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The purpose of the present study was to determine the genomic
profile of renal cell carcinoma (RCC) in end-stage renal disease
(ESRD) by analyzing genomic copy number aberrations. Seventy-
nine tumor samples from 63 patients with RCC-ESRD were
analyzed by array comparative genomic hybridization using the
Agilent Whole Human Genome 4 · 44K Oligo Micro Array (Agilent
Technologies Inc., Palo Alto, CA, USA). Unsupervised hierarchical
clustering analysis revealed that the 63 cases could be divided into
two groups, Clusters A and B. Cluster A was comprised mainly of
clear cell RCC (CCRCC), whereas Cluster B was comprised mainly of
papillary RCC (PRCC), acquired cystic disease (ACD)-associated RCC,
and clear cell papillary RCC. Analysis of the averaged frequencies
revealed that the genomic profiles of Clusters A and B resembled
those of sporadic CCRCC and sporadic PRCC, respectively.
Although it has been proposed on the basis of histopathology that
ACD-associated RCC, clear cell papillary RCC and PRCC-ESRD are
distinct subtypes, the present data reveal that the genomic profiles
of these types, categorized as Cluster B, resemble one another.
Furthermore, the genomic profiles of PRCC, ACD-associated RCC
and clear cell papillary RCC admixed in one tissue tended to resem-
ble one another. On the basis of genomic profiling of RCC-ESRD,
we conclude that the molecular pathogenesis of CCRCC-ESRD
resembles that of sporadic CCRCC. Although various histologic
subtypes of non-clear cell RCC-ESRD have been proposed, their
genomic profiles resemble those of sporadic PRCC, suggesting that
the molecular pathogenesis of non-CCRCC-ESRD may be related to
that of sporadic PRCC. (Cancer Sci 2012; 103: 569–576)

A cquired cystic disease of the kidney (ACDK) is a common
complication of end-stage renal disease (ESRD), and the

prevalence of ACDK increases progressively with the duration
of dialysis.(1) It is well documented that the risk of RCC is
approximately 34- to 100-fold greater in patients with ESRD
than in the general population.(2,3)

It has been reported that RCC arising in ESRD patients
(RCC-ESRD) is distinct from sporadic RCC in several
respects.(4) First, the biological behavior of the former is gener-
ally less aggressive than that of the latter.(5,6) Second, papillary
RCC (PRCC) is the most common histological subtype of RCC-
ESRD (48.8–75%),(7,8) whereas clear cell RCC (CCRCC) is the
most common in sporadic RCC (75%). Third, in RCC-ESRD,
several histological subtypes are frequently admixed in a single
tumor.(9) In fact, Tickoo et al. have recently proposed a unique
histological classification for RCC-ESRD frequently accompa-
nied by ACDK.(9) Specifically, they have designated tumors
showing a microcystic architecture and eosinophilic cytoplasm
with Furmans’ Grade 3 nuclei that are frequently associated with
intratumoral oxalate crystals as ‘‘acquired cystic disease (ACD)-
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associated RCC’’, whereas tumors exhibiting a papillary archi-
tecture and clear cytoplasm are designated ‘‘clear cell papillary
RCC’’.(10)

It has been reported that the various histological subtypes of
sporadic RCC are associated with distinct genetic abnormalities.
In CCRCC, gains of chromosomes 5q and 7q, and losses of
chromosomes 3p and 14q, are frequently reported,(11–14)

whereas in PRCC gains of chromosomes 7pq and 17pq and a
loss of chromosome Y are often observed.(15–17) However, the
genomic aberrations present in RCC-ESRD are still largely
unknown.(18) Therefore, to identify the genomic profiles and to
clarify the molecular mechanisms responsible for the pathogene-
sis of RCC-ESRD, we analyzed DNA copy number alterations
(CNAs) throughout the entire genome using array-based
comparative genomic hybridization (CGH).

Materials and Methods

Histology. In all, 63 patients with RCC-ESRD were diag-
nosed histologically by a central pathologist (Y.N.) according to
the World Health Organization (WHO) classification(19) and the
classification proposed by Tickoo et al.(9) To arrive at conclu-
sive pathological diagnoses, we performed immunohistochemis-
try with antibodies directed against a-methylacyl-CoA racemase
(DAKO, Carpinteria, CA, USA) and cytokeratin 7 (DAKO).
The clinicopathologic findings are given in Table S1, available
as Supporting Information to this publication. The 63 patients
evaluated in the present study comprised 26 cases of CCRCC,
four of PRCC, two of ACD-associated RCC, three of clear cell
papillary RCC, one of mucinous tubular and spindle cell carci-
noma (MTSCC), one of tubulocystic carcinoma,(20) one of
unclassified RCC, and 25 cases that contained several different
histologic elements (Table S1).

Extraction of genomic DNA. Histological sections were pre-
pared from formalin-fixed, paraffin-embedded tissue samples
and stained with Toluidine blue (Wako, Osaka, Japan). To
collect tumor cells selectively from tissues, laser-capture micro-
dissection (LCM; Arcturus Engineering, Mountain View, CA,
USA) was performed. Genomic DNA was extracted by the stan-
dard proteinase K digestion method, as described previously.(21)

As the source of control DNA, genomic DNA was extracted
from tissues of normal renal cortex obtained from 12 patients
with ureteral carcinoma or renal pelvic carcinoma, neither of
which exhibited invasion or metastasis to renal cortex. The same
amount of genomic DNA extracted from 12 patients was mixed
and used as the control DNA. The tissue extraction of genomic
Cancer Sci | March 2012 | vol. 103 | no. 3 | 569–576



DNA and its analysis by array CGH were approved by the Oita
University Ethics Committee (Approval no. P-05–05 and 439)
according to the Ethical Guidelines for Clinical Research
(Ministry of Health, Labour and Welfare, 2008, http://www.
mhlw.go.jp/english/).

Array CGH and data analysis. For array CGH, 1.5 lg geno-
mic DNA was used. High-resolution array CGH was performed
using the Agilent Whole Human Genome 4 · 44K Oligo Micro
Array Kit (Agilent Technologies Inc.) in accordance with stan-
dard protocols. Microarray images were analyzed using FEA-
TURE EXTRACTION v. 9.5.3.1 (Agilent Technologies Inc.)
with linear normalization (protocol CGH-v4_95_Feb07) and the
resulting data were subsequently imported into the DNA Analyt-
ics v. 4.0.81 software package (Agilent Technologies). Following
normalization of the raw data, the log2 ratio of Cy5 (tumor) to
Cy3 (control) was calculated. Aberrant regions were determined
by the Aberration Detection Method (ADM)-2 algorithm at a
threshold of 8.0 in DNA Analytics. To detect gains and losses of
chromosome regions, we set the values of parameters for aberra-
tion filters as follows: minimum number of probes in region 2,
minimum absolute average log2 ratio for region 0.15, maximum
number of aberrant regions 10 000, and percentage penetrance
per feature 0. The data obtained in the array CGH analysis are
available at the GEO database (http://www.ncbi.nlm.nih.gov/
geo/; accession numbers GSE28601 and GSE33117). The cluster-
ing of array CGH data was performed with Gene Cluster 3.0
software (Stanford University, Palo Alto, CA, USA) using unsu-
pervised hierarchical clustering analysis based on Correlation
(uncentered) for the 63 cases of RCC-ESRD.

Statistical analysis. Comparisons between the genomic
CNAs and histological subtypes were examined by Fisher’s
exact test. Differences in dialysis duration and frequency of
ACDK between Clusters A and B were examined by the Wilco-
xon test. Statistical significance was set at P < 0.05.

Results

Subclassification of RCC-ESRD into two groups using
unsupervised hierarchical clustering. We analyzed the whole-
genome profiles for the 63 cases of RCC-ESRD and the aver-
aged frequencies of their CNAs are summarized in Figure 1. In
the present study, the normal control consisted of kidney tissue
from 12 patients with diseases other than RCC. Because we did
not perform array CGH using paired (tumor ⁄ non-tumor) sam-
ples, we cannot completely rule out the possibility that unidenti-
fied germline copy number variation (CNV)s may have affected
our array CGH data. Among these CNAs, loss at 3p and gains at
5q and 16pq were detected in more than 30% of cases. Unsuper-
vised hierarchical clustering of all 63 cases, based on array
CGH data from autosomes, showed that the various histologic
subtypes of RCC-ESRD could be divided into two groups,
namely Clusters A and B (Fig. 2), on the basis of genome profil-
ing. The 27 cases categorized into Cluster A included 24 cases
of CCRCC (88.9%), one case of ACD-associated RCC (3.7%),
one case of PRCC (3.7%), and one case of chromophobe RCC
Fig. 1. Genome-wide averaged frequency of genomic imbalance in 63
Oligonucleotide probes are shown in order from chromosome 1 to 22 wit
losses (negative values) is shown on the y-axis for each probe in all cases o
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(3.7%), indicating that Cluster A was composed mainly of
CCRCCs. Conversely, the 36 cases in Cluster B comprised 16
cases of ACD-associated RCC (44.4%), eight cases of PRCC
(22.2%), six cases of CCRCC (16.7%), three cases of clear cell
papillary RCC (8.3%), one case of unclassified RCC (2.8%),
one case of tubulocystic carcinoma (2.8%), and one case of
MTSCC (2.8%), indicating that Cluster B was composed mainly
of a variety of histologic subytpes other than CCRCC. Consis-
tent with our data that ACDK was more common in Cluster B
than in Cluster A (Table S2), all six cases of CCRCC in Cluster
B were accompanied by ACDK (Table S3), compared with only
15 of 24 cases of CCRCC in Cluster A (62.5%). Although this
observation appears to be interesting, the trend did not reach sta-
tistical significance, probably due to the limited number of
cases.

Identification of distinct differences in genomic profiles
between Clusters A and B. We next compared the averaged
frequencies of CNAs between Clusters A and B. As shown in
Figure 3, distinct differences between their genomic profiles
were found. Among the 27 cases categorized as belonging to
Cluster A, losses at 3p and 14q and a gain at 5q were detected in
24 (88.9%), nine (33.3%) and nine (33.3%) cases, respectively.
The presence of these CNAs has also been reported in sporadic
CCRCC,(14) indicating that the CNAs of Cluster A have similar
patterns to those of sporadic CCRCC, although the frequency of
the 7q gain was significantly lower in CCRCC-ESRD of Cluster
A (8.3%; 2 ⁄ 24) than in sporadic CCRCC (35%; 9 ⁄ 36;
Table S4). In fact, among the 27 cases categorized into Cluster
A, 24 (88.9%) were diagnosed histologically as CCRCC
(Fig. 2), suggesting that CCRCC-ESRD represented a distinct
subtype of RCC-ESRD on the basis of genomic profiling. Con-
versely, in more than 30% of the 36 cases categorized into Clus-
ter B, the CNAs detected were gains at 5p (n = 13; 36.1%), 5q
(n = 16; 44.4%), 7p (n = 16; 44.4%), 7q (n = 15; 44.4%), 12p
(n = 11; 30.6%), 12q (n = 12; 33.3%), 16pq (n = 23; 63.9%),
and 17q (n = 14; 38.9%; Fig. 3). We noticed that Cluster B had
CNAs such as gains at 7pq, 12pq, 16pq, and 17q, which have
frequently been observed in sporadic PRCC,(16) suggesting that
the genomic profiles of RCC-ESRD categorized into Cluster B
resemble those of sporadic PRCC.

Interestingly, we noticed that the duration of dialysis in cases
categorized into Cluster B was significantly longer than that of
cases in Cluster A (P = 0.009; Fig. 4a) and that ACDK was
evident more frequently in Cluster B than in Cluster A
(P = 0.0213). Furthermore, we found that the pattern of aver-
aged CNA frequencies in patients who had been receiving dialy-
sis for <10 years was quite distinct from that in patients who
had been receiving dialysis for >20 years (Fig. 4b,d). The for-
mer pattern resembled that of sporadic CCRCC, whereas the lat-
ter resembled that of sporadic PRCC. These findings suggest
that the genotypes of RCC-ESRD are associated with the dura-
tion of dialysis. In addition, patients who had been receiving
dialysis for between >10 and <20 years showed a genotypic
pattern intermediate between the former two (Fig. 4c).
cases of renal cell carcinoma (RCC) in end-stage renal disease (ESRD).
hin each chromosome. The frequency (%) of gains (positive values) and
f RCC-ESRD analysed.
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Fig. 2. Unsupervised hierarchical clustering of autosomal DNA copy number aberrations in renal cell carcinoma (RCC) in end-stage renal disease
(ESRD). Unsupervised hierarchical clustering analysis of 63 RCC-ESRD cases was performed on the basis of standardized copy number changes.
The histologic diagnosis for each case is indicated. For cases with admixed multiple histologic subtypes, the dominant subtype is shown. ACD,
acquired cystic disease; MTSCC, mucinous tubular and spindle cell carcinoma.
Similarity of the genomic profile of PRCC-ESRD with that of
sporadic PRCC. Because histological patterns diagnosed as
PRCC, ACD-associated RCC, and clear cell papillary RCC
tended to be admixed in one tissue, we differentially collected
each of these elements alone using LCM and analyzed them as a
distinct sample. Consequently, we obtained 38 samples from 27
patients, 16 with ACD-associated RCC, eight with PRCC, and
three with clear cell papillary RCC. We first analyzed the aver-
aged frequencies for 12 samples of PRCC-ESRD and compared
their genomic profiles with those of sporadic PRCC that had
Inoue et al.
already been reported. Gains at 5pq, 7pq, 8q, 12pq, 16pq, 17pq,
and 20pq were detected in over 40% of all samples of PRCC-
ESRD (Fig. 5a). These aberrations, except for the 5q gain, have
also been reported to be detected frequently in sporadic
PRCC,(16) suggesting that CNAs of PRCC-ESRD resemble
those of sporadic PRCC (Table S5).

Genomic profiles of ACD-associated RCC and clear cell papillary
RCC are similar to those of PRCC-ESRD. Next, we compared the
patterns of averaged frequency among 12 samples of PRCC-
ESRD, 16 samples of ACD-associated RCC, and 10 samples of
Cancer Sci | March 2012 | vol. 103 | no. 3 | 571
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Fig. 3. Distinct difference in genome-wide averaged frequency of genomic imbalance between Clusters A and B. Oligonucleotide probes are
shown in order from chromosome 1 to 22 within each chromosome. The frequency (%) of gains (positive values) and losses (negative values) is
shown on the y-axis for each probe in all cases of renal cell carcinoma (RCC) in end-stage renal disease (ESRD) in Clusters A and Cluster B.

(a)

(b)

(c)

(d)

Fig. 4. Association between the pattern of genome-wide averaged frequency of genomic imbalance and the duration of dialysis. (a) The
duration of dialysis compared between Clusters A and B. (b–d) Genome-wide averaged frequency of genomic imbalance in patients receiving
dialysis for <10 years (b), 10–20 years (c), and >20 years (d). The number of cases in each of the three groups was 33, 18 and 12, respectively.
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(a)

(b)

(c)

Fig. 5. Genome-wide averaged frequency of genomic imbalance in (a) papillary, (b) acquired cystic disease (ACD)-associated, and (c) clear cell
papillary renal cell carcinoma (RCC) in end-stage renal disease (ESRD). Oligonucleotide probes are shown in order from chromosome 1 to 22
within each chromosome. The frequency (%) of gains (positive values) and losses (negative values) is shown on the y-axis for each probe for 33
samples of papillary RCC-ESRD (a), 16 samples of ACD-associated (b), and 10 samples of clear cell papillary RCC-ESRD (c).
clear cell papillary RCC. In the 12 PRCC samples, gains at 5pq
(n = 7; 58.3%), 7pq (n = 7; 58.3%), 8q (n = 5; 41.7%), 12pq
(n = 5; 41.7%), 16p (n = 8; 66.7%), 16q (n = 6; 50%), 17p
(n = 5; 41.7%), 17q (n = 8; 66.7%), 20p (n = 5; 41.7%), and
20q (n = 6; 50%) were detected (Fig. 5a). In the 16 ACD-asso-
ciated RCCs, gains at 5q (n = 8; 50%), 7pq (n = 8; 50%), 12pq
(n = 7; 43.8%), and 16pq (n = 12; 75%) were detected
(Fig. 5b). Furthermore, in the 10 clear cell papillary RCCs,
gains at 5p (20%), 5q (30%), 7pq (20%), 12pq (20%), and 16pq
(60%) were detected (Fig. 5c). The overlapping minimal com-
mon regions that were recurrently detected in more than 40% of
cases of each histologic subtype are listed in Table S6. In partic-
ular, gains at 16p13.3, 16p11.2, and 17q24.3–25.3 were detected
in 75%, 66.7% and 66.7% of PRCC, respectively. Furthermore,
in 75% of ACD-associated RCCs and clear cell papillary RCCs,
a copy number gain was detected throughout the whole 16th
chromosome. The frequencies of CNAs in each chromosome of
PRCC-ESRD were compared with those of ACD-associated
RCC and clear cell papillary RCC, but no significant differences
were evident except for 1q and 17q, respectively (Tables S7 and
S8). The frequency of gain at 17q in PRCC-ESRD (58.3%) was
significantly higher (P = 0.0115) than that in clear cell papillary
RCC (10%; Table S5). Furthermore, the frequency of gain at 1q
in PRCC-ESRD (33.3%) was significantly higher (P = 0.02418)
than that in ACD-associated RCC (0%; Table S4). These find-
ings suggest that the genomic profiles of PRCC-ESRD, as a
whole, resemble those of ACD-associated RCC as well as clear
cell papillary RCC. In addition, there were no differences in the
frequencies of CNAs between ACD-associated RCC and clear
cell papillary RCC (Table S9).

Similarity of genomic alterations in the histologic subtypes of
non-clear cell RCC-ESRD. We next analyzed the genomic pro-
files of 13 cases in which multiple histological components
coexisted. Of these, we analyzed nine cases that shared distinct
histologic components other than CCRCC. As shown in
Figure 6, one case in which PRCC, ACD-associated RCC, and
tubulocystic carcinoma were admixed in one tissue exhibited
gains at 1q, 5pq, 8pq, 9pq, 12pq, 16pq, 17pq, and 20pq, and a
Inoue et al.
loss at 18pq in all three histologic components, indicating that
all the histologic components had similar genomic profiles. Sub-
sequently, we analyzed the remaining eight cases in a similar
way. As shown in Figure S1, seven of the nine cases were found
to share the same genomic aberrations in each histologic compo-
nent. Four of those seven cases shared gains at 5q, 7pq, and 16p,
three cases shared gains at 5p and 16q, and two cases shared
gains at 1q, 12pq, 17q, and 20q. Conversely, in the remaining
two of nine cases, no genomic aberrations were shared. Thus, the
data suggest that the genomic profiles of PRCC, ACD-associated
RCC, and clear cell papillary RCC tend to resemble one another.

Gains at 7pq, 16pq and 20pq were also detectable in atypical
cysts, but not in simple cysts. It is well known that cystic dis-
ease is a common complication of ESRD.(22–24) Furthermore, it
has been hypothesized that such acquired cystic lesions may be
a precursor of RCC-ESRD.(23,24) Therefore, using array CGH,
we analyzed the CNAs of 12 cases of simple cysts and seven
cases of atypical cysts, both of which were found to be present
in RCC-ESRD tissue samples. In the seven atypical cysts, gains
at 7pq (28.5%), 16pq (42.8%), 19p (28.5%), and 20q (28.5%)
were evident, although CNAs were rarely detectable in simple
cysts (Fig. 7). Because gains at 7pq, 16pq, and 20q were also
detected in PRCC-ESRD, ACD-associated RCC, and clear cell
papillary RCC, the observations suggest that CNAs character-
istic of these tumors were already present in atypical cysts.

Discussion

In the present study, we found that cases of RCC-ESRD could
be classified into two clusters, A and B, on the basis of their
CNA patterns. This significant difference in the genomic profiles
strongly suggests a distinct difference in molecular pathogenesis
between the two clusters. Cluster A was comprised mainly of
CCRCC-ESRD. Because the genomic profile of CCRCC-ESRD
resembled that of sporadic CCRCC diagnosed on the basis of
histopathology, the molecular mechanisms operating in
CCRCC-ESRD appear to be similar to those in sporadic
CCRCC. Indeed, the CNA patterns revealed in the present study
Cancer Sci | March 2012 | vol. 103 | no. 3 | 573
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 6. The pattern of copy number alterations (CNAs) in a case of renal cell carcinoma (RCC) in end-stage renal disease (ESRD) containing
several histologic components. (a) Histology (low-power loupe view) of a case of RCC-ESRD composed of papillary RCC-ESRD (b), clear cell
papillary RCC-ESRD (c) and tubulocystic carcinoma (d). (b–d) Histology (high-power view) of each component shown in (a). (e–g) Array
comparative genomic hybridization (CGH) profiles of each histologic component. Whole-genomic profiles of papillary RCC-ESRD (e), clear cell
papillary RCC-ESRD (f) and tubulocystic carcinoma (g). Oligonucleotide probes are shown in order from chromosome 1 to 22 within each
chromosome. The log2 ratio was plotted for all oligonucleotide probes based on their chromosome positions. The shaded areas and bold
horizontal lines indicate regions of CNAs based on an ADM-2 algorithm.
are quite similar to those of sporadic CCRCC demonstrated in
our previous study.(14) Furthermore, consistent with our pro-
posal, it has already been reported that the karyotype pattern of
CCRCC-ESRD is similar to that of sporadic CCRCC, although
the number of cases analyzed is admittedly limited,(25,26) and
that mutations of the VHL gene that are frequently detected in
sporadic CCRCC are also common in CCRCC-ESRD.(27,28)

Conversely, Cluster B was found to contain various histologic
574
subtypes, based on the histopathologic classification criteria pro-
posed by Tickoo et al.(9) We found that cases categorized into
Cluster B had CNA patterns similar to those of sporadic PRCC,
suggesting that, although Cluster B contains various histologic
subtypes, its genomic profile has features in common with that
of PRCC. To our knowledge, this is the first report to uncover
the pattern of genomic CNAs of RCC-ESRD using array CGH
analysis of multiple samples, although array CGH data of a few
doi: 10.1111/j.1349-7006.2011.02176.x
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(a) (b)

(c)
(d)

Fig. 7. Genome-wide averaged frequency of genomic imbalance in atypical and simple cysts in patients with renal cell carcinoma (RCC) in end-
stage renal disease (ESRD). (a,c) Histology of a simple (a) and atypical (c) cyst (high-power view; original magnification ·400). (b,d)
Oligonucleotide probes are shown in order from chromosome 1 to 22 within each chromosome for simple (b) and atypical (d) cysts. The
frequency (%) of gains (positive values) and losses (negative values) is shown on the y-axis for each probe.
cases have been reported previously.(29) However, because only
63 cases were analyzed in the present study, we cannot rule out
the possibility that clustering ⁄ classification may have an overfit-
ting to the cohort used in the present study. To confirm our pres-
ent proposal, further analyses using additional cases are needed.

Various histologic subtypes, including ACD-associated RCC,
clear cell papillary RCC, and PRCC, have been proposed by
Tickoo et al.(9) However, in the present study we were unable to
identify any subgroups in Cluster B. We also found that the
genomic profiles of ACD-associated RCC, clear cell papillary
RCC and PRCC-ESRD, as a whole, exhibited patterns similar to
one another. Furthermore, these histologic subtypes categorized
as Cluster B were frequently found to coexist in one tissue.
Thus, although it has been proposed that these subtypes are dis-
tinct from one another on the basis of histology,(9,30) the present
genomic data enable us to speculate that they share similar
molecular mechanisms. Interestingly, however, the frequencies
of gains at 17q and 1q in PRCC-ESRD were significantly higher
than those in clear cell papillary RCC and ACD-associated
RCC, respectively, suggesting that addition of these gains may
be involved in the pathogenesis of PRCC-ESRD.

Ishikawa compared the clinical characteristics of RCC-ESRD
patients who had undergone dialysis for >20 years with those
who had undergone dialysis for <10 years, and found that
patients with a longer duration of dialysis were younger, more
often had acquired cysts, and more often had PRCC.(31)

Furthermore, Nouh et al. have reported that CCRCC is more
Inoue et al.
common in patients who have been on dialysis for £10 years,
but, in those who have been on dialysis for >10 years, ACD-
associated RCC is more common.(4) It has been hypothesized
that ACDK is the precursor of a proportion of RCC-ESRD,
because a build-up of uremic metabolites, oxidative stress, and
growth factors may lead to impairment of DNA repair mecha-
nisms and an increased frequency of hypermethylation of tumor
suppressor genes, thus resulting in carcinogenesis.(1,23,32) There-
fore, our present findings, in addition to those of previous stud-
ies, enable us to speculate that dialysis for longer periods may
be associated with specific genomic aberrations that may cause
PRCC-ESRD, ACD-associated RCC, and clear cell papillary
RCC. Furthermore, in the present study we found that CNAs in
atypical cysts resemble those of PRCC-ESRD, ACD-associated
RCC, and clear cell papillary RCC, leading us to hypothesize
that atypical cysts are a precursor of these tumors.
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