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Background. Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects 
from observational data. However, there remains a general gap in understanding among clinicians on how to critically review obser-
vational studies that have incorporated these analytic techniques.

Methods. Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the ques-
tion “Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mor-
tality?” We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity 
score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to 
guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation 
of the results of each approach.

Results. 2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intrave-
nous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, 
ranging from 0.84–0.95. However, there were some relevant differences between the interpretations of the findings of each approach.

Conclusions. Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating 
causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will 
remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor 
study design or questionable data accuracy.
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The impact of various approaches to administering antibiotic 
therapy on health outcomes are commonly estimated using ob-
servational studies as randomized controlled trials (RCTs) are 
not always feasible, ethical, or affordable. Numerous factors af-
fect antibiotic treatment strategies and, as such, exposed subjects 
(ie, strategy A) and unexposed subjects (ie, strategy B) in ob-
servational studies tend to differ on a number of both meas-
ured and unmeasured characteristics. For example, patients 
who are severely ill, immunocompromised, or have a history 
of multidrug-resistant infections have a greater likelihood of 

receiving more “aggressive” antibiotic therapy (ie, broad-spec-
trum agents, combination therapy, prolonged durations) than 
their younger and healthier counterparts (ie, confounding by 
indication), making fair comparisons between exposed and 
unexposed patients challenging [1]. Additional characteristics 
such as the experience and beliefs of the provider or requests 
from family members also influence both treatment decisions 
and patient outcomes but are difficult to account for in obser-
vational studies. Thus, unmeasured confounding is a perpetual 
limitation to observational studies. These issues are circum-
vented by randomizing patients to treatment assignment where 
both easily measured and unmeasured “confounders” are natu-
rally balanced across treatment groups.

In response to the inherent concerns with observational studies, 
propensity score methods are increasingly being used to reduce 
the unwanted effect of treatment selection bias [2]. The goal of 
propensity score techniques is to optimize the covariate simi-
larity in the exposed and unexposed groups. Several approaches 
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to propensity score analysis have been used in the infectious dis-
eases literature, including matching, weighting, and stratification. 
However, a general gap in understanding among clinicians on 
how to critically review observational studies that have incorpo-
rated these analytic techniques exists. We previously addressed 
the question “Does transitioning patients with gram-negative 
bloodstream infections from intravenous (IV) to oral therapy 
impact 30-day mortality?” through propensity score matching 
using a multicenter cohort [3]. Here, we repeat the analysis using 
multivariable regression, propensity score weighting, and pro-
pensity score stratification using this clinical question as a case 
study to guide clinicians through (1) the pros and cons of each 
analytic approach, (2) the general steps of each approach, and (3) 
the appropriate interpretation of the results of each approach. For 
a more nuanced understanding of approaches to estimate causal 
effects using observational data that may be more appropriate for 
those with advanced training in statistics, we refer the reader to 
several comprehensive review articles on this topic [4–6].

METHODS

Description of Cohort

A detailed description of the cohort used for the current work 
has been reported previously [3, 7, 8]. The cohort includes man-
ually collected data from 4967 patients with monomicrobial 
Enterobacterales bloodstream infections from 1 January 2008 
to 31 December 2014, hospitalized at The Johns Hopkins 
Hospital, the Hospital of the University of Pennsylvania, or the 
University of Maryland Medical Center. Demographic infor-
mation, pre-existing medical conditions, source of bacteremia, 
source control, severity of illness, microbiologic data, antibiotic 
therapy, and patient outcomes were collected. Additional eli-
gibility criteria were imposed on the cohort to specifically ad-
dress the research question “Does transitioning patients with 
gram-negative bloodstream infections from IV to oral therapy 
impact 30-day mortality?” [3].

Patients whose antibiotic treatment was switched from IV 
to oral therapy were referred to as the “exposed” group, and 
those who remained on IV therapy for the duration of treat-
ment were referred to as the “unexposed” group. We focused on 
a single outcome (ie, 30-day all-cause mortality) and estimated 
the association between being in the exposed or unexposed 
group and 30-day mortality using odds ratios. Below, we detail 
the methodology used to evaluate the study question using lo-
gistic regression, propensity score matching, propensity score 
weighting, and propensity score stratification. Typically, either 
regression analysis or 1 of the 3 propensity score techniques is 
selected to evaluate the association between the exposure and 
outcome when estimating causal effects in observational data, 
but for explanatory purposes, we present the findings using 
each of the 4 approaches. All analysis were performed using 
STATA version 15.0 statistical package (Stata Corp).

Logistic Regression

We begin by discussing traditional logistic regression anal-
ysis. Logistic regression was employed to estimate the odds of 
30-day mortality comparing patients who were transitioned to 
oral therapy versus those who remained on IV therapy. This as-
sociation (ie, the unadjusted odds ratio) was estimated using 
univariable regression analysis where the outcome was “re-
gressed” on the binary variable indicating whether a patient 
was switched to oral therapy or not. The adjusted odds ratio 
was then estimated by adding confounders into the model (eg, 
intensive care unit [ICU] status, immunocompromise, etc). 
Confounders were defined as variables that likely influenced 
the decision to switch to oral therapy and also impacted the 
likelihood of death within 30 days changing the measure of as-
sociation (ie, the odds ratio) by at least 10% and distorting the 
true relationship between the exposure and outcome [9, 10]. 
The general guidance of limiting variable inclusion to 1 variable 
per 10 outcome events was used [11].

Propensity Score Generation

An alternative approach for the evaluation of observational data 
involves the generation and incorporation of propensity scores. 
The propensity score is the probability a patient will receive 
oral step-down therapy, based on characteristics of the patient, 
organism, and any other measurable factors that might influ-
ence this decision [12]. Propensity scores were estimated using 
multivariable logistic regression, in which patient and organism 
characteristics were the predictors in a model of the odds of 
being allocated to either the oral step-down therapy group or 
the IV therapy group. Covariates were selected based on a priori 
hypothesized associations and not analytic methods like step-
wise algorithms or using P-value cutoffs [13, 14].

The estimated propensity scores ranged from 0 to 1 for each 
patient in the study population. The propensity scores were each 
individual’s predicted probability of receiving oral therapy (gen-
erated from the logistic regression model). After calculating 
propensity scores, the various propensity score methods were 
used to estimate the odds of death within 30 days comparing 
patients transitioned to oral therapy with those who remained 
on IV antibiotics, as described in Figure 1.

Propensity Score Matching

Exposed and unexposed patients were matched based on the 
proximity of propensity scores. 1:1 nearest neighbor matching 
without replacement was performed with a caliper size (or dis-
tance of) 0.2 standard deviations, meaning that, for each exposed 
individual, 1 comparison individual was selected as a “match” 
[5]. The comparison individual (who had not yet been selected 
as a match [ie, “without replacement”]) was the person with 
the propensity score closest to the exposed individual’s propen-
sity score. If the “closest” match had a propensity score greater 
than 0.2 standard deviations away from the exposed patient, 
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the exposed patient was dropped, as no “similar” comparison 
individual existed. Alternative approaches to propensity score 
matching include “with replacement,” meaning a comparison 
group patient could be matched to more than 1 exposed patient, 
or a more liberal caliper size, which loosens the restrictions of 
the necessary proximity of a match’s propensity score. Caliper 
sizes of 0.2 or 0.25 standard deviations are commonly used [5]. 
Propensity score matching can result in obtaining close (or even 
exact) matches on a set of key covariates.

A density plot of propensity scores in the exposed and un-
exposed groups was constructed as a visual inspection of bal-
ance. Thirty-day mortality was then compared in the matched 
cohort using logistic regression with additional adjustment 
for baseline variables whose standardized mean difference 
was greater than 10%. Standardized mean differences evaluate 
for appropriate balance for each measured covariate between 
patients in the exposed and unexposed groups in the matched 
sample [15, 16]. Standardized mean differences of less than 
10% between the 2 groups indicate reasonable balance in the 
2 groups across each variable [15]. Adjustment for any unbal-
anced (ie, standardized mean differences ≥10%) or relevant 
variables that impact treatment selection in the propensity 
score–matched cohort is known as a “doubly robust” estima-
tion [17, 18].

Propensity Score Weighting

After propensity scores were generated, inverse probability of 
treatment weighting (IPTW) was investigated as an alterna-
tive to propensity score matching. Patients transitioned to oral 
therapy were weighted by the inverse of the propensity score 

and patients who remained on IV therapy were weighted by the 
inverse of 1 minus the propensity score [19]. Weighting created 
a pseudo-population, which increased the influence of patients 
receiving a treatment they would not be expected to receive 
[20], improving the ability to conduct comparisons of 30-day 
mortality between the groups. More specifically, weighting 
mathematically increases the representation of “rare” patients 
in each exposure group. Subjects with a high propensity score 
(ie, calculated to have a high probability of being transitioned 
to oral therapy) but who, in reality, remained on IV therapy re-
ceived a higher weight than patients with a low propensity score 
(ie, calculated to have a low probability to be transitioned to 
oral therapy) and who—as expected—remained on IV therapy 
for the remainder of their treatment course. Patients whose pro-
pensity scores were higher than the 99th percentile of the IV 
therapy group and smaller than the first percentile of the oral 
therapy group were trimmed. Trimming improves the accuracy 
and precision of estimates by avoiding the influence of patients 
with extreme outlier weights [21, 22].

Similar to propensity score matching, standardized mean dif-
ferences were used to evaluate variable balance at baseline be-
tween the 2 groups in the weighted cohort. Regression analysis 
was performed on the weighted sample to compare outcomes 
between groups, and a doubly robust estimation was used to 
increase the precision of effect estimate.

Propensity Score Stratification

Propensity score stratification relies on the premise that indi-
viduals within a propensity score stratum are more similar to 
each other than to the general population being investigated [4]. 

Figure 1.  General steps involved in analytic approaches incorporating propensity score methodology.
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To evaluate the study question, 5 strata were created using quin-
tiles of the propensity score. Although 5 strata are commonly 
used, the creation of additional strata may further reduce selec-
tion bias if the dataset is large [23]. Outcomes were compared 
among exposed and unexposed patients within each stratum. 
The odds ratios were estimated for each stratum, adjusting for 
any variables not balanced within the stratum. Then, the overall 
odds ratio across all strata was estimated using Mantel-Haenszel 
pooling [24]. The pooled odds ratio has a similar interpretation 
as the odds ratio from matching or weighting.

RESULTS

Distribution of Baseline Variables in the Full Cohort

Overall, 2161 patients met the eligibility criteria, with 876 (41%) 
transitioned to oral therapy while 1285 (59%) remained on IV 
therapy. Baseline characteristics, stratified by exposure status, 
in the full cohort are displayed in Table 1.

Standardized mean differences for each variable in the full 
cohort used for multivariable regression analysis as well as 
for each of the propensity score–based methods are shown in 
Table 2. In the full cohort, 13 variables had standardized mean 

Table 1.  Baseline Characteristics of 2161 Hospitalized Adult Patients With Enterobacterales Bloodstream Infections Comparing Patients Transitioned 
to Oral Antibiotic Therapy Versus Those Who Remained on Intravenous Antibiotic Therapy

Characteristics
Oral Therapy  

(n = 876; 40.5%)
Intravenous Therapy  
(n = 1285; 59.5%) P Value

Age (median, IQR), years 59 (47–69) 59 (48–68) .928

Female, n (%) 437 (49.9) 579 (45.1) .027

Race/ethnicity, n (%)    

 White 423 (48.3) 663 (51.6) .131

 Black 369 (42.1) 493 (38.4) .80

 Asian 30 (3.4) 55 (4.3) .315

 Latino 25 (2.9) 34 (2.6) .771

Weight (median, IQR), kg 74.9 (63.5–88.3) 73.5 (62.3–88.4) .597

Pre-existing medical conditions, n (%)    

 End-stage liver disease 51 (5.8) 87 (6.8) .376

 End-stage renal disease requiring dialysis 41 (4.7) 100 (7.8) .004

 Structural lung diseasea 43 (4.9) 98 (7.6) .012

 Congestive heart failure (ejection fraction <45%) 78 (8.9) 121 (9.4) .686

 Diabetes 228 (26.0) 307 (23.9) .259

Immunocompromised, n (%)    

 Human immunodeficiency virus 39 (4.5) 48 (3.7) .405

 Chemotherapy within 6 months 246 (28.1) 355 (27.6) .816

 Absolute neutrophil count <500 cells/mL 59 (6.7) 181 (14.1) <.001

 Immunomodulatory therapy or high-dose steroids within 30 days 33 (3.8) 43 (3.3) .602

 Solid organ transplant 103 (11.8) 114 (8.9) .028

 Hematopoietic stem cell transplant within 12 months 30 (3.4) 97 (7.5) <.001

Total days of antibiotic therapy (median, IQR) 15 (12–16) 14 (11–15) <.001

Total days of intravenous therapy (median, IQR) 3 (2–4) 14 (11–15) <.001

Combination antibiotic therapy for >48 hours, n (%) 54 (6.2) 154 (12.0) <.001

Source of infection, n (%)    

 Respiratory 29 (3.3) 117 (9.1) <.001

 Skin and soft tissue 22 (2.5) 50 (3.9) .079

 Urinary tract 405 (46.2) 383 (29.8) <.001

 Biliary 121 (13.8) 148 (11.5) .113

 Intra-abdominal 160 (18.3) 290 (22.6) .016

 Catheter-associated 137 (15.6) 282 (21.9) <.001

Pitt bacteremia score on day 1 (median, IQR) 1 (0–3) 2 (1–4) <.001

Intensive care unit on day 1, n (%) 161 (18.4) 415 (32.3) <.001

Enterobacterales isolated from bloodstream    

 Citrobacter spp. 21 (2.4) 20 (1.6) .160

 Enterobacter spp. 98 (11.2) 159 (12.4) .430

 Escherichia coli 420 (48.0) 513 (39.9) <.001

 Klebsiella spp. 284 (32.4) 477 (37.1) .025

 Proteus mirabilis 29 (3.3) 63 (4.9) .072

 Serratia marcescens 24 (2.7) 53 (4.1) .088

Abbreviation: IQR, interquartile range.
aChronic obstructive pulmonary disease, emphysema, pulmonary fibrosis, tracheostomy dependency.
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differences greater than 10%, confirming that important differ-
ences in baseline patient and microbial characteristics existed 
between the oral step-down and IV therapy groups. Of note, 
standardized mean differences are not generally estimated for 
multivariable regression analysis but were calculated for the 
current work solely for comparative purposes.

Figure  2 illustrates a propensity score density plot for 
the oral step-down and IV therapy groups for the full co-
hort. As predicted, the majority of patients transitioned to 
oral therapy had elevated propensity scores (ie, a higher 

expectation to be converted to oral therapy), whereas the 
majority of patients remaining on IV therapy tended to have 
lower scores. It is reassuring that there was generally rea-
sonable overlap in the propensity score distributions of the 
2 groups.

Distribution of Baseline Variables in the Propensity Score–Matched Cohort

After matching, 739 propensity score–matched pairs of oral 
step-down and IV therapy patients were identified  (total 
of 1478 patients) [1]. Propensity score matching led to the 

Table 2.  Standardized Mean Differences of Baseline Characteristics Before and After Propensity Score Matching, Inverse Probability of Treatment 
Weighting of Propensity Scores, and Propensity Score Stratification (Displayed by Each Quintile) Approaches Between Patients Transitioned to Oral 
Antibiotic Therapy and Those Remaining on Intravenous Antibiotic Therapy for Enterobacterales Bloodstream Infections

Variable Full Cohort Matching IPTW Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Age 0.004 −0.011 −0.017 0.216 0.014 0.024 0.120 −0.245

Female −0.097 −0.011 0.023 0.055 0.163 −0.059 0.070 −0.204

White race −0.066 0.016 −0.008 −0.054 −0.015 0.015 −0.000 −0.026

Black race 0.077 −0.030 0.020 0.063 0.061 0.023 −0.018 −0.046

Asian race −0.044 0.021 −0.022 −0.110 −0.036 −0.004 −0.054  0.153

Latino ethnicity 0.013 0.045 −0.014 −0.019 −0.220 0.004 0.187 −0.010

Weight in kilograms 0.023 −0.010 0.019 0.325 −0.128 0.046 0.084 −0.153

End-stage liver disease −0.039 0.006 −0.021 −0.174 0.129 −0.121 0.063 0.013

End-stage renal disease requiring 
dialysis

−0.129 0.012 −0.014 −0.096 0.113 0.031 −0.025 −0.145

Structural lung disease −0.112 0.042 −0.014 0.033 −0.041 0.116 −0.029 −0.148

Congestive heart failure (ejection 
fraction <45%)

−0.018 0.000 −0.009 0.001 −0.022 0.107 −0.042 −0.029

Diabetes 0.049 0.003 −0.016 0.026 −0.037 −0.002 0.076 −0.021

Human immunodeficiency virus 0.036 0.007 −0.021 −0.247 −0.122 0.134 0.101 −0.055

Chemotherapy within 6 months 0.010 0.021 −0.006 −0.056 −0.113 0.239 0.048 −0.173

Absolute neutrophil count <500 
cells/mL

−0.242 0.005 0.042 0.288 −0.075 −0.199 0.062 *

Immunomodulatory therapy 
or high-dose steroids within 
30 days

0.023 0.015 −0.012 −0.108 −0.006 0.005 0.120 −0.052

Solid organ transplant 0.095 −0.018 −0.015 −0.029 −0.140 0.130 −0.055 0.067

Hematopoietic stem cell transplant 
within 12 months

−0.182 0.007 0.030 0.136 −0.001 −0.204 −0.055 0.085

Total days of antibiotic therapy 0.229 0.023 −0.027 −0.104 −0.028 −0.004 0.102 0.138

Combination antibiotic therapy for 
>48 hours

−0.204 0.000 −0.015 −0.121 −0.014 0.128 −0.140 0.011

Respiratory source −0.242 −0.027 −0.044 −0.186 0.051 −0.020 0.027 *

Skin and soft tissue source −0.078 0.070 −0.019 −0.075 −0.137 0.131 0.018 0.148

Urinary tract source 0.343 −0.030 −0.021 −0.098 −0.069 0.093 0.066 0.045

Biliary source 0.069 0.000 0.010 0.205 −0.035 0.038 −0.101 −0.008

Intra-abdominal source −0.107 0.030 0.004 −0.018 0.068 −0.127 0.086 −0.068

Catheter-associated source −0.162 −0.017 0.022 0.185 0.053 −0.100 −0.101 0.027

Pitt bacteremia score on day 1 −0.535 0.048 0.020 −0.453 −0.053 0.036 0.119 −0.012

Intensive care unit on day 1 −0.324 0.013 0.013 −0.047 −0.178 0.125 −0.019 −0.017

Citrobacter spp. 0.060 0.049 0.058 0.198 0.128 −0.011 −0.088 0.086

Enterobacter spp. −0.037 0.008 0.073 0.174 0.213 −0.099 0.014 −0.146

Escherichia coli 0.162 0.046 0.025 −0.146 −0.037 0.013 0.116 0.194

Klebsiella spp. −0.099 −0.048 −0.050 0.038 −0.043 0.057 −0.088 −0.184

Proteus mirabilis −0.080 −0.069 −0.053 0.064 −0.036 −0.051 −0.153 −0.062

Serratia marcescens −0.076 0.025 −0.063 −0.372 −0.221 0.074 0.144 0.172

Standardized differences could not be computed for variables with an asterisk “*” because neither the exposed nor unexposed groups in the specific quintile had patients with the specific 
variable.

Abbreviation: IPTW, inverse probability of treatment weighting. 
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exclusion of 683 patients. As standardized mean differences 
in the matched cohort were less than 10% for all measured 
variables, matching appeared to successfully reduce selec-
tion bias (Table 2).

Distribution of Baseline Variables in the Propensity Score–Weighted Cohort

Similar to the propensity score–matched cohort, the IPTW 
cohort resulted in standardized mean differences of less than 
10% for all variables when comparing exposed and unex-
posed patients. Figure  3 illustrates the density plots of pro-
pensity scores for the oral step-down group and IV therapy 
group in the weighted sample. Compared with Figure 2, the 
near overlap of graphs in Figure 3 indicates the success of the 
approach in equating the propensity score distributions be-
tween the 2 groups.

Distribution of Baseline Variables in the Propensity Score–Stratified Cohort

Table 2 shows the standardized mean differences between pa-
tients transitioned to oral therapy and the IV therapy group 
for the 5 quintiles. Imbalances were observed between the 2 
treatment groups for several variables within each stratum, 
suggesting there may be lingering confounding within each 
stratum.

Thirty-Day Mortality

Traditional regression analysis, propensity score matching, 
and IPTW showed no difference in 30-day mortality between 
patients transitioned to oral therapy and those who remained 
on IV therapy (Table  3). Odds ratios ranged between 0.84 to 
0.95 and there was substantial overlap between all 95% confi-
dence intervals. More variability was seen, however, with strata-
specific odds ratios, which ranged from 0.35 to 1.43. The lower 
2 strata suggested a trend towards reduced mortality for pa-
tients transitioned to oral therapy versus those who remained 
on IV therapy, whereas the upper 3 strata and the pooled odds 
ratios across strata showed no difference in 30-day mortality 
between the 2 groups. Some of the variability in the associations 
across strata may be explained by relatively small sample sizes 
in the strata.

DISCUSSION

Using various approaches to analyze observational data in-
cluding regression analysis, propensity score matching, pro-
pensity score IPTW, or propensity score stratification, the odds 
of 30-day mortality for patients with Enterobacterales blood-
stream infections transitioned to oral therapy versus those who 
remained on IV therapy were similar. The same ultimate con-
clusions were reached regardless of the approach used, likely 
because our stringent eligibility criteria for inclusion increased 
the probability of similarities in the distribution of baseline 
variables among exposed and unexposed patients; however, 
this is not always the case. Several published studies have il-
lustrated why propensity score methods are preferred to tra-
ditional regression analysis [25–27]. Although results may not 
significantly differ in a given dataset, there are characteristics of 
propensity score analysis that make it an overall more appealing 
approach compared with traditional regression analysis.

Propensity score methods are more likely to achieve a sim-
ilar distribution of observed baseline variables across exposed 
and unexposed patients compared with regression analysis, 
more closely mimicking what would be expected in an RCT 
[28–30]. A  limitation of traditional analysis of observational 
studies is that, when comparing the outcomes of patients who 
receive 2 different therapies, the observed differences are the 
result of both varying patient characteristics as well as differ-
ences related to the assigned treatment, making it challenging 
to distinguish the true impact of one treatment approach 
versus the alternative treatment approach. For example, if the 

Figure 3.  Distribution of propensity scores for oral-step down and intravenous 
therapy groups in a propensity score inverse probability of treatment–weighted 
cohort of patients with Enterobacterales bloodstream infections. Abbreviation: IV, 
intravenous.

Figure 2.  Distribution of propensity scores for oral step-down and intravenous 
therapy groups in a cohort of adult patients with Enterobacterales bloodstream in-
fections. Abbreviation: IV, intravenous.
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distribution of patients in the ICU is dissimilar between the 
2 treatment groups, it is difficult to determine to what extent 
differences in outcomes between the exposed and unexposed 
groups are attributable to the exposure and to what extent 
are due to ICU status. Unlike traditional regression analysis 
that limits the number of variables used to adjust for poten-
tial confounders when evaluating the relationship between the 
exposure and outcome and rely on functional form assump-
tions to essentially extrapolate from 1 group to the other when 
there is not good covariate balance, propensity score methods 
allow for the integration of large numbers of variables during 
the generation of the propensity scores, increasing the like-
lihood of similar distributions of measured covariates across 
the groups [31, 32]. The greater reduction in confounding af-
forded by propensity score methods increases the probability 
of more valid estimates of the relationship between the expo-
sure and outcome.

An additional benefit to propensity score approaches is the 
ability to “separate” design and analysis. With propensity score 
approaches, most of the work is “front-ended” and focused on 
the development of 2 groups that are similar on all characteris-
tics except for the primary exposure. This reduces the ability to 
“visualize” the point estimate for the primary outcome during 
the early analytic phases, potentially reducing the unintentional 
bias that can occur when regression analysis yields an unex-
pected odds ratio or P value, prompting the researcher to “add” 
or “drop” variables in an attempt to obtain a more desirable 
point estimate and P value.

Although propensity score approaches are generally pre-
ferred over conventional regression analysis, there is no 
clear consensus as to the optimal propensity score approach. 
Propensity score matching is commonly used in the literature 
as the notion of matching an exposed and unexposed patient 
based on similar propensity scores is easy to conceptualize. 
Some studies have shown matching and weighting to elimi-
nate baseline differences to a greater extent than stratification 
[33, 34].

In our study, propensity score matching resulted in adequate 
balance in the exposed and unexposed groups across all base-
line covariates, but at the cost of losing one-third of the eligible 
cohort because of unmatched patients. With propensity score 
matching, a reduction in the total sample size of the cohort is 
expected. The external validity of a matched cohort can be lim-
ited—especially with small cohorts or strict caliper sizes—as the 
matched cohort often excludes patients with extreme propen-
sity scores with no match. For example, if all patients with high 
Pitt bacteremia scores are unmatched, the study findings are no 
longer generalizable to severely ill patients. Propensity score 
matching is a reasonable approach when large sample sizes are 
present and when there are a greater number of subjects in the 
unexposed group (so as to not exclude exposed subjects as there 
are generally fewer patients in the exposed group than in the 
unexposed group). With a large unexposed group, one can ex-
plore higher k:1 ratios than 1:1 matching (eg, 2:1, 3:1, etc) to 
increase the sample size [5].

Propensity score weighting requires a more nuanced un-
derstanding of statistics as it can result in a patient being in-
cluded either as a fraction of a patient or as multiple patients. 
Underrepresented patients within an exposure group are given 
an increased weight (eg, “1.5 times a person”). Inverse prob-
ability of treatment weighting increases the representation of 
“rare” patients and decreases the representation of “common” 
patients in each exposure group. Inverse probability of treat-
ment weighting should be considered when the sample size of 
the cohort is small or if the control group is either smaller or 
the same size as the exposed group, making standard matching 
approaches not practical. Weighting maintains the sample size 
of the cohort and preserves external validity; however, util-
izing additional tools like trimming to exclude the influence 
of patients with extreme weights may eliminate some obser-
vations, although considerably less than with propensity score 
matching [22].

Propensity score stratification enables the exploration 
of possible dissimilarities of outcomes within each stratum 

Table 3.  Odds ratios for 30-Day Mortality Comparing Patients With Enterobacterales Bloodstream Infections Transitioned to Oral Antibiotic Therapy 
Versus Those Who Remained on Intravenous Antibiotic Therapy

Analytic Approach Odds Ratio 95% Confidence Interval P Value

Multivariable logistic regression .95 .73–1.23 .681

Propensity score matching .90 .70–1.21 .495

Propensity score inverse probability of treatment weighting .91 .65–1.28 .582

Propensity score inverse probability of treatment weighting (with trimming at the first centile) .84 .64–1.10 .196

Propensity score stratification    

 First stratum .35 .14–.88 .026

 Second stratum .53 .27–1.05 .070

 Third stratum 1.29 .71–2.36 .401

 Fourth stratum 1.08 .59–1.97 .807

 Fifth stratum 1.43 .79–2.57 .237

Overall estimate using Mantel-Haenszel pooling of the 5 strata .90 .69–1.18 .460
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(essentially, subgroup effects), which could be overlooked with 
matching and weighting methods [35]. In our cohort, stratifi-
cation demonstrated that patients in the first and second strata 
(those unlikely to transition to oral therapy) may receive the 
greatest benefit from an early transition to oral therapy, and 
those in the third to fifth strata (eg, a high likelihood of tran-
sitioning to oral therapy) will have no difference in outcomes 
whether transitioned to oral step-down therapy or remaining 
on IV therapy. Results from the first 2 strata may relate to an 
earlier return to baseline functional status afforded by oral 
therapy and could inform additional investigations to identify 
potential risk modifiers and guide deviations in standard clin-
ical management for select patients.

In conclusion, propensity score methods provide an ap-
proach to analyzing observational data that approximates the 
validity of RCTs to a greater extent than traditional regression 
approaches. As with all analytic methods using observational 
data—and propensity score techniques are no exception –re-
sidual confounding will always remain and only variables that 
can be measured can be accounted for. Sensitivity analyses (eg, 
calculating an E-value) can be considered to better assess how 
much an effect estimate is subject to unmeasured confounding 
[36, 37]. Moreover, propensity score analysis does not compen-
sate for poor study design or questionable data accuracy. When 
RCTs are not feasible, we encourage the consideration of pro-
pensity score techniques.
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