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Abstract

Interest is growing rapidly in using deep learning to classify biomedical images, and interpreting
these deep-learned models is necessary for life-critical decisions and scientific discovery. Effective
interpretation techniques accelerate biomarker discovery and provide new insights into the
etiology, diagnosis, and treatment of disease. Most interpretation techniques aim to discover
spatially-salient regions within images, but few techniques consider imagery with multiple
channels of information. For instance, highly multiplexed tumor and tissue images have 30-100
channels and require interpretation methods that work across many channels to provide deep
molecular insights. We propose a novel channel embedding method that extracts features from
each channel. We then use these features to train a classifier for prediction. Using this channel
embedding, we apply an interpretation method to rank the most discriminative channels. To
validate our approach, we conduct an ablation study on a synthetic dataset. Moreover, we
demonstrate that our method aligns with biological findings on highly multiplexed images of
breast cancer cells while outperforming baseline pipelines. Code is available at https://
sabdelmagid.github.io/miccai2020-project/.
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1 Introduction

Highly multiplexed imaging provides data on the spatial distribution of dozens to hundreds
of different protein and protein modifications in a tissue. This provides an unprecedented
view into the cells and structures that comprise healthy and diseased tissue. As such, highly
multiplexed imaging is emerging as a potentially breakthrough technology in translational
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research and clinical diagnosis. Examples of highly multiplexed imaging technologies
include imaging mass cytometry (IMC) [5], multiplexed ion beam imaging (MIBI) [6], co-
detection by indexing (CODEX) [3], and cyclic immunofluorescence (CyCIF) [8].

Each image can comprise 30 to 100 unique channels (that each correspond to the detection
of a specific protein) with millions of cells, and so computational tools are essential for
analysis. To interpret the outputs of computational tools and answer specific research and
clinical questions, it is critical to know which image channels are informative. Even though
there is research on interpretation techniques for natural images [14,15,7,18], channel- or
target-wise importance ranking interpretation techniques for highly multiplexed images do
not yet exist.

We introduce a novel system to automatically identify informative channels in highly
multiplexed tissue images and to provide interpretable and potentially actionable insight for
research and clinical applications. The process is illustrated in Figure 1. What follows is a
description of our system for the goal of identifying the most informative channels for
assessing the tumor grade of highly multiplexed images [5]. We first encode each channel
using the shared weights of a ResNet18 [4] backbone encoder. To obtain an interpretable
representation, which we refer to as channel embedding, we use an embedding encoder.
Then, we train a classifier to produce a probabilistic prediction for each tumor grade class.
Finally, we measure each channel’s contribution to the tumor grade classification by
applying an interpretation technique, Backprop [18], that backpropagates gradients to the
channel embedding. In our experimental results, we demonstrate that our system
outperforms conventional algorithms [20,4,10] combined with interpretation techniques
[15,18] on the informative channel identification task for assessing tumor grade. Moreover,
the informative channels identified by our novel method align with findings from a single
cell data analysis [5], even though our approach does not require single cell segmentation.

2 Related Works

Interpretation Techniques for Neural Networks:

One category of neural network interpretation is model-agnostic. Backprop [18] and Grad-
CAM [15] backpropagate gradients to produce an attention map highlighting important
regions in the image. Filter visualization techniques [12,21,1] typically visualize the
information extracted from filters. LIME [14], DeepLIFT [17], and SHAP [11] compute the
contribution of each feature for a given example. TCAV [7] defines high-level concepts to
quantify a model’s prediction sensitivity.

Another category is self-interpretable neural networks. SENN [13] trains a self-explaining
model, which consists of classification and explanation branches. Zhang et a/. [22] modify a
traditional convolutional neural network (CNN) by adding masking layers followed by
convolution layers to force activations to be localized. Building on this work, Zhang et al.
[23] visualize a CNN’s decision making process by learning a decision tree for a pre-trained
model. However, these methods are not directly applicable to highly multiplexed input
images.
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Frame-level Action Localization in Videos:

Discovering informative channels is similar to localizing frames with target actions in
videos. Action localization finds frames of interest in an entire video. CDC [16] predicts per-
frame confidence scores using 3D convolutional neural networks. BSN [10] and BMN [9]
adopt 2D convolutions to estimate actionness, starting time, and ending time at each frame.
These methods can be applicable to informative channel identification by using their per-
channel classification as a measure of channel importance. However, since they perform
prediction by classifying one channel at a time, their learned features may not be
generalizable and consequently their resulting accuracy may not be sufficient.

3 Proposed Method

To enable the identification of informative channels, we propose a network architecture with
a backbone encoder, an embedding encoder, and a classifier (Fig. 2). First, we will introduce
the backbone and embedding encoders, which each extract features from each channel
independently. For interpretation, we represent each input image channel as a single value ;.
Next, we train a classifier that takes the channel embedding r, which is a concatenation of 7;
across channels. The classifier yields predictions, p. Once our network is trained, we apply
Backprop [18] to the channel embedding to produce an attention map, which is then used to
rank channels in order of importance.

3.1 Channel Embedding

To leverage knowledge from previously-learned image classification tasks and to extract
meaningful features from highly multiplexed images, we begin with ResNet18 [4] pretrained
on ImageNet [2] as a backbone network. Naive application of ResNet18 does not allow us to
identify channels of interest because it weights information across channels through its
constituent convolutions (Fig. 3(a)). Even though 3D CNN [20] can suppress this problem
by locally weighting channels, it still blends activations across adjacent channels (Fig 3(b)).
Instead, we must extract features from each channel independently. However, doing so will
require substantial memory resources (12M parameters per channel). To overcome these
problems, we apply the same backbone encoder (shared weights) to each channel
individually by modifying the first convolution layer of ResNet18 to accept a single-channel
image as opposed to a three-channel (RGB) image (Fig 3(c)). The last fully connected (FC)
layer computes a weighted sum of these independently learned channel embeddings thereby
leveraging the power of an independent channel encoding technique while still modeling
inter-channel interactions.

For interpretation, applying Backprop [18] to the backbone encoder output yields /2D
tensors, where Nis the number of channels. The elements in each 2D tensor represent
importance; however, these values are difficult to conceptually interpret. To avoid this issue,
we add an embedding encoder that represents each channel as a single value r; (Fig 3(d)).
The embedding encoder consists of three 3 x 3 and one 7 x 7 convolution layers with batch
normalization and ReLU. The 3x3 and 7x7 convolution layers have 64 and 1 kernels,
respectively. Concatenating the embedding encoder outputs yields a channel embedding r =

[/’0, ceny l’/\/].
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To produce a prediction p for a classification task, we apply a classifier to the channel
embedding r. We exploit two FCs with ReLU and one FC with softmax as a classifier. The
first two FCs have 200 kernels.

3.2 Informative Channel Identification

After model training, we apply Backprop [18] to the channel embedding. Specifically, we
first convert a given highly multiplexed image into a channel embedding and perform
classification. We compute gradients at the channel embedding by backpropagating the
gradients of the classification output. Then, we set the importance of each channel as the
magnitude of its respective gradient. Unlike other systems using standard classification
architectures [4,20], our novel system yields a single value at each channel representing its
importance in classification. Note that due to this design choice, our system can be used in a
plug-and-play fashion with other interpretation methods [14,11,17] as well. We measure the
channel importance of all testing images and then average them across images to measure
how informative each channel is for classification.

Alternatively, we can apply a linear regression via a single FC layer to the learned channel
embedding. Considering that a simple examination of the coefficients is all that is required,
this approach may be easier to interpret. We experimented with this design choice and
encountered poor results for both datasets. A single FC layer is not sufficient to model the
complex channel interactions. To reduce under-fitting, a non-linear combination of the
learned embeddings along with Backprop should be used.

Implementation: We initialize weights in our network with random values except for the
pre-trained ResNet18 backbone network. The spatial resolution of the input image /is
224x224 pixels. For data augmentation, we apply horizontal and vertical flips and random
cropping. We use an Adam optimizer with a learning rate of 0.0001. The training process
iterates for 100 epochs with early stopping while using a batch size of 32 and four Geforce
Titan X GPUs.

4 Experimental Results

To validate the design of our model, we conduct an ablation study on a synthetic dataset
classification task. To evaluate informative channel identification performance, we define a
task in which modern deep neural networks [4,20] achieve high accuracy. For a real-world
application, we apply our model to a task of predicting tumor grade from a breast cancer
dataset generated using IMC [5].

Methods in Comparison:

To the best of our knowledge, there is no existing method for informative channel
identification. As such, we implement baseline pipelines using modern classifiers, ResNet50
[4], ResNet3D-18 [20], and BSN [10], and model-agnostic interpretation methods, Backprop
[15] and GradCAM [18]. We apply the interpretation techniques after training the classifiers
to compare them with our system. While ResNet50 and ResNet3D-18 directly predict a class
from the image, BSN classifies each channel separately and then aggregates the per-channel
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predictions to generate a single prediction. For ResNet50 and ResNet3D-18, we use
Backprop [18] for interpretation. We convert each channel’s attention map into the channel
importance by averaging it. For BSN, we adopt GradCAM [15] instead since BSN averages
per-channel classification.

4.1 Synthetic Highly Multiplexed Image Classification—According to the single
cell analysis of the breast cancer dataset, each channel’s pixel intensities follow a bi-modal
distribution. We build a synthetic dataset by emulating this highly multiplexed cell imaging
environment. This dataset is then used to conduct an ablation study and validate our design
choices. The cellular environment is mimicked in these synthetic images by dispersing a
random number of circles (cells) of a fixed radius, whose intensities are sampled from bi-
modal distributions (representing the signal arising when a target is either present or absent).
We randomly choose two modes between [0.1, 0.3] and [0.7, 0.9]. Each mode is randomly
assigned a frequency of 0.2 or 0.8. We set the variance of intensities as 0.3. We add Gaussian
noise to each image. Since our objective is to identify informative channels, we assign two
non-overlapping channels to associate with each ground truth. In particular, the two channels
assigned to each class are drawn from a class-specific bi-modal distribution, while the
intensities in the remaining channels are drawn from a random distribution. An effective
model would identify these specific channels assigned to each ground truth during
classification. For example, suppose there are 3 classes, A, B, and C, which are assigned the
following channel pairs: 4 and 19, 22 and 31, 2 and 17, respectively. Our model when
classifying an image from class C must identify channels 2 and 17 and measure their
importance. We synthesize 600 training, 300 validation, and 300 test images with 30
channels. Figure 4 visualizes three channels of a synthetic image compared to a real highly
multiplexed image [5].

Evaluation Metric:

To evaluate classification performance, we measure accuracy, which is the number of correct
predictions divided by the number of total images. For the assessment of informative
channel identification, we use Recall@ K, which is a recall rate when a model proposes K
most informative channels. Since there are six channels (two per class) associated with the
classification, we set base K'as 6 and expanded Kas 10.

Ablation Study:

We conduct an ablation study to find the best architecture design. Namely, we consider two
choices for the backbone encoder: ResNet18 [4] and ResNet3D-18 [20]. For channel
embedding, we consider two approaches: using shared weights across all channels or using
independent channel-wise layers. Table 1 lists the scores of each setting. In terms of
classification accuracy, all the settings are comparable. However, the purpose of this
experiment is to examine the model’s ability to identify informative channels rather than
classification. For informative channel identification, the ResNet18 + Shared setting
achieves the best scores in terms of both Recall@6 and Recall@10. Since the backbone
encoder, with 3D convolution layers, mixes information across channels, there is
performance degradation in the ResNet3D-18 + Independent setting.
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Table 2 compares our system to the baselines. We find that our novel approach significantly
outperforms the others in terms of Recall@6 and Recall@10 while achieving similar
classification accuracy. This shows that our channel embedding is highly interpretable and
effectively represents each channel.

4.2 Tumor Grade Classification—The breast cancer dataset [5] consists of
multiplexed images collected using IMC. The images have 39 channels representing a set of
proteins that are thought to be important for diagnosis or treatment. For each patient, clinical
annotation is available. Here, we focus on identifying tumor grade: grade 1, grade 2, or
grade 3. Tumor grade is an indicator of disease progression that is typically scored by a
pathologist using only H&E images. We seek to identify the most informative channels
among the 39 in the dataset with respect to the prediction of tumor grade. The network input
is a multiplexed image and the output is a tumor grade. The dataset contains 723 tissue
images from 352 breast cancer patients, and we split them into 506 training images and 217
test images. After training our network, we identify informative channels for predicting
tumor grade.

Ground Truth Targets:

Quantification of targets in single-cell analysis is correlated with clinical annotations such as
tumor grade; however, this requires segmentation to isolate individual cells [5]. In contrast,
we predict the tumor grade without using single-cell segmentation. Additionally, we
demonstrate that our approach can interpret the importance of individual proteins (channels).
We use the single-cell averaged expression of the individual proteins to compare changes
between grade 1, grade 2, and grade 3. Further, we use the sum of the absolute fold-change
as a ground truth for analysis. Finally, to evaluate the pipelines, we use the same set of
targets as those in the Jackson ef 4. study [5].

Evaluation Metric:

Results:

For assessment of classification performance, we report the accuracy. To evaluate each
model’s informative channel identification, we calculate the Spearman coefficients [19]
using the ground truth. The Spearman coefficient measures the correlation between two lists
of ranks. To exclude channels with low importance, we only consider the top 15 most
informative channels from the ground truth when calculating the Spearman coefficient.

Table 3 compares our system to the baseline pipelines. Our classifier performs better than
ResNet50 and BSN. For informative channel identification, our system significantly
surpasses the baseline systems in Spearman coefficient. Figure 5 shows the importance of
each channel predicted by our pipeline compared to the ground truth. We detect seven of the
top 10 ground-truth targets, which are known proteins associated with tumor progression.
One example is Ki-67, which represents a higher proliferation rate with increasing grade.
Another example is CAIX, which represents a marker of hypoxia and also increases with a
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higher grade. Similarly, it was shown that low cytokeratins (like CK8/18, CK19 and anti-pan
keratin (AE1)) are correlated with Grade 3 pathology [5].

5 Conclusions and Future Work

We have developed a novel pipeline for channel-wise importance interpretation. Our channel
embedding effectively simplifies information in each channel while improving channel-wise
interpretability. In the experimental results, we show that our pipeline outperforms existing
methods [4,10,20] in terms of classification and informative channel identification for tumor
grade prediction [5].

Future work will focus on improving the approach and extending it to other datasets and
prediction challenges including (i) biomarker discovery associated with survival time in
breast cancer [5], (ii) discovery of cellular features predictive of treatment resistance in
metastatic melanoma and other diseases, and (iii) the inclusion of spatial transcriptomic
data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(d) Biomedical application

Informative channel identification. (a) Given highly multiplexed imaging data, we train (b) a
neural network to encode a channel embedding and classify a label (e.g., tumor grade).

Then, we measure (c) the classification task channel importance by adopting an

interpretation method to the channel embedding. (d) We evaluate our system by comparing
the predicted informative channels to expert knowledge, and provide new insights for

clinicians and pathologists.
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Our architecture. For an input highly multiplexed image /, we split channels and feed them
into ResNet18 [4]. Next, the embedding encoder extracts an interpretable representation r =
[76, ..., I, where Nis the number of channels. Both the backbone and embedding encoders
share weights across channels. Finally, we adopt three fully-connected layers to estimate

class probabilities p.
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Fig. 3:

Architectures of baselines and our network. GAP and FC indicate a global average pooling
and a fully connected layer. Unlike other baselines, we convert the input image into a
channel embedding and then perform classification.
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(a)

Fig. 4:
Sample channels from (a) synthetic and (b) IMC [5] images.
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Fig. 5:

Measured target importance for tumor grade classification on the breast cancer dataset [5],
ordered by importance. We highlight the top 10 targets.
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Table 1:

Ablation study on the synthetic dataset.

Settings | Scores

Backbone Embedding | Accuracy | Recall @6 | Recall @10

ResNet18 Independent 98.0 833 83.3
ResNet18 Shared 99.7 83.3 100.0
ResNet3D-18 | Independent 100.0 50.0 66.7
ResNet3D-18 | Shared 99.7 33.3 83.3
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Table 2:
Quantitative comparison on the synthetic dataset.

Representation Method #Param. Acc. Recal@6 Recal@10

ResNet50 [4] 24M 100.0 50.0 66.7
Single prediction

ResNet3D-18 [20] 33M 100.0 50.0 50.0
Channel-wise prediction  BSN [10] 11M 34.7 0.0 0.0
Channel embedding Ours 12M 99.7 833 100.0
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Table 3:

Quantitative results for tumor grading on the breast cancer dataset [5].

Representation Method #Param. Acc. Spearman Coeff.
ResNet50 [4] 24M 59.9 236
Single prediction
ResNet3D-18 [20] 33M 68.2 12.9
Channel-wise prediction  BSN [10] 11M 58.5 41.4
Channel embedding Ours 12M 65.4 61.1
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