53 months) compared
with those in score groups A and B (P = .03). TIDE was used
to classify patients as predicted responders or nonresponders
to ICB. There were fewer responders in score category B and
C (A = 69, B = 39, C = 39; P = .05), but there were no
meaningful differences in responders and nonresponders
within the same score category (Data Supplement).

DISCUSSION

In this study, we identified two macrophage-enriched HCC
clusters, both of which were prognostic of poor survival and

response to adjuvant therapy, including sorafenib. GSEA
analysis found that overenrichment of angiogenesis hall-
mark genes characterized the M0Hi cluster. Absolute M0
content as well as expression of two angiogenesis-related
genes found to be significantly overexpressed in M0Hi

and PD-1Hi/PD-L1Hi cohorts—CXCL6 and POSTN—were
combined to generate a score demonstrated to be prog-
nostic of poor survival in both the TCGA cohort and an
independent microarray cohort. Higher scores corre-
sponded to T-cell dysfunction and fewer ICB responders,
as calculated by the TIDE tool, suggesting that this
immunogenomic signature could be used for patient risk
stratification and treatment selection, because both sor-
afenib and monotherapy with ICB may not be appropriate
for this cohort.

Tumor-associated macrophages (TAMs) are regarded as
orchestrators of key events necessary for cancer progres-
sion, including skewing adaptive responses, cell growth,
angiogenesis, and extracellular matrix remodeling,
changes that all lead to a premetastatic niche.25,26 Addi-
tional subclassification of TAMs is necessary because their
polarization influences their behavior. At a basic level,
macrophages are separated into the M1 subtype, which
is proinflammatory, antifibrotic, and activated by LPS,
TNF, and IFN-Y, and the M2 subtype, which is anti-
inflammatory, profibrotic, and stimulated by interleukin
(IL) 4 and IL13.27,28 Given the dynamic nature of the tumor
microenvironment and the numerous stimuli within it,27

emerging classification paradigms describe TAMs on
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TABLE 1. Clinical and Pathologic Characteristics of TCGA-LIHC Patients by Cluster

Characteristic

Cluster

1 (n = 125) 2 (n = 47) 3 (n = 125) 4 (n = 68)

Mean age, years 59.3 61.1 58.8 60.3

Sex

Male 75 (60) 32 (68.1) 87 (69.6) 51 (75)

Female 50 (40) 15 (31.9) 38 (30.4) 17 (25)

Race

White 68 (54.4) 19 (40.4) 63 (50.4) 29 (42.6)

Asian 47 (37.6) 23 (48.9) 54 (43.2) 33 (48.5)

Black, American Indian, Alaska Native 7 (5.6) 2 (4.3) 6 (4.8) 4 (5.9)

Risk factors

Alcohol 35 (28) 20 (42.6) 40 (32) 29 (42.6)

Hepatitis B 34 (27.2) 19 (40.4) 31 (24.8) 16 (23.5)

Hepatitis C 19 (15.2) 7 (14.9) 13 (10.4) 14 (20.6)

NAFLD 10 (8) 2 (4.3) 5 (4) 3 (4.4)

Occupational exposures, smoking 8 (6.4) 2 (4.3) 6 (4.8) 0 (0)

Hemochromatosis 1 (0.8) 0 (0) 2 (1.6) 3 (4.4)

Vascular invasion

None 81 (64.8) 29 (61.7) 63 (50.4) 30 (44.1)

Micro 28 (22.4) 10 (21.2) 30 (24) 23 (33.8)

Macro 7 (5.6) 1 (2.1) 6 (4.8) 2 (2.9)

NR 9 (7.2) 7 (14.9) 26 (20.8) 13 (19.1)

Child-Pugh

A 77 (61.6) 30 (63.8) 69 (55.2) 37 (54.4)

B 11 (8.8) 0 (0) 7 (5.6) 3 (4.4)

C 0 (0) 1 (2.1) 0 (0) 0 (0)

NR 37 (29.6) 16 (34) 49 (39.2) 28 (41.1)

AFP

, 400 71 (56.8) 24 (51.1) 78 (62.4) 37 (54.4)

. 400 29 (23.2) 14 (29.8) 9 (7) 13 (19.1)

NR 25 (20) 9 (19.1) 38 (30.4) 18 (26.4)

ALBI gradea

I 68 (54.4) 21 (44.7) 56 (44.8) 29 (42.6)

II 17 (13.6) 9 (19.1) 17 (13.6) 13 (19.1)

III 4 (3/2) 3 (6.4) 4 (3.2) 1 (1.5)

NR 36 (28.8) 14 (29.8) 48 (38.4) 25 (36.8)

ECOG

0 60 (48) 21 (44.7) 50 (40) 28 (41.2)

1 29 (25.2) 11 (23.4) 32 (25.6) 11 (16.2)

2 9 (7.2) 2 (4.3) 9 (7.2) 6 (8.8)

3-4 1 (0.8) 3 (6.4) 5 (4) 5 (7.4)

NR 26 (20.8) 10 (21.3) 29 (23.2) 18 (26.5)

TNM stage

I 67 (53.6) 26 (55.3) 53 (42.4) 23 (33.8)

II 22 (17.6) 8 (17) 33 (26.4) 21 (30.9)

IIIA-C 23 (18.4) 13 (27.7) 29 (23.2) 19 (27.9)

IVA-C 3 (2.4) 0 (0) 1 (0.8) 1 (1.5)

NR 10 (8) 0 (0) 9 (7.2) 4 (5.9)

NOTE. Data are No. (%) unless otherwise indicated.
Abbreviation: AFP, alpha-fetoprotein, ALBI, albumin-bilirubin grade; ECOG, Eastern Cooperative Oncology Group; NAFLD, nonalcoholic fatty

liver disease; NR, not recorded or unable to be accessed; TCGA-LIHC, The Cancer Genome Atlas–Liver Hepatocellular Carcinoma.
aALBI grading: ALBI grade I, , 2.6; ALBI grade II, 2.6 ≤ × ≤ −1.39; ALBI grade III, . −1.39.

M0 Macrophage Enrichment Is Poorly Prognostic in HCC

JCO Clinical Cancer Informatics 1007



Yes
(n = 20)

1.43
(0.38 to 5.31)

.595 

Yes
(n = 53)

2.28
(1.10 to 4.73)

.027*

Yes
(n = 100)

2.25
(0.95 to 5.31)

.065 

Yes
(n = 124)

0.64
(0.31 to 1.32)

.226 

Other
(n = 19)

1.17
(0.34 to 4.06)

.805 

Asian
(n = 157)

0.32
(0.14 to 0.75)

.009**

Race
White
(n = 179)

Reference

Weight (n = 365)
0.99

(0.98 to 1.01)
.41 

Male
(n = 245)

0.67
(0.33 to 1.35)

.263 

Stage IVA−B
(n = 5)

5.99
(1.55 to 23.23)

.01**

Stage IIIA−C
(n = 84)

1.64
(0.82 to 3.28)

.165 

Stage II
(n = 84)

0.82
(0.39 to 1.72)

.596 

Grade 3
(n = 12)

0.41
(0.10 to 1.62)

.203 

Grade 2
(n = 56)

1.60
(0.82 to 3.12)

.167 

ALBI
Grade 1
(n = 174)

Reference

> 400
(n = 65)

1.07
(0.56 to 2.05)

.842 

AFP < 400
(n = 210)

Reference

4
(n = 68)

2.62
(1.18 to 5.84)

.018*

3
(n = 125)

2.04
(1.04 to 3.99)

.038*

2
(n = 47)

0.89
(0.34 to 2.30)

.812 

Cluster
1
(n = 125)

Reference

No. of events: 61; global P value (log-rank): .0039823 
AIC: 575.28; concordance index: 0.72 0.1 0.2 0.5 1 2 5 10 20

HR (95% CI) P

NAFLD
No
(n = 345)

Reference

Hepatitis C
No
(n = 312)

Reference

Hepatitis B
No
(n = 265)

Reference

Alcohol
No
(n = 241)

Reference

Sex
Female
(n = 120)

Reference

Stage
Stage I
(n = 169)

Reference

A

AFP cluster

B4
(n = 13)

B3
(n = 9)

B2
(n = 13)

B1
(n = 28)

A4
(n = 36)

A3
(n = 79)

A2
(n = 25)

A1
(n = 72)

4.10
(1.77 to 9.5)

1.12
(0.33 to 3.8)

0.91
(0.31 to 2.7)

0.76
(0.32 to 1.8)

0.94
(0.41 to 2.2)

1.43
(0.80 to 2.5)

0.87
(0.35 to 2.2)

Reference

< .001***

.859 

.859 

.537 

.892 

.228 

.765 

No. of events: 84; global P-value (log-rank): .079746
AIC: 817.92; concordance index: 0.61 0.5 1 2 5 10

HR

B

FIG 2. Macrophage enrichment is as-
sociated with decreased overall survival
and response to adjuvant therapy, in-
cluding sorafenib. (A) Multivariable
analysis with hazard ratio (HR) repre-
sented as a forest plot adjusting for
key covariates, including clinical and
pathologic characteristics, risk factors,
and immune cluster. The covariates are
listed in the left column, whereas HRs,
CIs, and P values are in the right col-
umn. (B) Amultivariable analysis for the
combination of alpha-fetoprotein (AFP)
and cluster. The left column lists the
various combinations, with A repre-
senting an AFP , 400 ng/mL and B
representing an AFP. 400 ng/mL. The
corresponding number represents the
cluster. AIC, Aikake information crite-
rion. * P = .01-.05; ** P = .001-.01; ***
P = .0-.001.
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a continuum of many subtypes or a mixed phenotype that is
neither M1 nor M2.29 Regardless of the phenotype, all
TAMs participate in some degree of immunosuppression.30

In ovarian cancer and glioblastoma, transcriptomic profiling
demonstrated that M0 macrophages do not fit into the
canonical M1 or M2 model, but M0 macrophages dem-
onstrated a transcriptional profile more similar to M2
macrophages.31,32 Ultimately, M0s may represent another
type of TAM or an incompletely differentiated M2.31 An-
giogenesis was also found to be a highly overenriched
process in the M0Hi cluster (Fig 4). MMP9 plays a critical
role in tumor angiogenesis by turning on the angiogenic
switch in avascular tumors,33 and in the development of
LM22 signature gene matrix, MMP9 was found to be dif-
ferentially expressed only in M0 macrophages. Thus,
a key role of the M0 subtype appears to be key to flip-
ping the angiogenic switch in HCC, in part, via MMP9
overexpression.

In a pancancer meta-analysis, 80% of studies demon-
strated that TAMs are generally associated with a poor
prognosis.34 But defining TAMs nonspecifically may un-
dermine their prognostic value, necessitating an explo-
ration of the role of TAMs beyond the traditional M1/M2
dichotomy, namely, the role of M0 macrophages. M0
macrophages were strongly associated with poor outcome
in breast35 and lung 36 cancer, whereas reduced M0
content has been associated with better prognosis in
bladder cancer.37 In a comprehensive analysis of di-
gestive system cancers, M0 macrophages were among
the most prevalent immune cell fractions, with M0
enriched clusters associated with decreased RFS and
worse prognostic immune score.38 In HCC, M0 macro-
phages are enriched in tumor tissues, both in unspecified
HCC and hepatitis C–associated HCC,39 an HCC subtype
shown in this analysis to be associated with worse
prognosis (Fig 2A).
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FIG 3. Macrophage enrichment is associated with decreased overall survival and response to adjuvant therapy, including sorafenib. (A) The Kaplan-Meier
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Sorafenib is approved in the first-line setting for unresectable
HCC, but it only prolonged OS by 3 months, and it failed to
offer superiority over placebo in the STORM trial. Sorafenib
resistance appears to be mediated in part by neo-
vascularization stimulated by TAMs recruited to the tumor
microenvironment.40 In fact, depletion of TAMs with the
macrophage-targeted agent zolendronic acid led to inhibition
of tumor angiogenesis and thus tumor progression in HCC
mousemodels.41 The association of TAMswith poor sorafenib
response was supported by the data presented in this study
(Fig 3D). Considering the modest survival benefit, adverse
effects, and this resistance mechanism, ICB is a promising
alternative to sorafenib in appropriately selected patients.

Recently, the number of approved indications for immune
checkpoint inhibitors has greatly expanded,42 and HCC is
no exception. Nivolumab was approved in 2017 for use in
the second-line setting after progression on sorafenib.43

Anti–PD-L1, anti–CTLA-4, and newer agents targeting LAG-
3 and Tim-3 are also being investigated in HCC.44 Despite
nivolumab’s approval, the objective response rate was still

only 20% in the CheckMate-040 trial,45 and superiority to
sorafenib was not shown in the CheckMate 459 trial. Re-
cently, the combination of atezolizumab (anti–PD-L1) and
the antiangiogenic agent bevacizumab has demonstrated
promising results in the first-line setting, with a 13% in-
crease in OS at 12 months compared with sorafenib for
unresectable HCC in the IMBrave150 trial.46

Risk scores to predict prognosis in HCC are becoming in-
creasingly prevalent. Such scores are based on genetic,
clinical, and immune data.23,47-50 In addition to M0 macro-
phage content, our signature incorporates CXCL6 and POSTN
gene expression. CXCL6 is an oncogenic chemokine, which
mediates angiogenesis, invasion, and progression in HCC
through activation of angiogenic switch geneMMP9.51POSTN
is part of the sulfatase 2 (SULF2)-TGFB1-SMAD signaling axis,
which is also involved in angiogenesis, andSULF2 andPOSTN
expression correlates with poor prognosis in HCC.POSTNmay
serve as a biomarker for more aggressive disease and
a therapeutic target for antiangiogenic approaches.52 Fur-
thermore, POSTN has been implicated in the recruitment of
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tumor-supportive M2 macrophages in glioblastoma,53 and
CXCL6 has been found to play a key role in driving liver fibrosis
by stimulating the release of TGF-B by Kupffer cells.54 CXCL6
and POSTN were selected because they were significantly
overexpressed in both the M0 macrophage-enriched PD-1Hi/
PD-L1Hi cohorts. Considering the roles of the signature’s
members, it effectively captures key players in establishing
a tumor-promoting stromal environment in HCC via promotion
of immune escape, angiogenesis, and fibrosis. Furthermore,
this signature offers a foundation to build on with respect to
development of a predictive biomarker strategy for those
patients who are more likely to benefit from administration of
ICB and antiangiogenic tyrosine kinase inhibitors in combi-
nation rather than as monotherapies.

The availability of sequencing data has outpaced the
availability of matched treatment data, Only a fraction of the

patients in the TCGA-LIHC cohort had available drug
treatment data and the full complement of survival data,
limiting the power to detect differences between the groups
analyzed, despite significance by statistical testing seen in
this study. In addition, ICB response data with matched
whole transcriptome data for HCC is not publically avail-
able, thus preventing validation of ICB response prediction.

Our analysis is a snapshot in time, reflecting when the
tumor was resected and sequenced. As a result, the dy-
namic influences on macrophage polarization and the
changing tumor microenvironment were not captured. In
addition, bulk tumor specimen analysis does not capture
the immune contexture that is critical to macrophage be-
havior. Single-cell approaches may address these issues;
however, they are subject to a bias toward more highly
expressed genes, they require optimally preserved
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FIG 5. Immunogenomic signature is prognostic for overall survival in both The Cancer Genome Atlas (TCGA) and FSE14520. (A) The Kaplan-Meier
curve for overall survival for each of the score groupings in the TCGA–Liver Hepatocellular Carcinoma (LIHC) cohort. Clusters are color coded with
a legend at the top of the figure. A risk table is displayed at the bottom of the table. (B) The Kaplan-Meier curve for overall survival for the score groupings
in the GSE14520. (C) A box plot representation of T-cell dysfunction scores (y-axis) by score grouping (x-axis). Global Kruskal-Wallis P value is displayed
along with Mann-Whitney pairwise comparisons. (D) A box plot representation of cancer-associated fibroblast signature (y-axis) by score grouping
(x-axis). Kruskal-Wallis and Mann-Whitney P values are displayed.
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specimens, and their high cost limits profiling of large
numbers of patients.55 For these reasons, in a clinical
decision-making context, an exclusively single-cell ap-
proach is not feasible. Thus, it is important to use single-cell
approaches to augment bulk tumor profiling from data-
bases such as TCGA by validating findings from larger scale
analyses of bulk specimens.

We further elucidate the prognostic significance and mo-
lecular influences of TAMs and specifically the M0 subtype

in HCC. The immunogenomic signature methodology was
demonstrated to be prognostic in two separate cohorts
sequenced on two different platforms. It was also associ-
ated with fewer responders to ICB. Future work should seek
to further refine the scoremethodology, perhaps generating
universal cutoff values and a nomogram incorporatingmore
variables. Additionally, prospectively validating the pre-
dictive nature of the score in ICB monotherapy or combi-
nation trials will be essential.
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