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Background. Cytomegalovirus (CMV) infection remains an important cause of morbidity and mortality in allogeneic hemato-
poietic cell transplant (allo-HCT) recipients. CMV cell-mediated immunity (CMV-CMI) as determined by a peptide-based enzyme-
linked immunospot (ELISPOT) CMV assay may identify patients at risk for clinically significant CMV infection (CS-CMVi).

Methods. The CS-CMVi was defined as CMV viremia and/or disease necessitating antiviral therapy. CMV-CMI was char-
acterized as high when the intermediate-early 1 (IE-1) antigen spot counts (SPCs) were >100 (cutoff 1)  or when the IE-1 and 
phosphoprotein 65 antigen SPCs were both >100 SPCs per 250 000 cells (cutoff 2), and a low CMV-CMI when SPCs were below 
these thresholds. In this prospective multicenter study, we evaluated CMV-CMI every 2 weeks from the pretransplant period until 
6  months posttransplantation in 241 allo-HCT recipients with positive CMV serostatus. The primary endpoint was CS-CMVi 
occurring within 2 weeks of the last measurement of CMV-CMI.

Results. CS-CMVi occurred in 70 allo-HCT recipients (29%). CMV-CMI was low in patients who experienced CS-CMVi (94%), 
whereas those who had a high CMV-CMI were less likely to have CS-CMVi (P < .0001). Patients with CS-CMVi had higher all-cause mor-
tality (P = .007), especially those with low CMV-CMI (P = .035). On multivariable analysis, CMV-CMI, sex, race, antithymocyte globulin, 
and steroid use were independent predictors of CS-CMVi, and the time from transplant to engraftment was the only predictor of mortality.

Conclusions. Measurement of CMV-CMI using a novel ELISPOT assay would be useful clinically to monitor allo-HCT recipi-
ents and distinguish between those at risk of developing CS-CMVi and requiring antiviral prophylaxis or therapy and those who are 
protected.
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Cytomegalovirus (CMV) can cause various end-organ diseases 
in immunocompromised hosts, in particular allogeneic hema-
topoietic cell transplant (allo-HCT) recipients. CMV has also 
been associated with graft-vs-host disease (GVHD) after HCT 
as well as secondary bacterial and fungal infections [1, 2]. After 
allo-HCT, the CMV reactivation rate may approach 70% when 

recipients are CMV seropositive [3]. Interestingly, recent data 
suggest that CMV viremia is associated with higher all-cause 
mortality and transplant-related mortality in allo-HCT recipi-
ents [4, 5]. Without prophylaxis, CMV reactivation typically oc-
curs during the first 3 months after HCT, depending on several 
risk factors [6].

Monitoring CMV cell-mediated immunity (CMV-CMI) re-
sponses after HCT may be helpful in determining the popu-
lation at risk for these viral infections and their prognosis. In 
fact, in the presence of the virus, CMV immediate-early 1 (IE-1) 
and phosphoprotein 65 (pp65) antigens have been identified as 
triggers that activate the immune response involving CD4+ and 
CD8+ T cells, producing and releasing interferon-gamma (IFN-
γ), and other cytokines to protect the host against CMV infection 
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[7]. The release of IFN-γ produced by CMV-responsive CD4+ 
and CD8+ T cells can be quantified using the modified enzyme-
linked immunospot (ELISPOT) assay (T-SPOT.CMV; Oxford 
Immunotec USA) as a measurement of a patient’s CMV-specific 
immunity (spot counts [SPCs] per 2.5 × 105 peripheral blood 
mononuclear cells) [7]. Knowledge of a patient’s CMV immune 
status may assist clinicians in evaluating the likelihood of CMV 
reactivation and the patient’s ability to successfully clear or con-
trol an infection [8]. Recipients of allo-HCT as well as solid 
organ transplantation (SOT) who lack CMV-specific CD4+ and 
CD8+ T cells have a higher incidence of CMV infection, and re-
storing T-cell responses correlates with protection against CMV 
[9–12]. The utility of monitoring CMV-specific IFN-γ release 
using ELISPOT CMV assay has been studied in the SOT [13–
16] as well as in the HCT population in single-center studies [7, 
17]; however, no multicenter validation in HCT of any assay has 
been conducted to date.

The purpose of this study was to validate, in a multicenter 
setting, the ability of the ELISPOT CMV assay in CMV-
seropositive allo-HCT recipients to evaluate the relationship 
between the strength of the T-cell response as measured by the 
assay and the subsequent occurrence of CMV reactivation and/
or disease.

METHODS

Study Design

In this prospective, noninterventional multicenter observa-
tional study, 241 CMV-seropositive adult allo-HCT recipients 
were enrolled. The study was conducted at 13 HCT centers in 
the United States, Canada, the United Kingdom, and Sweden. 
All enrolled patients underwent an allo-HCT from matched or 
haploidentical related donors, matched or mismatched unre-
lated donors, and patients who underwent a cord blood trans-
plant. Patients who had active CMV infection within 1 month 
prior to enrollment or during the study’s prescreening period, 
patients who received any antiviral therapy active against CMV 
other than acyclovir and valacyclovir prior to enrollment, 
and those known to be positive for hepatitis B, hepatitis C, or 
human immunodeficiency virus were excluded from the study. 
All pediatric patients (≤18  years of age) were excluded. After 
enrollment, patients were followed up within 14  days before 
transplantation, at day 14 and day 28 after transplantation, and 
then every 2 weeks after transplantation through day 182 (about 
14 visits over 6  months). Institutional review board approval 
was granted at each site, and each participant provided written 
informed consent.

Definitions and Endpoints

CMV disease and CMV infection were defined according to 
Ljungman et  al [18]. In brief and specifically for this study, 
CMV DNAemia is defined as the detection and quantification of 
CMV DNA by nucleic acid amplification techniques in plasma. 

The definition of CMV disease required clinical symptoms and/
or signs of end organ disease combined with documented CMV 
in tissue by different methods including virus isolation, rapid 
culture, histopathology, or DNA hybridization techniques. The 
primary endpoint was clinically significant CMV infection 
(CS-CMVi), defined as the first CMV reactivation or CMV di-
sease after HCT necessitating the start of anti-CMV therapy by 
the treating physician according to each center’s institutional 
treatment protocols [19]. In brief, each center employed the 
preemptive approach and monitored for CMV by polymerase 
chain reaction (PCR) at least once a week, starting from the 
time of transplantation up to day 100 after transplantation. All-
cause mortality was an exploratory endpoint.

Laboratory Analysis

Blood samples were collected up to 14 days before transplan-
tation and after transplantation at day 14, day 28, and every 2 
weeks for up to 6 months. At each time point, peptide-based 
ELISPOT CMV assays were performed. Samples were shipped 
overnight to Oxford Diagnostic Laboratories (Memphis, 
Tennessee). The CMV-specific ELISPOT assay was performed 
within 32 hours of blood specimen collection, in accordance 
with validated test procedures [20]. T-cell immune activity was 
assessed by detecting the number of IFN-γ–producing CD4+ 
and CD8+ T cells (reported as SPCs per 250 000 cells) following 
ex vivo stimulation with CMV antigens IE-1 and pp65 as re-
ported elsewhere [7]. The results of the assays were not made 
available to the treating physicians; thus, CMV management 
was not based on the results of the assays. Additionally, CMV 

Figure 1. Flowchart showing the number of patients enrolled in the study. 
Abbreviations: CMV, cytomegalovirus; CS-CMVi, clinically significant CMV infec-
tion; ELISPOT, enzyme-linked immunospot assay; HCT, hematopoietic cell transplant. 
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viral load was monitored in the plasma, and bronchoalveolar 
lavage, if sampled, in each center using different CMV assays 
calibrated to the World Health Organization International 
Standard for Human CMV, and recorded in international units 
per milliliter.

Data Collection

Patients’ demographics, medical history, baseline transplant 
data (eg, type of donor, histocompatibility data), time to 

engraftment (engraftment defined as the first of 3  days with 
stable neutrophil count >0.5  ×  109/L), study procedure–re-
lated adverse events, and relevant transplant-related laboratory 
data, including results of quantitative PCR for CMV viremia 
performed at the site’s local laboratory, were obtained. In ad-
dition, data on pretransplant conditioning regimens, GVHD 
prophylaxis and management, CS-CMVi and management, and 
all-cause mortality were collected. De-identified data of parti-
cipants from all sites were captured on a password-protected 

Table 1.  Clinical and Demographic Characteristics of Study Participants

Characteristic
CS-CMVi   
(n = 70) 

No CS-CMVi   
(n = 171) P Value

Age, y, median (range) 57 (18–80) 56 (18–78) .89

Sex   .007

 Male 30 (43) 106 (62)

 Female 40 (57) 65 (38)

Race   .11

 White 48/67 (72) 129/153 (84)

 African American 6/67 (9) 8/153 (5)

 Asian 6/67 (9) 10/153 (7)

 Other 7/67 (10) 6/153 (4)

  Unknown 3 18

Type of transplant   .06

 Matched related donor 17/69 (25) 70/169 (41)

 Matched/mismatched unrelated 41/69 (59) 72/169 (43)

 Cord blood 1/69 (1) 2/169 (1)

 Haploidentical 10/69 (14) 25/169 (15)

 Unknown 1 2

HCT donor status   .50

 CMV seropositive 37/69 (54) 94/161 (58)

 CMV seronegative 32/69 (46) 67/161 (42)

 Unknown 1 10 

Conditioning regimen   .46

 Myeloablative 36/69 (52) 76/162 (47)

 Nonmyeloablative 33/69 (48) 86/162 (53)

 Unknown 1 9 

Time from HCT to engraftment, d, median (range) 13 (3–42) 14 (0–42) .92

Steroid use (at any time during the study period) 67 (96) 119 (70) <.0001

Acute GVHD (at any time during the study period) 43 (61) 76 (44) .017

Antithymocyte globulin 17 (24) 21 (12) .02

Cyclophosphamide 20 (29) 45 (26) .72

Mycophenolate 11 (16) 32 (19) .58

CMV disease 10 (14) …  

Peak CMV PCR, IU/mL, median (range)a 1586 (323–26 364) …  

All-cause mortality 16 (23) 23 (13) .07

CMV-CMI    

 Cutoff 1b    

 High 4 (6) 55 (32) <.0001

 Low 66 (94) 116 (68)  

 Cutoff 2    

 High 3 (4) 55 (32) <.0001

 Low 67 (96) 116 (68)  

Data are presented as no. (%) unless otherwise indicated.

Abbreviations: CMI, cell-mediated immunity; CMV, cytomegalovirus; CS-CMVi, clinically significant CMV infection; GVHD, graft-vs-host disease; HCT, hematopoietic cell transplant; PCR, 
polymerase chain reaction.
aCMV PCR was provided for all patients who experienced CMV viremia (68 patients), excluding the 2 patients who experienced CMV disease as primary endpoint.
bHigh CMV-CMI is defined as immediate-early 1 antigen (IE-1) >100 (cutoff 1) or both IE-1 and phosphoprotein 65 (pp65) antigens >100 (cutoff 2). Low CMV-CMI is defined as an IE-1 ≤100 
(cutoff 1) or either IE-1 or pp65 ≤100 (cutoff 2).
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online database designed for the sponsor of the trial (Oxford 
Immunotec USA).

Statistical Analyses

The ELISPOT CMV assay, as described above, targets the 2 
antigens pp65 and IE-1. In the statistical analyses, the repeated 
CMV-CMI measurements were treated as time-dependent vari-
ables and classified into 2 categories, high and low, based on 
either of the 2 cutoffs. We classified patients as having a high 
CMV-CMI when the IE-1 SPCs were >100 per 250 000 cells 
(cutoff 1) or when the IE-1 and pp65 SPCs were both >100 per 
250 000 cells (cutoff 2), and as having a low CMV-CMI when the 
SPCs of IE-1 (cutoff 1) or either antigen (cutoff 2) were below 
the aforementioned thresholds. When evaluating the diagnostic 
performance of the ELISPOT CMV assay for patients who did 
not experience CS-CMVi, the maximum pp65 and IE-1 SPCs 
over 10 weeks from transplant (the period of time when most 
of the CMV events occurred in this cohort) was used to distin-
guish low and high CMV-CMI. For patients who experienced 

CS-CMVi, the CMV-specific pp65 and IE-1 SPCs occurring 
14 days to >2 days before the infection were used to determine 
if the patient had a high or a low CMV-CMI.

Continuous variables were compared using the Wilcoxon 
rank-sum test. Categorical variables were compared using the 
χ 2 or Fisher exact test, as appropriate. The Cox proportional 
hazards regression model was used to evaluate the independent 
predicting effects of low/high CMV-CMI on CS-CMVi and all-
cause mortality. Cumulative incidence curves were estimated 
for CS-CMVi and mortality using the Simon and Makuch 
method [21] treating CMV-CMI as a time-dependent vari-
able, and the curves were compared between patients with low 
and high CMV-CMI using univariate Cox regression anal-
ysis. Cumulative survival curves were estimated for and com-
pared between patients with low and high CMV-CMI, as well 
as among the following 4 groups: patients with low CMV-CMI 
with and without CS-CMVi and patients with high CMV-CMI 
with and without CS-CMVi, where both CMV-CMI (low/high) 
and CS-CMVi were treated as time-dependent variables. Week 
2 post-HCT was chosen as time 0 in all Cox regression ana-
lyses and cumulative incidence curve analyses in order to iden-
tify predictors of CS-CMVi and mortality posttransplantation. 
We also constructed the IE-1–predicted probability curves of 
protection again CS-CMVi based on a multivariable logistic 
regression model with repeated measures using the method of 
generalized estimating equations. Box plot was used to compare 
ELISPOT CMV data between CS-CMVi and no CS-CMVi oc-
currences. The correlation between IE-1 and pp65 was meas-
ured using the Spearman correlation coefficient. All tests were 
2-sided with a significance level of .05. Statistical analyses were 
performed using SAS version 9.3 software (SAS Institute, Cary, 
North Carolina).

Figure 2. Box plot of the number of spots produced in the enzyme-linked 
immunospot (ELISPOT) cytomegalovirus (CMV) assay for patients with and without 
clinically significant CMV infection (CS-CMVi) for the intermediate-early 1 (IE-1; A) 
and phosphoprotein 65 (pp65; B) antigens. The length of box represents the inter-
quartile range (the distance between the 25th and 75th percentiles). The diamond 
in the box represents the group mean. The horizontal line in the box represents the 
group median. The vertical lines originating from the box extend to the group min-
imum and maximum values. For IE-1 level in patients with CS-CMVi, its median was 
equal to its 25th percentile and its minimum value.

Figure 3. Correlation curve with intermediate-early 1 (IE-1) spot counts on the 
y-axis and phosphoprotein 65 (pp65) spot counts on the x-axis. Shown are values 
before the occurrence of clinically significant cytomegalovirus (CMV) infection 
(CS-CMVi) for 70 patients and maximum values for 171 patients who did not ex-
perience CS-CMVi.
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RESULTS

Clinical Characteristics

Two hundred fifty patients were enrolled in this multicenter 
study. Of these patients, 9 were excluded because of withdrawal 
and/or unavailability of CMV-CMI results. Overall, 241 pa-
tients were followed for 6 months (Figure 1), and 70 (29%) pa-
tients experienced a CS-CMVi. Median time from CMV-CMI 
testing to CS-CMVi was 9 days (interquartile range, 6–13 days). 
Table 1 compares the demographic and clinical characteristics 
of patients who experienced CS-CMVi and patients who did 
not. Patients who received corticosteroids (P < .0001), those 
who received antithymocyte globulin (ATG) (P = .02), and 
those who had GVHD (P = .017) at any time during the study 
were more likely to have CS-CMVi than patients who did not.

Clinically Significant CMV Infections

The CMV-CMI results with high background nil control (nil 
control >10) were not reported and occurred in 37 of the total 

2728 samples tested, resulting in an indeterminate rate of 1.35%. 
Of the 70 (29%) patients who experienced CS-CMVi within the 
6-month study period, 66 (94%) had low CMV-CMI according 
to cutoff 1 (IE-1 SPCs ≤100; Table 1). The 4 remaining patients 
who had a high CMV-CMI but had CS-CMVi were receiving 
corticosteroids (n = 2), had IE-1 SPCs very close to the cutoff 
(ie, 102 SPCs per 250 000 cells) (n = 1), or had a CS-CMVi be-
fore their transplant date (n = 1). Additionally, patients who 
had a low CMV-CMI were more likely to experience CS-CMVi 
than were patients with a high CMV-CMI (relative risk, 5.3 
[95% confidence interval {CI}, 2.0–14.0]; P < .0001). The IE-1 
SPCs were significantly higher in patients who did not have 
CS-CMVi (mean, 91 SPCs per 250 000 cells [range, 0–700]) 
than in those who had CS-CMVi (mean, 24 SPCs per 250 000 
cells [range, 0–643]) (P < .0001; Figure 2A); similar results were 
observed with pp65 SPCs (P = .0002; Figure 2B). The Spearman 
statistical correlation analysis shown in Figure  3 revealed a 
positive correlation between IE-1 and pp65 SPCs (P < .0001). 
However, only IE-1 SPCs correlated with CS-CMVi, as most oc-
curred in patients with IE-1 SPCs <100 (Figure 3). Cumulative 
incidence curves of CS-CMVi showed an association between 
a low CMV-CMI with either cutoff (Figure  4A and 4B) and 
having CS-CMVi (P < .0001). Survival curves showed no as-
sociation or correlation between low CMV-CMI and death 
(P = .97) with either of the 2 cutoffs (Supplementary Figure 1). 
Of the 241 enrolled patients, 10 had CMV disease, including 2 
patients who had CMV pneumonia as the primary endpoint of 
the study at day 58 and day 163 after transplantation. The re-
maining 8 patients experienced CS-CMVi requiring preemptive 
therapy followed by CMV disease at a median of 40 days after 
transplant (range, 22–77  days). The CMV-CMI of the 10 pa-
tients with CMV disease was low, with a median IE-1 of 5 SPCs 
(range, 0–44 SPCs) and a median pp65 of 156 SPCs (range, 

Figure 4. Cumulative incidence curves of clinically significant cytomegalovirus 
(CMV) infection (CS-CMVi) in patients with different CMV cell-mediated immunity 
(CMV-CMI) cutoffs. The curves show the likelihood of developing CS-CMVi in a par-
ticular patient at each time point. A, Cutoff 1 (intermediate-early 1 spot counts >100 
as high CMV-CMI; P < .049). B, Cutoff 2 (IE-1 SPCs >100 and phosphoprotein 65 
SPCs >100 as high CMV-CMI; P < .039). CMV-CMI (low/high) was a time-dependent 
variable in the cumulative incidence curves as it changed over time during the study 
period.

Figure 5. Cumulative survival curves of patients with or without clinically signif-
icant cytomegalovirus infection (CS-CMVi).

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
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0–606 SPCs). Patients who had CS-CMVi were 2.7 times more 
likely to die relative to patients without CS-CMVi (hazard ratio, 
2.7 [95% CI, 1.31–5.75]; P = .007; Figure 5). Last, median SPCs 
per 250 000 cells for IE-1 and pp65 for each time point in pa-
tients with or without CS-CMVi are depicted in Supplementary 
Figure 2.

Patient Outcomes and ELISPOT CMV Assay

Cox regression analyses identified independent predictors 
of CS-CMVi and all-cause mortality. In a univariate analysis, 
patients’ sex (P = .026), race (P = .01), type of transplant (P = 
.022), ATG use (P = .008), steroid use (P = .002), and having 
acute GVHD (P = .039) were risk factors for CS-CMVi. In 
addition, low CMV-CMI was also a risk factor for CS-CMVi 
when cutoff 1 was used (P = .049; Table 2). In the multivariate 
analysis, sex (P = .023), race (P < .001), ATG use (P = .015), 

steroid use (P = .003), and low CMV-CMI (P = .049) remained 
as independent predictors of CS-CMVi (Table  2). Similar re-
sults were observed when cutoff 2 was used (Supplementary 
Table 1). Additionally, in the multivariate analysis, the time 
to engraftment was the only predictor of all-cause mortality  
(P = .033), but a trend was observed for patients with acute 
GVHD (P = .068) (Table  3 and Supplementary Table 2). 
Interestingly, patients with low CMV-CMI who experienced 
CS-CMVi had a higher mortality rate than patients with low 
CMV-CMI but without CS-CMVi or patients with high CMV-
CMI with or without CS-CMVi (P  =  .035; Figure  6). In par-
ticular, there was a significant difference in mortality between 
patients with low CMV-CMI who experienced CS-CMVi (37%) 
vs those who did not (12%) using cutoff 1 (P = .003; Table 1 and 
Figure 6). The same results were observed when using cutoff 2 
(P = .019). In addition, we constructed probability curves for 

Table 2. Impact of Cytomegalovirus (CMV) Cell-Mediated Immunity (CMI) on Developing Clinically Significant CMV Infection by Cox Regression Analysisa 
Using Cutoff of Immediate-Early 1 Antigen Spot Counts >100 as High CMV-CMI

Variable  
 

Univariate Analysis Multivariate Analysis

Crude HR (95% CI) P Value Adjusted HR (95% CI) P Value

Age 0.99 (.97–1.01) .43 …  

Sex  .026  .015

 Male Reference  Reference  

 Female 1.82 (1.08–3.09)  1.99 (1.15–3.46)  

Race  .01  < .001

 White Reference  Reference  

 African American 1.81 (.71–4.62)  2.15 (.82–5.63)  

 Asian 1.52 (.60–3.86)  1.84 (.70–4.81)  

 Other 3.85 (1.71–8.64)  7.22 (3.04–17.17)  

Type of transplantation  .022  b

 Match-related donor Reference  …  

 Matched/mismatched unrelated 2.65 (1.42–4.94)  …  

 Cord blood c  …  

 Haploidentical 1.61 (.65–3.98)  …  

HCT donor status  .29   

 CMV seronegative Reference  …  

 CMV seropositive 0.75 (.44–1.28)  …  

Conditioning regimen  .78   

 Myeloablative 1.08 (.63–1.83)  …  

 Nonmyeloablative Reference  …  

Time from HCT to engraftment, d 1.00 (.96–1.04) .93 …  

Steroid use 9.02 (2.20–36.99) .002 17.72 (2.43–129.13)  .005

Acute GVHD 1.77 (1.03–3.04) .039 … b

Antithymocyte globulin 2.16 (1.22–3.81) .008 2.16 (1.16–4.02)  .015

Cyclophosphamide 1.18 (.68–2.04) .55 …  

Mycophenolate  0.82 (.42–1.63) .58 …  

CMV-CMId  .049   .043

 High (IE-1 >100) Reference  Reference  

 Low (IE-1 ≤100) 3.24 (1.01–10.46)  3.37 (1.04–10.93)  

Abbreviations: CI, confidence interval; CMI, cell-mediated immunity; CMV, cytomegalovirus; GVHD, graft-vs-host disease; HCT, hematopoietic cell transplant; HR, hazard ratio; IE-1, 
intermediate-early 1 antigen.
aWeek 2 in the study was chosen as time 0 in the analysis.
bVariable was entered into the initial multivariate Cox regression model based on the P value of its univariate analysis (≤.20) and later removed from the final Cox regression model through 
the backward elimination procedure.
cHR and 95% CI failed to be estimated as there was only 1 patient with cord blood transplant in the analysis.
dCMV-CMI was treated as a time-dependent variable in the analysis.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz1210#supplementary-data
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predicted protection against CS-CMVi based on IE-1 levels 
(Figure 7A–D).

Diagnostic Accuracy
The sensitivity of the ELISPOT CMV assay as a predictor of 
CS-CMVi was 94% when cutoff 1 was used and 96% when 
cutoff 2 was used. The negative predictive values, indicating 
protection against CS-CMVi in cases of high CMV-CMI, were 
93% and 95% for cutoffs 1 and 2, respectively.

DISCUSSION

This international multicenter observational study enrolled a 
large cohort of allo-HCT recipients at risk for CMV infection 
from 13 centers to evaluate the accuracy of an ELISPOT CMV 
assay, by measuring CMV-CMI, as a predictor of clinically sig-
nificant CMV infection. This study showed that CMV-CMI 

was a significant and independent predictor of CS-CMVi in ad-
dition to sex, race, and steroid use. Only time to engraftment 
independently predicted all-cause mortality. Interestingly, pa-
tients with CS-CMVi had higher all-cause mortality regardless 
of their CMV-CMI over time, and patients with low CMV-CMI 
and CS-CMVi (time-dependent variables) had the highest all-
cause mortality (37%) within 6 months from transplant.

Our findings in this multicenter study substantiated previous 
single-center studies that supported the utility of CMV-CMI, 
as measured by the CMV-specific ELISPOT assay, to predict 
CS-CMVi [7, 17, 22–24]. Monitoring CMV-CMI in allo-HCT re-
cipients may provide a more targeted approach when managing 
CMV infections after transplantation. Knowing the patient’s 
CMV specific immunity at a critical time point may lead to a 
reduction in the duration and intensity of CMV monitoring as 
well as the duration of antiviral therapy or of prophylaxis (either 

Table 3. Impact of Cytomegalovirus (CMV) Cell-Mediated Immunity (CMI) on All-Cause Mortality by Cox Regression Analysisa Using Cutoff of Intermediate-
Early 1 Antigen Spot Counts >100 as High CMV-CMI

Variable  
 

Univariate Analysis Multivariate Analysis

Crude HR (95% CI) P Value Adjusted HR (95% CI) P Value

Age 1.01 (.99–1.04) .34 …  

Sex  .52   

 Male Reference  …  

 Female 0.79 (.39–1.62)  …  

Race  .75   

 White Reference  …  

 African American 1.26 (.38–4.15)  …  

 Asian 0.36 (.05–2.64)  …  

 Other 1.07 (.25–4.51)  …  

Type of transplantation  .013  b

 Match related donor Reference  …  

 Matched/mismatched unrelated 2.25 (.93–5.47)  …  

 Cord blood 18.9 (2.28–157.3)  …  

 Haploidentical 3.60 (1.31–9.94)  …  

HCT donor status  .28   

 CMV seronegative Reference  …  

 CMV seropositive 0.68 (.34–1.37)  …  

Conditioning regimen  .51   

 Myeloablative 0.79 (.39–1.60)  …  

 Nonmyeloablative Reference  …  

Time from HCT to engraftment   
(every 10 days’ increase)

1.63 (1.04–2.55) .033 1.63 (1.04–2.56) .033

Steroid use 1.50 (.58–3.88) .41 …  

Acute GVHDc 1.62 (.79–3.32) .19 … b

Antithymocyte globulin 1.46 (.66–3.25) .35 …  

Cyclophosphamide 1.06 (.51–2.19) .88 …  

Mycophenolate 1.78 (.84–3.76) .13 … b

CMV-CMIc  .79  .93

 High (IE-1 >100) Reference  Reference  

 Low (IE-1 ≤100) 0.89 (.39–2.02)  0.96 (.40–2.29)  

Abbreviations: CI, confidence interval; CMI, cell-mediated immunity; CMV, cytomegalovirus; GVHD, graft-vs-host disease; HCT, hematopoietic cell transplant; HR, hazard ratio; IE-1, 
intermediate-early 1 antigen.
aWeek 2 in the study was chosen as time 0 in the analysis.
bVariable was entered into the initial multivariate Cox regression model based on the P value of its univariate analysis (≤.20) and later removed from the final Cox regression model through 
the backward elimination procedure.
cGVHD and CMV-CMI were treated as time-dependent variables in the analysis.
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primary or secondary). Our findings were similar to those of a 
recently published prospective multicenter study evaluating the 
ELISPOT CMV assay in adult kidney transplant recipients [16].

CMV-CMI can be monitored using different IFN-γ release 
assays. The 2 commonly used tests in published studies are 
the CMV-specific ELISPOT and the enzyme-linked immuno-
sorbent assay (ELISA). A  head-to-head comparison of both 
assays in 124 kidney transplant recipients at risk for CMV infec-
tions showed that posttransplant CMV pp65 or IE-1 response, 
and not QuantiFERON-CMV response, was significantly asso-
ciated with CMV DNAemia [16, 24]. However, data comparing 
both assays in allo-HCT recipients are lacking. Many studies 
evaluated either assay individually in SOT [10, 11, 14–16, 23, 
24] or allo-HCT recipients [7, 9, 12, 17, 25–28]. Overall, the 
CMV-specific ELISPOT assay appears to be more sensitive 
when detecting patients at risk for CMV reactivation, especially 
those with low-level responses, with greater negative predictive 
value than the CMV-specific ELISA assay. Furthermore, the use 
of the ELISA-CMV assay often resulted in indeterminate results 
[25–28].

In addition to CMV-CMI, patients’ sex, race, ATG use, and 
steroid use were risk factors for CS-CMVi on multivariate anal-
ysis. Steroid use and ATG use, as predictors of CS-CMVi, are 
in accordance with other studies [5, 7, 29–35]. The use of high-
dose steroids in particular, constitute a key risk factor for CMV 
reactivation and disease in HCT recipients [7, 29] decreasing 
the functional fractions of CMV-specific CD8+ and CD4+ T 
cells in HCT recipients [30, 33]. The impact of steroid use on 

Figure 7. Probability curves for predicted protection against clinically significant cytomegalovirus infection of 4 typical cases of patients who received steroids during the 
study period: white male (A), white female (B), nonwhite male (C), and nonwhite female (D). Abbreviations: CS-CMVi, clinically significant cytomegalovirus infection; IE-1, 
intermediate-early 1 antigen; SPC, spot count.

Figure 6. Cumulative survival curves of all patients using intermediate-early 
1 (IE-1) >100 as high cytomegalovirus cell-mediated immunity (CMV-CMI) (cutoff 
1). CMV-CMI level (high/low) and clinically significant cytomegalovirus infection 
(CS-CMVi) were time-dependent variables in the cumulative survival curves. There 
was only 1 significant difference among the 4 groups of patients: low CMV-CMI 
with CS-CMVi vs low CMV-CMI without CS-CMVi (P = .003).
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CMV-CMI as measured by ELISPOT assays is not well under-
stood and needs to be determined in future trials.

Time from transplant to engraftment was the only signif-
icant risk factor for all-cause mortality in our study, after we 
controlled for other variables and irrespective of GVHD pro-
phylaxis. A  recent study showed that neutrophil engraftment 
was protective and an absolute monocyte count of <300 cells/
μL increased the risk of overall mortality [36]. On the other 
hand, higher all-cause mortality was observed in our cohort 
of patients who developed CS-CMVi, as seen in other larger 
studies [5, 37]. Recent cohort studies showed a strong associ-
ation between CMV reactivation and poor posttransplant out-
comes including nonrelapse mortality, independent of the use 
of preemptive therapy [5, 37]. Interestingly, patients who had 
low CMV-CMI and CS-CMVi in our cohort were more likely to 
die than other groups of patients. Whether the combination of 
low CMV-CMI and CS-CMVi constitutes a stronger predictor 
of mortality than each one alone needs to be determined in fu-
ture prospective studies.

Our study has a few limitations. As a multicenter study, 
some data were missing or not collected for analysis, such as 
the cause of death, with nonrelapse mortality in particular. 
However, the available data yielded numerous informative re-
sults. Additionally, the study was only observational, and CMV 
management of enrolled patients was at the discretion of clinical 
providers and not based on real-time CMV-CMI assays’ results. 
The utility of real-time monitoring of CMV-CMI in allo-HCT 
recipients for CMV management and for more personalized 
preventive or treatment strategies should be determined in fu-
ture interventional trials.

In conclusion, this multicenter observational study showed 
a strong correlation between CMV-CMI and the occurrence of 
CS-CMVi. Patients with low CMV-CMI were more likely to have 
CS-CMVi and to require anti-CMV therapy, whereas those with 
high CMV-CMI were protected. Thus, monitoring CMV-CMI 
by CMV ELISPOT assay of allo-HCT recipients at risk for CMV 
infection may reduce the unnecessary or prolonged use of anti-
viral therapy for patients with high CMV-CMI and may guide 
implementation of early preventive (ie, the newly US Food and 
Drug Administration–approved anti-CMV drug letermovir) or 
preemptive strategies for those at risk of developing CS-CMVi.
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