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Abstract

Objectives: To determine if identifiable hepatic textural features are present at abdominal CT in 

patients with colorectal cancer (CRC) prior to the development of CT-detectable hepatic 

metastases.

Methods: Four filtration-histogram texture features (standard deviation, skewness, entropy, and 

kurtosis) were extracted from the liver parenchyma on portal venous phase CT images at staging 

and post-treatment surveillance. Surveillance scans corresponded to the last scan prior to the 

development of CT-detectable CRC liver metastases in 29 patients (median time interval, 6 

months), and these were compared with interval-matched surveillance scans in 60 CRC patients 

who did not develop liver metastases. Predictive models of liver metastasis-free survival and 

overall survival were built using regularized Cox proportional hazards regression.

Results: Texture features did not significantly differ between cases and controls. For Cox models 

using all features as predictors, all coefficients were shrunk to zero, suggesting no association 

between any CT texture features and outcomes. Prognostic indices derived from entropy features 

at surveillance CT incorrectly classified patients into risk groups for future liver metastases (p < 

0.001).

Conclusions: On surveillance CT scans immediately prior to the development of CRC liver 

metastases, we found no evidence suggesting that changes in identifiable hepatic texture features 

were predictive of their development.
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Introduction:

Colorectal cancer remains the 2nd leading cause of cancer worldwide despite expansion of 

screening programs and advances in treatment [1, 2]. Significant mortality is attributable to 

disease recurrence in colorectal cancer survivors, with an estimated occurrence of 29 – 63% 

of patients diagnosed with stage II-III disease [3]. The American Society of Clinical 

Oncology has highlighted the importance of identifying new prognostic factors associated 

with disease recurrence in order to improve surveillance guidelines [4]. Identifying risk 

factors may allow clinicians to tailor surveillance strategies for patients at higher risk for 

recurrence, particularly among those with stage II-III disease. Advances in computing power 

have given radiomics, the process of using quantitative image features as clinical data, the 

potential for earlier identification of metastatic recurrence that could positively impact 

outcomes and help guide post-treatment surveillance strategies [5].

Radiomic features of the liver, the most common site of distant metastatic spread in patients 

with colorectal cancer, may provide information about underlying physiology [6]. It has 

been shown that hepatic textural features at staging portal-venous enhanced computed 

tomography (CT) appear correlated with hepatic perfusion values in colorectal cancer 

patients [7, 8]. For example, entropy, a textural feature that increases with overall image 

‘disorder,’ [9] appears to be inversely correlated with hepatic perfusion indices [8]. Such 

physiologic measurements may be altered in the setting of early occult liver metastases, 

where reduced portal venous blood flow and increased hepatic arterial blood flow have been 

observed in mouse and rat models [10, 11].

Given that CT texture features may reflect changes in hepatic perfusion, monitoring changes 

in these features could potentially alert radiologists to the imminent development of hepatic 

metastases. In other words, micro-metastatic hepatic disease may be present, detectable by 

CT texture features, which may be later seen at imaging as discrete lesions. However, to our 

knowledge, no studies regarding the change in hepatic texture features at CT during post-

treatment surveillance of colorectal cancer patients to portend subsequent development of 

hepatic metastases have been reported. The purpose of this study was twofold. First, a major 

aim was to determine if CT texture changes of the hepatic parenchyma are present in 

patients shortly before the development of hepatic metastases compared with control 

patients with colorectal cancer who did not develop hepatic metastases, and if these changes 

can predict their development. And secondly, whether such hepatic textures predictive 

changes are present at the initial staging CT.

Materials and Methods:

This study was HIPAA-compliant and IRB-approved; the need for informed consent was 

waived.

Patient population

A flowchart of patient participation and sample selection is given in figure 1. A database of 

923 patients treated with FOLFOX, FOLFOX + bevacizumab, FOLFIRI, or FOLFIRI + 
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bevacizumab at our institution from 2003 to 2016 was searched to identify potential patients 

with colorectal cancer. Colorectal cancer cases were identified through manual review of 

pathology reports in the electronic health record. Date of diagnosis was taken as the date of 

colonoscopy biopsy or surgical pathology report of the resected tumor. TNM staging 

information was collected from the surgical pathology report of the primary tumor resection. 

Imaging follow-up was obtained through the picture archiving and communication system 

(PACS). Staging CT images were reviewed by three board-certified abdominal radiologists 

(DK, MGL, PJP) to exclude the presence of liver metastases at the time of initial cancer 

diagnosis. Then, the earliest CT images demonstrating visible hepatic metastases were 

identified. We then searched for the most recent surveillance CT study prior to the 

development of CT-detectable liver metastases (no earlier than one year prior to 

demonstrable metastatic disease). 60 control patients were selected such that the distribution 

of TNM stages at diagnosis and timing of surveillance scans were similar to the case cohort, 

yielding a final sample size of n = 89. Chart review was performed by a single reader (SJL).

CT imaging

All texture measurements were performed on anonymized contrast-enhanced portal venous-

phase exams. CT imaging studies were performed on a variety of scanners (predominately 

GE, but also Siemens and Toshiba in a small minority of cases). Seven scans were 

performed at 140 kV, two were performed at 130 kV, and one was performed at 100 kV; all 

others were performed at 120 kV. Our standard IV contrast protocol consists of weight-based 

contrast dosing (range, 80–150 ml) with iohexol (300 mgI/ml), followed by 40 ml saline 

chaser, all at 3 ml/second. Portal venous phase imaging is initiated by a liver enhancement 

threshold of 50 HU, typically 60–70 seconds after initiation of contrast injection. The CT 

series were reconstructed at a slice thickness of 5 mm at 3-mm intervals.

Texture analysis

A single image slice at the level of the porta hepatis was selected for texture analysis of the 

liver parenchyma, similar to prior studies (Figure 2) [12]. All images were reviewed and 

appropriate slices were selected by an abdominal radiologist. These anonymized images 

were then uploaded to a commercially-available texture analysis program (TexRAD Ltd, 

Somerset, UK). A region of interest was manually drawn around the margin of the liver 

parenchyma by a single reader (SJL), excluding the large proximal branches of the portal 

vein (Figure 2). To perform texture analysis, the software uses a filtration– histogram 

method in which an initial filtration step is performed that highlights image features of a 

specified size, followed by histogram analysis of the filtered image. The initial filtration step 

uses a Laplacian of Gaussian (LoG) spatial band-pass filter to selectively extract features of 

different sizes. Informed in part by prior work, the following histogram-based texture 

features were calculated to characterize intrahepatic heterogeneity and complexity:

• Standard deviation of pixel attenuation histogram (SD)

• Entropy of pixel attenuation histogram

• Skewness of pixel attenuation histogram

• Kurtosis of pixel attenuation histogram
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The number of variables was deliberately limited to minimize type I error (multiple 

hypothesis testing). Each of these features were calculated at six filter sizes, ranging 

between fine (spatial scaling factor (ssf=0,2), medium (ssf=3,4), and coarse (ssf=5–6), 

yielding a total of 24 texture features.

Statistical Analysis

Texture features for cases and controls were separately compared at staging and surveillance 

CT with Mann-Whitney U-tests. Bonferroni correction for type 1 error was applied. 

Hypothesis tests for 24 texture features were performed at both staging and surveillance CT; 

the corrected threshold for statistical significance was p = 0.05/48.

For Cox models predicting freedom from metachronous metastatic liver disease, time-to-

event was defined as the number of months between the date of tissue diagnosis of colorectal 

cancer and the date of CT-detectable liver metastases. Control patients were right-censored 

at their last follow-up date at our institution, or at date of death from any cause (if recorded). 

For models predicting overall survival, time-to-event was defined as the number of months 

between date of tissue diagnosis and date of death from any cause; control patients in overall 

survival models were right-censored at their last follow-up date at our institution. We also 

noted the use of oxaliplatin in each patient’s chemotherapy regimen. Colorectal cancer 

patients treated with oxaliplatin frequently develop sinusoidal obstruction syndrome, which 

affects hepatic hemodynamics and thus may affect texture measurements. We tested for a 

difference in proportion of patients receiving oxaliplatin between the liver metastases group 

and control group with a Pearson’s chi-squared test.

To test our specific hypotheses that hepatic entropy values are associated with the 

development of metachronous liver metastases or overall survival, we built separate Cox 

proportional hazards models using staging and surveillance CT entropy values as the 

predictor variables. Linear predictor values for each patient were obtained by leave-one-out 

cross-validation (LOOCV) and were used to create a prognostic index based on their median 

value. For a Cox model, the linear predictor is the sum of covariate values weighted by the 

regression coefficients, and it represents the log(relative hazard) compared to a hypothetical 

observation whose linear predictor value is 0. When the outcome of interest is an adverse 

event, higher linear predictor values indicate a greater risk of occurrence [13]. Using this 

paradigm, we assigned patients into “low risk” or “high risk” groups based on the median 

value of the linear predictors. Kaplan-Meier estimators were then fit to the data using the 

linear predictor categorization, and log-rank statistics were calculated to determine if the 

survival functions were significantly different between the two groups [14].

For models using all 24 texture features as predictors, we utilized least absolute shrinkage 

and selection operator (LASSO) regression and LOOCV to perform model selection [15]. 

The number of features allowed in the final model is subjected to a penalty determined by λ, 

a tuning parameter. By varying λ, any number of coefficients in the model may be shrunk to 

zero, effectively removing them. The optimal value for λ and thus the number of included 

features in the final model is determined by calculating the partial likelihood deviance at 

each λ value through LOOCV, and selecting the model with the minimal value [16]. This 

process reduces type 1 error rates by reducing the probability of overfitting the model to the 
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‘noise’ in the dataset, which becomes a significant concern when there is a large number of 

predictor variables relative to the number of observations [17]. LASSO regression and cross-

validation were implemented using the software package, glmnet, in R [18].

Results:

Patient characteristics are listed in Table 1. The median interval between staging and 

surveillance CT scans from which texture features was calculated were 14 months for 

patients who developed liver metastases (on the subsequent CT scan) and 22 months for 

patients who did not develop metastases. For cases, the median interval between surveillance 

CT and the CT showing hepatic metastases was 6 months (IQR 4.5 – 11.25 mo). The 

distribution of stage at diagnosis was well-matched between cases and controls, with the 

majority being stage III (69% for cases, 72% for controls). There was no evidence that the 

proportion of patients receiving oxaliplatin in their chemotherapy regimen differed between 

cases and controls (p = 0.81 by Chi-Squared test). The distributions of entropy values for 

cases and controls at staging and surveillance CT are shown in Figure 3.

Table 2 displays the results of Mann-Whitney U-tests comparing texture features between 

cases and controls at staging and surveillance CT. Two of the tests suggested that kurtosis 

values (ssf = 3,4) differed between cases and controls (p = 0.01, p = 0.03), but these were no 

longer statistically significant after applying Bonferroni correction.

For models using entropy values as predictors, cross-validated Kaplan-Meier curves and 

corresponding log-rank statistics are shown in Figure 4. At staging CT, using linear predictor 

values to categorize patients into groups at high or low risk for liver metastases resulted in 

inaccurate prognostic predictions; patients categorized as high risk had a significantly 

greater survival function than those categorized as low risk (p = 0.02). This suggests that 

leaving out a single patient’s hepatic entropy values during model LOOCV significantly 

affected the parameter estimates of the Cox model. Incorrect prognostic categorization was 

also seen when using entropy values at surveillance (pre-metastasis) CT to predict liver 

metastasis-free survival and overall survival.

For LASSO models using all 24 texture features as predictors, the partial likelihood 

deviance was still decreasing when the value for λ shrunk all coefficients to 0, which 

suggests that none of the calculated hepatic texture features from either staging or pre-

metastasis CT scans are predictive of future occurrence of liver metastasis or overall 

survival.

Discussion:

In this study of patients with colorectal cancer, we have shown that CT texture features of 

the hepatic parenchyma shortly before the development of liver metastases are similar to 

those of matched colorectal cancer patients who do not develop liver metastases. We 

compared these CT texture features at both the initial cancer staging CT and at similar time 

intervals after biopsy-confirmed diagnosis (and immediately before CT-detectable 

metastases in the case cohort). Using survival analysis methods developed for high-

dimensional data sets, we showed that these texture features were poor predictors of the 
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occurrence of liver metastases and overall survival. Lastly, we tested the hypothesis that 

hepatic entropy values are predictive of liver metastases when measured on CT scans just 

before their development.

We were not able to predict overall survival or time to liver metastasis using survival models 

based on hepatic entropy values at staging and surveillance pre-metastatic CT. In some 

cases, using the models to assign patients to high and low risk groups resulted in 

categorizations that were worse than random assignment to those groups.

Prior studies using CT texture analysis have identified either uniformity or entropy of the 

liver parenchyma as potential predictors for clinical outcomes in patients with colorectal 

cancer [8, 12]. One study has suggested that entropy values of the liver parenchyma at 

staging CT may differ between patients who eventually develop liver metastases and those 

who do not, but this study had a limited sample size (total n = 29) [19]. We sought to test 

these intriguing hypotheses that entropy values at CT texture analysis might be predictive of 

either the development of hepatic metastases or overall survival. To improve our 

investigation, we not only included the initial staging CT, but also identified the last 

nominally normal CT (in terms of hepatic evaluation) before the development of liver 

metastases. Our results differ from these studies, and this difference may be due to a variety 

of reasons. Most notably, we used a more robust statistical methodology for feature selection 

and cross-validation for estimating model test error rates. These methods reduce data 

overfitting, leading to more conservative estimates of prediction accuracy. They are also less 

affected by the problems associated with multiple hypothesis testing, such as false positive 

associations between covariates and outcomes [20].

The statistical problems of multiple comparisons are inherent when performing analyses 

with large numbers of potential predictor variables, and independent validation studies of 

previously generated hypotheses are imperative before large-scale prospective studies of 

texture features’ clinical utility can be carried out [21]. This issue has caused criticism of 

texture analysis studies in the recently published literature. For example, one group 

conducted a systematic review of CT texture analysis studies and applied p-value correction 

to their results using the Benjamini-Hochberg method; none of the included studies’ results 

remained statistically significant after the corrections were applied [22]. Furthermore, they 

simulated 100 quantitative random variables in place of the original image-derived indices 

from one of the included studies and found that 10% of these variables were associated with 

clinical outcomes. The statistical methodologies of future texture analysis studies can be 

improved and false positive associations reduced by utilizing machine learning and data 

mining techniques developed for analyzing data in other ‘-omics’ disciplines [23, 24].

The results of texture analysis studies have been difficult to compare due to variability in 

acquisition, pre-processing, and reconstruction of images. For example, a recent phantom 

study demonstrated that texture features significantly varied across scanner models, and the 

authors suggested that researchers should develop a standardized acquisition technique when 

collecting images to be used in texture analysis studies [21]. Another study involving 

patients with non-small cell lung cancer tumors showed significant variations in over half 

(13/23) of the calculated CT texture features after simulating a decrease in tube current 
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(mA), and also when comparing feature values from whole-tumor or largest cross-sectional 

slices of tumors [25]. Finally, the reconstruction algorithm most likely varied within our 

sample since our scans were obtained over a wide range of time, which also could have 

affected the texture parameters used in the study. Overall, these sources of variation make it 

difficult to validate results of texture studies performed at other institutions. The 

development of a texture-specific protocol that leads to minimal feature variation is 

necessary if predictive models are to be validated across different healthcare settings and 

translated into clinical practice.

There have been increasing efforts to produce guidelines and software that facilitate 

standardization, reproducibility, and collaboration between radiomics research groups. A 

recent review has proposed a set of potential guidelines for future texture analysis studies to 

facilitate reproducibility and pooling of results [21]. Additionally, open-source software 

platforms have been developed specifically for reproducible feature calculation [26]. These 

radiomics software platforms were developed with an emphasis on transparency and 

reproducibility of the computational methods used to perform texture analysis. It is 

paramount that future radiomics studies are as transparent as possible when describing the 

methods used to acquire, process, and analyze texture features from images.

There are several limitations to our study. Partly due to the retrospective method of data 

collection, CT scans included were performed at multiple institutions on a wide variety of 

scanner manufacturers and models in order to reach an adequate sample size. This could 

have biased the results and potentially could even mask actual differences between cases and 

controls. Also, we included patients with stage I-IV disease, although the majority of the 

patients in this study that developed liver metastases were diagnosed with stage III disease. 

Three patients had metastases at sites other than the liver at diagnosis, and this may have 

affected liver texture measurements in the liver which could conceivably bias the texture 

measurements within the case group. However, by design, there was a similar distribution of 

disease stage at diagnosis within the control group, and this may have sufficiently reduced 

the bias of the parameter confidence intervals.

In summary, we compared select CT texture features of the liver parenchyma in patients 

with colorectal cancer who developed metachronous liver metastases against those who did 

not develop liver metastases. These features were derived from staging CT images and from 

CT images just before the development of liver metastases. We were unable to demonstrate 

the predictive utility of the 24 calculated texture features using a machine learning algorithm 

developed for high-dimensional survival analysis. We also were unable to replicate the 

utility of entropy alone for predicting overall survival or development of liver metastases. 

Despite these findings, CT texture analysis still holds great promise for other clinical 

applications and is being investigated in the setting of response to therapeutics and evolution 

of the molecular profile of cancers. To advance the field of radiomics into clinical practice, 

future texture analysis studies must make efforts to reduce feature variation during image 

acquisition and computation so that generated models are easily replicable across research 

settings.
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Key points:

1. Hepatic texture features on CT scans performed immediately prior to the 

development of identifiable colorectal liver metastases were unable to predict 

their imminent development.

2. CT texture features of the liver did not differ between cases and controls.

3. Although CT texture analysis can provide important prognostic information in 

oncology patients, this particular application failed to show benefit.
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Figure 1: 
Flow diagram for case and control patient selection
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Figure 2: 
Images showing (A) the region-of-interest utilized for CT texture analysis, and (B-D) the 

subsequent outputrom (B) fine, (C) medium, and (D) coarse filtering of the image. The 

anatomic level shown was seleceted for segementation in all patients, performed on the last 

negative CT prior to the development of hepatic metastases for cases, and matched for 

controls.
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Figure 3: 
Box-and-whisker plots show the change in liver parenchyma entropy values at both the 

initial staging and the surveillance CT scans before imminent development of metastasis 

amongst cases (Y) - and matched for controls (N). Each plot represents entropy values at 

different spatial scaling factors (fine (ssf=0,2), medium (ssf=3,4), and coarse (ssf=5–6). The 

whiskers extend to the furthest measurement within (1.5 × interquartile range). Panels (A), 

(B) correspond to staging and surveillance entropy, respectively. Note the lack of separation 

for entropy values between cases and controls for any filter at either time point. This 

demonstrates the lack of predictive ability for identifying those patients who subsequently 

went on to develop identifiable metastases at the next CT scan after the surveillance scan 

depicted.
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Figure 4: 
(A) Cross-validated Kaplan-Meier curves displaying liver metastasis-free survival for 

patients split into high and low risk groups based on linear predictor values at staging CT. 

(B) Liver metastasis-free survival for patients split into high and low risk groups based on 

linear predictor values at the “pre-metastasis” surveillance CT. (C, D) Overall survival for 

patients split into high and low risk groups based on linear predictor values at staging and 

pre-metastasis surveillance CT, respectively. Linear predictor values are calculated through 

leave-one-out cross-validation (LOOCV) of Cox survival models, using hepatic entropy 

values as covariates. In (A), (B), and (D), using linear predictor values to categorize patients 

into high and low risk groups resulted in incorrect predictions of patient prognoses (ie, “low 

risk” groups show decreased metastasis free survival).
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Table 1:

Patient Demographics

Cases (n = 29) Controls (n = 60)

Mean age at diagnosis (years) 58.1 ± 12.4 61.8 ± 13.3

Sex

 Male 18 24

 Female 11 36

Median total follow-up (months) 24 (range 3 – 66) 47.5 (range 11 – 165)

Median CT interval (months)* 14 (range 2 – 38) 22 (range 1 – 42)

Alive at last follow-up 10/29 (34.5%) 47/60 (78.3%)

Stage at Diagnosis

 I 0 3 (5%)

 II 6 (21%) 12 (20%)

 III 20 (69%) 43 (72%)

 IV 3 (10%) 2 (3%)

*
CT interval is time from initial staging CT to “pre-metastatic” surveillance CT in cases (and approximately matched in controls)
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Table 2:

Results of Mann-Whitney U-tests comparing texture features between patients who developed liver metastases 

and controls.

Staging CT Surveillance CT

Feature Spatial Scaling Factor p-value Spatial Scaling Factor p-value

Skewness 0 0.68 0 0.90

2 0.96 2 0.54

3 0.41 3 0.38

4 0.49 4 0.34

5 0.36 5 0.49

6 0.20 6 0.73

Standard deviation 0 0.86 0 0.65

2 0.7 2 0.38

3 0.47 3 0.61

4 0.67 4 0.65

5 0.94 5 0.5

6 0.74 6 0.26

Kurtosis 0 0.44 0 0.73

2 0.14 2 0.36

3 0.01* 3 0.33

4 0.03* 4 0.35

5 0.75 5 0.46

6 0.22 6 0.57

Entropy 0 0.82 0 0.68

2 0.99 2 0.42

3 0.74 3 0.51

4 0.74 4 0.87

5 0.88 5 0.86

6 0.92 6 0.72

*
These results were no longer statistically significant after applying Bonferroni correction for type 1 error (multiple hypothesis testing).
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