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Abstract

Many infectious diseases are thought to have emerged in humans after the Neolithic revolution. 

While it is broadly accepted that this also applies to measles, the exact date of emergence for this 

disease is controversial. Here, we sequenced the genome of a 1912 measles virus and used 

selection-aware molecular clock modeling to determine the divergence date of measles virus and 

rinderpest virus. This divergence date represents the earliest possible date for the establishment of 

measles in human populations. Our analyses show that the measles virus potentially arose as early 

as the 6th century BCE, possibly coinciding with the rise of large cities.
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Measles virus diverged from rinderpest virus in the 6th century BCE, which is compatible with an 

ancient emergence of measles.

Measles is a highly contagious viral disease that presents with rash, fever and respiratory 

symptoms. Before a live-attenuated vaccine was developed in the 1960s, the disease affected 

the vast majority of children (1, 2). Global vaccination campaigns resulted in a marked 

reduction of measles transmission and fatal cases and WHO has proclaimed an elimination 

goal. However, the disease still caused an estimated 110,000 deaths in 2017 (3) and 

incidence has recently been on the rise (4). Measles is caused by Measles morbillivirus 
(MeV), a negative sense single-stranded RNA virus from the family Paramyxoviridae 
(Order: Mononegavirales). MeV is an exclusively human pathogen whose closest relative 

was the now eradicated Rinderpest morbillivirus (RPV), a devastating cattle pathogen (5). It 

is generally accepted that measles emergence resulted from a spill-over from cattle to 

humans, although the directionality of this cross-species transmission event has never been 

formally established (supplementary text S1; 6).

It is unclear when measles first became endemic in human populations, but assuming an 

origin in cattle, the earliest possible date of MeV emergence is defined by the MeV-RPV 

divergence time. Several studies have provided estimates for this date using molecular clock 

analyses (7–10), with the most reliable (and oldest) estimate falling at the end of the 9th 

century CE (mean: 899 CE [95% highest posterior density (HPD) interval: 597 – 1144 CE]; 

(8). Here, we reassess the MeV-RPV divergence time using advanced, selection-aware 

Bayesian molecular clock modelling (11) on a dataset of heterochronous MeV genomes 

including the oldest human RNA virus genome sequenced to date, and show that a 

considerably earlier emergence can no longer be excluded.

Our re-examination was prompted by the broadly accepted view that molecular dating based 

on tip date calibration, i.e. the method used in previous efforts to estimate the timing of 

MeV-RPV divergence, underestimates deep divergence times (8). Rapid short-term 

substitution rates captured by tip calibration can often not be applied over long evolutionary 

timescales, because of the effects of long-term purifying selection and substitution 

saturation. This causes a discrepancy between short- and long-term substitution rates, which 

is referred to as the time-dependent rate phenomenon (12, 13). Since measurement 

timescales matter, a first step to arrive at accurate estimates is to maximize the time depth of 

tip calibration, for example through the use of ancient viral sequences (14, 15).

RNA tends to be much less stable in the environment than DNA, making the recovery of 

MeV genetic material from archeological remains unlikely (16). Pathology collections 

represent a more realistic source of MeV sequences that predate the oldest MeV genome – 

the genome of the Edmonston strain that was isolated in 1954 and attenuated to become the 

first measles vaccine. We examined a collection of lung specimens gathered by Rudolf 

Virchow and his successors between the 1870s and 1930s and preserved by the Berlin 

Museum of Medical History at the Charité (Berlin, Germany), and identified a 1912 case 

diagnosed with fatal measles-related bronchopneumonia (Fig. 1, fig. S1, supplementary texts 

S2 and S3). To retrieve MeV genetic material from this specimen, we first heat-treated 

200mg of the formalin-fixed lung tissue to reverse macromolecule cross-links induced by 
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formalin and subsequently performed nucleic acid extraction (17). Following DNase 

treatment and ribosomal RNA depletion, we built high-throughput sequencing libraries and 

shotgun sequenced them on Illumina® platforms. We generated 27,328,219 high quality 

reads, of which 0.46% were mapped to a MeV genome. Median insert size varied between 

95 and 136 nucleotides and little damage was observed, suggesting good preservation of 

RNA molecules (fig. S2, table S1, supplementary text S4). The resulting 10,960 unique 

MeV reads allowed us to reconstruct an almost complete 1912 MeV genome: 15,257 of the 

15,894 nucleotides in the MeV strain Edmonston (AF266288) were covered by at least 3 

unique reads (11,988 nucleotides by at least 20 reads; mean coverage 54x).

In addition to the 1912 genome and the 1954 Edmonston genome, only 2 genomes have 

been determined from MeV isolated prior to 1990 (Mvi/Lyon.FRA/77: HM562899; 

T11wild: AB481087). We therefore searched the strain collection of the German National 

Reference Laboratory (Robert Koch Institute, Berlin, Germany) for pre-1990 isolates. We 

found two strains from the pre-vaccine era isolated in 1960 by the National Reference 

Laboratory of former Czechoslovakia in Prague (MVi/Prague.CZE/60/1 and MVi/

Prague.CZE/60/2; 18). We performed serial passages of these strains and determined their 

genome sequences at a mean coverage of 109x and 70x, respectively. The two genomes were 

nearly identical, differing at only four sites.

We performed Bayesian and maximum likelihood (ML) phylogenetic analyses to investigate 

the phylogenetic placement of the 1912 and 1960 genomes with respect to 127 available 

MeV genomes. Tip-dated Bayesian phylogenetic trees placed the 1912 genome as a sister 

lineage to all modern genomes while the two genomes from 1960 clustered together with the 

Edmonston strain (genotype A; fig. S3). The placement of the 1912 genome in the dated-tip 

tree was consistent with its placement in a non-clock ML tree reconstruction and with the 

rooting of a dated-tip tree excluding the 1912 genome (fig. S4 A and B). The relatedness of 

the 1912 and 1960 genomes to now extinct MeV lineages is in line with a marked reduction 

of MeV genetic diversity during the 20th century as a product of massive vaccination efforts.

Having extended the time depth of MeV tip calibration, we subsequently focused our 

attention on estimating the timing of MeV-RPV divergence. We assembled a dataset of 51 

genomes comprising MeV (including one of the 1960 genomes and the 1912 genome), RPV 

and Peste des petits ruminants virus (PPRV, the closest relative to MeV-RPV) sequences, 

ensuring they represented the known genetic diversity of these viruses (table S2). Prior to 

inferring a time-scaled evolutionary history for this dataset using a Bayesian phylogenetic 

framework, we assessed its temporal signal and tested it for substitution saturation. We 

confirmed a strong temporal signal (fig. S5, table S3) and did not identify strong substitution 

saturation (table S4). We constructed a series of increasingly complex evolutionary models 

to accommodate various sources of rate heterogeneity. Models ranged from a standard codon 

substitution model with a strict molecular clock assumption to a codon substitution model 

with time-varying selection combined with a clade-specific rate for PPRV and additional 

branch-specific random effects on the substitution rate. Adequately accommodating different 

sources of rate heterogeneity is known to provide a better correction for multiple hits in 

genetic distance estimation and the potential of codon substitution modelling in recovering 

deep viral divergence has specifically been demonstrated (8). This was reflected in the 

Düx et al. Page 3

Science. Author manuscript; available in PMC 2020 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increasingly older estimates of MeV-RPV and PPRV-MeV-RPV divergence times and wider 

credible intervals for increasingly complex models (Fig. 2 and table S5). Parameter 

estimates of the substitution and clock models also provided evidence for a significant 

contribution of these different sources of rate heterogeneity to model fit improvement (table 

S5). We found a significantly negative coefficient for the time-dependent nonsynonymous/

synonymous substitution rate ratio (ω) (11), indicating strong long-term purifying selection, 

a significantly positive coefficient for the fixed effect on the PPRV rate, indicating a faster 

evolutionary rate in this clade (as suggested by temporal signal analyses, fig. S5), and 

significant additional unexplained variation as modelled by the random effects (table S5). 

Our most complex model therefore provided the best description of the evolutionary process 

and significantly pushed back the divergence date of MeV and RPV, with a mean estimate at 

528 BCE [95% HPD interval: 1174 BCE - 165 CE] (Fig. 3). These estimates were robust to 

(i) including or excluding the 1912 genome in the analyses (table S6), (ii) using a more 

conservative consensus genome for the 1912 sample (table S7), (iii) the prior specification 

on the age of the RPV genome or the inclusion of an additional RPV genome (table S7), and 

(iv) the coalescent prior specification (table. S7). A comparison of the four models in their 

ability to recover the age of the 1912 genome indicated that the most complex model yielded 

the best estimate (1929 CE [95% HPD interval: 1889 – 1961 CE]; fig. S6).

The MeV/RPV divergence time provides the earliest possible date for measles emergence in 

humans, which is now compatible with the emergence of this disease more than 2,500 years 

ago. It seems plausible that the divergence of these lineages was closely followed by the 

cattle-to-human host jump and subsequent evolution into two distinct pathogens. However, 

the spill-over could have occurred at any time between the MeV/RPV divergence and the 

time to the most recent common ancestor of all MeV known to infect humans (1880 CE 

[95% HPD interval: 1865 – 1893 CE]). This raises the question of whether other sources of 

information can narrow down this timeframe and agree with an earlier timing of measles 

emergence.

The earliest clear clinical description of measles is often attributed to the Persian physician 

Rhazes, writing in the 10th century CE (19). But Rhazes was extremely familiar with all 

available medical literature at his time, and made use of earlier sources. Indian medical texts 

possibly describe measles several centuries prior to Rhazes (20). While clear descriptions of 

measles are missing in the Hippocratic corpus and the Greek medical tradition (at least 

through the prolific second-century writer Galen), such absence alone cannot be decisive. 

Retrospective diagnosis from pre-modern medical texts is notoriously fraught, especially for 

diseases like measles whose symptoms were easily confused with a variety of other 

conditions. Measles differential diagnosis remained a challenge well into more recent times 

(21). Therefore, any number of the large-scale “pestilences” described in ancient sources 

from Europe or China could reflect MeV outbreaks.

An ancient origin of measles seems all the more plausible in the light of demographic 

changes that are compatible with our understanding of (contemporary) MeV epidemiology. 

Populations large enough to support continuous MeV transmission, i.e. larger than the MeV 

critical community size (CCS) of 250,000–500,000 individuals (22–24), could not exist in 

Neolithic, Bronze Age, and early Iron Age settlements, which lacked both economic and 
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political means to allow such numbers. Even if connectivity between such settlements may 

have created a larger pool of susceptible individuals, given the speed with which measles 

epidemics occur, and the efficacy of acquired immunity, epidemiologists have held that MeV 

could not have become endemic in urban populations below the CCS (25). In the late first 

millennium BCE, technologies (both economic and political) crossed a threshold promoting 

an upsurge in population sizes in Eurasia and South and East Asia. Although considerable 

uncertainty exists around population size estimates derived from ancient documents (e.g. 

literary observations, travelers’ reports, censuses, or references to the amount of food 

distributed in a city) or archaeological proxies (e.g. size of city walls, built-up area of 

settlement), there is broad agreement that a number of settlements in North Africa, India, 

China, Europe, and the Near East began to surpass the CCS for MeV by around 300 BCE, 

presumably for the first time in human history (Fig. 3; 26). From this period onward, there 

were consistently urban populations above the CCS for MeV.

Based on these considerations, our substantially older MeV/RPV divergence estimate 

provides grounds for sketching a new model of MeV’s evolutionary history. Under this 

scenario, a bovine virus, the common ancestor of modern strains of RPV and MeV, 

circulated in large populations of cattle (and possibly wild ungulates) since its divergence 

from PPRV around the 4th millennium BCE (3199 BCE [95% HPD interval: 4632 – 1900 

BCE]; Fig. 3). As a fast-evolving RNA virus, it may have produced variants that were able 

to cross the species barrier on several occasions, but small human populations could only 

serve as dead-end hosts. Then, almost as soon as contiguous settlements reached sufficient 

sizes to maintain the virus’ continuous transmission (Fig. 3), it emerged as a human 

pathogen, the progenitor of modern-day MeV. It has been suggested that numerous 

concurrent human-bovine epidemics in the early medieval period (here 6th-10th centuries 

CE) were caused by an immediate ancestor of MeV and RPV that was pathogenic to both 

cattle and humans (27). The new RPV-MeV divergence date allows for the same inference to 

be made for earlier concurrent human-bovine mortality events well attested in e.g. Roman 

sources from the 5th century BCE on (28). During the following centuries, introduction of 

MeV into naive human populations and/or flare-ups of the disease might have caused some 

ancient epidemics whose etiology remains uncertain.

While our findings shed new light on the origin of measles, formally proving that the virus 

emerged soon after its divergence from RPV would require archeological genomic evidence. 

Most studies on ancient viruses have thus far focused on viruses with a double-stranded 

DNA genome (14, 29–32). However, genetic material of parvovirus B19 was also detected in 

early Neolithic skeletal remains, despite the relatively unstable nature of its single-stranded 

DNA genome (15). It remains to be determined if viral RNA recovery from such ancient 

specimens is feasible. Recently, RNA was extracted from the remains of a 14,300-year-old 

Pleistocene canid preserved in permafrost (33). While the majority of RNA fragments were 

extremely short (<30 nt), the authenticity of the sequences could be validated (33). Such 

advances highlight that it may not be completely impossible for ancient remains to still 

contain MeV RNA, especially if preserved under favorable circumstances, including natural 

mummification or preservation in cold environments (16). While awaiting such direct 

evidence, we believe that the proposed model of MeV evolution constitutes a compelling 

working hypothesis.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Formalin-fixed lung specimen collected in 1912 in Berlin from a 2-year old girl diagnosed 

with measles-related bronchopneumonia (museum object ID: BMM 655/1912).
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Fig. 2. Divergence time estimates for MeV and RPV (red) and for MeV/RPV and PPRV (blue) 
under increasingly complex evolutionary models.
Estimates for parameters of interest (posterior mean and 95% highest posterior density 

interval) under each model are provided in table S5.
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Fig. 3. Time-measured evolutionary history for MeV, RPV and PPRV, and largest city size over 
time in three well-studied regions of the world.
Upper figure displays maximum clade credibility (MCC) tree summarized from a Bayesian 

time-measured inference using tip-dating and accounting for long-term purifying selection. 

The red and blue points represent the mean estimates for the divergence times between MeV 

and RPV and MeV/RPV and PPRV, respectively; the corresponding divergence date 

estimates are depicted below as marginal posterior distributions. The lower figure represents 

the estimated size (log10 scale) of the largest city in the western world including 

Mesopotamia (dark blue), East Asia (teal) and South Asia (green) over time. The red vertical 

line represents the mean divergence time estimate between MeV and RPV and the red area 

its 95% highest posterior density interval. The dashed horizontal line represents the classical 

threshold for MeV maintenance in a population (i.e. 250,000 individuals). Dots show data 

points according to Morris (34) and Inoue et al. (26). Each line represents the fit of a 

generalized additive model with a cubic spline smoothing function.
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