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Abstract

Establishing a natural communication interface between the user and the terminal device is

one of the central challenges of hand neuroprosthetics research. Surface electromyography

(EMG) is the most common source of neural signals for interpreting a user’s intent in these

interfaces. However, how the capacity of EMG generation is affected by various clinical

parameters remains largely unknown. In this study, we examined the EMG activity of fore-

arm muscles recorded from 11 transradially amputated subjects who performed a wide

range of movements. EMG recordings from 40 able-bodied subjects were also analyzed to

provide comparative benchmarks. By using non-negative matrix factorization, we extracted

the synergistic EMG patterns for each subject to estimate the dimensionality of muscle con-

trol, under the framework of motor synergies. We found that amputees exhibited less than

four synergies (with substantial variability related to the length of remaining limb and age),

whereas able-bodied subjects commonly demonstrate five or more synergies. The results

of this study provide novel insight into the muscle synergy framework and the design of natu-

ral myoelectric control interfaces.

Introduction

It has been estimated that the 2005 upper limb amputation prevalence in the United States

involved approximately 541,000 persons, and it was projected that the number of people living

with a lost upper limb will double by 2050 [1]. Myoelectric control using electrical activity of

forearm muscles (EMG) holds out significant promise as a natural interface between amputees

and powered hand-wrist prostheses to restore manual dexterity and improve quality of life.

However, despite decades of research, the usability of powered prostheses remains limited, and

the rejection rates are still quite high [2]. While early methods such as direct control systems

have provided the basis of active prosthetics, these approaches have been inadequate due to

their limited function, limited movement fidelity, and occasionally unintuitive training [3, 4].

More recently, pattern recognition approaches have been studied extensively and imple-

mented in commercial devices. These approaches detect muscle contraction patterns as
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discrete classes to drive function modules [5]. A variety of classification algorithms have been

implemented and tested to discriminate muscle contraction patterns, such as support vector

machines [6], random forest classifiers [7], linear discrimination analysis [8], and convolution

neural networks [9]. Earlier pattern recognition approaches operate at fixed speed for each

function module, whereas recent development has shown that augmenting the speed with the

extraction of proportional ‘class activation’ information in addition to class labels could

improve overall performance [10, 11]. While pattern classification accuracy and robustness

have been improved over the years and two commercial systems have been developed, i.e.,

COAPT [12] and MyoPlus [13], the translation of these algorithms to clinical applications still

proves challenging [3]. Pattern recognition algorithms inherently require long intervals to

extract features for reliable classification. Moreover, since only one function module can be

activated at a given time, sequential actions were often necessary to switch between function

models for multi-joint tasks. Recent effort has been made to extract simultaneous actions (e.g.,

wrist motion plus finger motion) by defining more classes that represent functionally impor-

tant motion combinations [14, 15]. However, this also indicates longer and more extensive

training sessions to cover increased number of classes. Lastly, due to the discrete nature of the

classifiers, incorrect classifications and unintuitive adaptation to changes in the interfaces (e.g.,

electrode shifts, arm position, etc.) could be challenging.

Considering the drawbacks of pattern recognition approaches, an alternative has been pro-

posed to extract proportional control signals with multiple degrees of freedom (DoFs) simulta-

neously via linear [16–19] or nonlinear [20–22] regression algorithms. The promise of this

approach is to allow flexible combinations of control signals from muscle contraction patterns

associated with specific anatomical DoFs, thus leading to more intuitive myoelectric interfaces

and allowing users to quickly adapt to small changes in the control mapping. This is possible

because, according to the muscle synergy framework, multi-channel EMG signals contain

information about supraspinal motor commands that activate synergistic muscle covariation

determined by spinal cord circuits [23, 24]. A simultaneous and proportional myoelectric

interface can therefore extract motor commands that are natural to the human user.

Though research into simultaneous and proportional control has demonstrated good per-

formance in controlled environments as well as preliminary clinical use [25], there are still sev-

eral important questions to be solved for clinical success. One of these questions is how muscle

synergies are affected in amputees with different clinical conditions. The dimensionality of the

muscle activation space (i.e., number of muscle synergies) is critically important for the reli-

ability and usability of simultaneous and proportional control, since it determines how many
and which DoF of the terminal devices can be driven by the extracted motor commands. How-

ever, due to the lack of systematic investigations into the muscle control capabilities of ampu-

tees featuring a large number of subjects, our understanding is very limited on this matter.

Most clinical assessments studies with large sample size focused on the functional outcomes

with time-based or subjective criteria [26–28], which cannot separate the contribution of myo-

electric control and the terminal devices. In contrast, laboratory evaluation of myoelectric con-

trol often uses abstract tasks that are independent from terminal devices, but only pre-

determined DoFs or classes was tested in able-bodied persons and a few amputee subjects.

One of the few relevant works demonstrated that the ability to produce discrete forearm mus-

cle contraction patterns (via pattern recognition classifiers) is correlated with residual forearm

length, time since amputation, and phantom limb sensation, with a maximum of 11 indepen-

dent patterns [29]. To the best of our knowledge, however, no research has quantified the mus-

cle control capability of amputees within the framework of motor synergies.

The main goal of the present investigation is to quantify the dimensionality of synergistic

muscle activation in a relatively large number of amputated subjects and to compare the results
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to able-bodied subjects. To this end, we have conducted a retrospective analysis of a publicly

available dataset, NinaPro, featuring both able-bodied controls and transradially amputated

subjects with different clinical parameters [30]. This dataset was established primarily to help

the scientific community to evaluate movement recognition and force control algorithms for

prosthetic hands. Since a large number of movement patterns of the hand and wrist were pro-

duced by the subjects, we were able to apply synergy extraction algorithms on this dataset to

evaluate the heterogeneity in the dimensionality of muscle control space across individual

patients with different characteristics.

Materials and methods

Source of data

The data used in this study was obtained from the NinaPro dataset [29]. This is a publicly avail-

able dataset the prosthesis research community uses to study the interplay between surface

EMG (sEMG), hand kinematics/kinetics, and clinical parameters with the goal of movement

classification for myoelectric control. 67 able-bodied subjects and 11 transradial amputees

were enrolled in the study from which the Ninapro dataset was compiled. Subjects were tasked

to perform various repetitive hand/wrist movements while having sEMG recordings taken

from their forearm. Informed consent was obtained from each subject prior to the experi-

ments, which was approved by the institutional review board. This dataset is divided into three

subsets. Database1 (27 able-bodied subjects) was excluded because it used different data collec-

tion protocol. We chose to only use Database 2 (40 able-bodied subjects) and Database 3 (11

transradial amputees) since they share the same movement exercises and electrode configura-

tions across the two subject groups. A brief overview of the datasets is given below, and more

details can be found elsewhere [29].

Subject characteristics

Database 2 (DB2) contains data from 40 able-bodied subjects who had the following character-

istics: 28 males, 12 females; 34 right-handed, 6 left-handed; and age 29.9 ± 3.9 years. Database

3 (DB3) contains data from 11 trans-radial amputees (all males; 10 right-handed, 1 left-

handed; and age 42.36 ± 11.96 years). These amputees varied in their percentage of remaining

forearm and this data was included in the Ninapro dataset along with other vital characteristics

(years since amputation, amputated hand, DASH score, phantom sensation, and past experi-

ence with prosthesis; Table 1). Note that all amputees had acquired limb loss after adolescence,

and there were no data from amputees with congenital limb loss. We note that one amputation

was due to cancer, whereas others were caused by trauma. Radiotherapy have been reported to

be an effective treatment for cancer in hand and foot, but it may cause local complications to

joints and muscles adjacent to the targeted site [31]. However, given that this individual had a

90% residual arm length, it is reasonable to assume that radiotherapy (if any) was delivered to

the hand, and it should not affect the function of forearm muscles. In fact, a recent study with

breast cancer demonstrated that the alternation of musculature was observed in pectoralis

muscles that are directly under treatment, but not in rectus abdominis muscles that are away

from treatment [32].

Experimental protocol

Subjects in the Ninapro dataset underwent a series of four exercises (A-D) which consist of dif-

ferent hand movements or force patterns. Exercise A includes single finger movement but it

was not performed in DB2 and DB3 that were selected in the current study. Exercise D focuses
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on isometric force exertion of one or more fingers, which were relatively difficult to perform

by the amputees (only 8 of 11 completed Exercise D). Therefore, our study only used Exercises

B and C (total 40 movement types, see Table 2). Specifically, Exercises B focused on movement

of one or more joints without explicit functional relevance, whereas exercise C focused on

functional joint coordination. For all movement tasks, subjects were shown a movie of the

movement on a monitor: able-bodied subjects were asked to duplicate the movement with

their right hand, while amputated subjects were asked to contract the muscles in their missing

limb to mimic the movement as naturally as possible. Each movement was repeated six times,

Table 1. Summary of clinical characteristics of database 3.

Subject Amputated

hand

Cause of

Amputation

% Forearm

Remaining

Age Years since

Amputation

Phantom Limb

Sensation (0–5)

DASH

Score

Experience with

prosthesis

Movements

Analyzed

# of

Electrodes

Used

1 R Accident 50 32 13 2 1.67 Myo 29 10

2 L Accident 70 35 6 5 15.18 Cos 40 10

3 R Accident 30 50 5 2 22.50 Myo 39 10

4 R&L Accident 40 34 1 1 86.67 No 40 10

5 L Accident 90 67 1 2 11.67 Kin 40 10

6 L Accident 40 32 13 4 37.50 Kin 40 8

7 R Accident 0 35 7 0 31.67 No 40 8

8 R Accident 50 33 5 2 33.33 Myo 40 10

9 R Accident 90 44 14 5 3.33 Myo 40 10

10 R Accident 50 59 2 5 11.67 Myo 40 10

11 R Cancer 90 45 5 4 12.50 Myo 33 10

DASH = disabilities of the arm, shoulder, and hand. Experience with prosthesis: Myo = myoelectric, Cos = cosmetic (passive), Kin = body powered, and No = no

experience.

https://doi.org/10.1371/journal.pone.0242921.t001

Table 2. Summary of movements and force patterns in each exercise.

Exercise B Exercise C

1. Thumb up 13. Wrist flexion 1. Grasp around large diameter

object

13. Tripod grasp

2. Extension of index and middle, flexion of

all others

14. Wrist extension 2. Grasp around small diameter

object

14. Prismatic pinch grasp

3. Flexion of ring and little finger, extension

of all other

15. Wrist radial deviation 3. Fixed hook grasp 15. Tip pinch grasp

4. Thumb opposition toward base of little

finger

16. Wrist ulnar deviation 4. Index finger extension grasp 16. Quadpod grasp

5. Abduction of all fingers 17. Wrist extension with closed

hand

5. Medium wrap 17. Lateral grasp

6. Fingers flexed into a fist 6. Ring finger grasp 18. Parallel extension grasp

7. Pointing of index from fist 7. Prismatic four finger grasp 19. Extension type grasp

8. Adduction of extended fingers 8. Stick grasp 20. Power disk grasp

9. Wrist supination around axis of middle

finger

9. Writing tripod grasp 21. Open a bottle with tripod grasp

10. Wrist pronation around axis of middle

finger

10. Power sphere grasp 22. Turn a screwdriver while grasping with stick

grasp

11. Wrist supination around axis of little

finger

11. Three finger sphere grasp 23. Cut object (knife grasp with index finger

extension grasp)

12. Wrist pronation around axis of little finger 12. Precision sphere grasp

https://doi.org/10.1371/journal.pone.0242921.t002
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and the sequence of movements was not randomized with the objective to encourage a consis-

tent movement pattern. Note that the dataset is missing the record of several movements for a

few amputee subjects (Table 1, all missing data were from Exercise C).

Data acquisition and signal processing

The EMG recording setup was the same across 40 movements in Exercise B and C for each

subject. For most subjects, a total of 12 sEMG electrodes (Trigno Wireless, Delsys, Inc) were

placed on the subject’s arm at the following locations: (1) eight electrodes evenly spaced

around the forearm at the radio-humeral joint; (2) two electrodes on the flexor digitorum

superficialis (FDS) and the extensor digitorum superficialis (EDS); and (3) two electrodes on

the biceps brachii (BB) and the triceps brachii (TB). sEMG signals were sampled at 2 kHz.

There were two amputee subjects who only wore 10 electrodes (DB3 subjects 6 and 7 were

missing electrodes at FDS and EDS). The sEMG signals were cleaned of 50 Hz power-line

interference using a Hampel filter before being uploaded to the online data repositories. Note

that the data collection of the Ninapro dataset combined both dense sampling approach (8

electrodes around forearm) and anatomical positioning strategy (electrodes on FDS, EDS, BB,

TB) for electrode placement. The dense sampling approach (main signal source of the present

study) does not target specific muscles. Additionally, the electrodes on FDS and EDS cannot

precisely capture sub-group (i.e., finger specific) muscle activities. While this electrode place-

ment is different from the common approach used in muscle synergy studies that target spe-

cific muscles, it aims to characterize the muscle activation pattern without a priori knowledge

of muscle locations. This is practically important given differences in limb reduction among

amputees, and has been the standard electrode placement for developing simultaneous and

proportional myoelectric controllers [25, 33].

Data analysis

After the data was obtained, we first used a fourth-order lowpass zero-lag Butterworth filter

with a cutoff frequency of 3Hz on the rectified EMG signals. Then we down sampled the data

to 100Hz, which was segmented using the movement label provided by the dataset. All signals

from the ‘Rest’ periods were removed, whereas the remaining signals were concatenated across

trials and normalized to have unit variance. The two sEMG channels on the BB and TB were

not used in the analysis because they are not involved in hand/wrist movements. The quantifi-

cation of the dimensionality of the EMG data across a broad range of movements are described

below.

Estimating the number of synergies

The non-negative matrix factorization (NMF) algorithm, a trusted method for analyzing high-

dimensional data [34], was used to extract time-invariant muscle synergies and their time-

dependent activation coefficients from the EMG data. Much of the following data analysis was

derived from previous studies that extracted muscle synergies [35–37]. The ultimate goal of

NMF is to capture major EMG channel co-variation patterns (i.e., synergies) within a pool of

EMG samples obtained across many movements [38], thereby yielding an estimation of the

dimensionality of the EMG data. The NMF can be described as:

E ffiW �H ð1Þ

where W is a n by k non-negative matrix representing k synergies for n electrodes and H is a k

by T non-negative matrix representing the synergy activation coefficients for T samples. This

decomposition was implemented using a common multiplicative update algorithm [39]. The
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accuracy of the reconstruction typically increases as a function of k. Various methods have

been implemented to determine the minimum number of k that captures most of the total

data variance [40–42], which are based on different methods that estimate the ‘variance

accounted for’ (VAF) metric. In the present study, the VAF is defined as

VAF ¼ 100 � 1 �
SSE
SST

� �

; ð2Þ

where SSE represents the sum of squared differences between the original and reconstructed

EMG data, and SST represents the sum of the squared original EMG data. This definition was

selected over the Pearson correlation coefficient due to its sensitivity to the magnitude of the

data in addition to the shape [35]. The calculation of VAF was done both globally (global

VAF) as well as within each electrode column (local VAF), such that the subtleties of the data

at both levels can be captured.

To identify the number of synergies for each subject, we first divide the EMG dataset ran-

domly into two subsets: extraction and validation, with 75% and 25% of total samples respec-

tively. The NMF was first computed using the extraction subset with a given synergy number

k, and the resulting synergy matrix W was used to obtain H using the validation subset. Then

both global and local VAF after NMF were obtained from the reconstruction of the validation

subset. Since the NMF algorithm may converge to local minima, the synergy extraction was

repeated 50 times for each synergy number with random subset sampling and random initial

estimates of W and H. The result corresponding to the maximum global VAF for the given

synergy number was selected. This entire procedure was performed with varying number of

synergies k from 1 to n (i.e., number of electrodes). The number of synergies for each subject

was defined as the minimum k that achieved a global VAF > 95% and a local VAF > 85% for

each EMG channel.

For able-bodied subjects in DB2, we estimated the number of synergies using two electrode

configurations. One consists of all forearm electrodes (n = 10), whereas the other consists of

the eight evenly spaced forearm electrodes (n = 8). For the amputee subjects in DB3, the num-

ber of synergies was estimated either using the actual forearm electrode configuration (n = 8

for two subjects and n = 10 for the other nine subjects), or only 8-electrode configuration.

Representative movements

Muscle synergies can normally be visualized and compared across subjects or between limbs if

precise anatomical electrode locations are used. However, it was challenging to do this in the

present study given the inconsistency of electrode locations due to the prosthesis-oriented

electrode placement method used during data collection. Therefore, we took a different

approach to qualitatively demonstrate the underlying neuromuscular structure of the extracted

synergies. This approach was designed with the following assumptions: (1) the extent to which

a given muscle synergy is activated varies across different movements, and (2) subjects share

similar muscle synergies that are associated with movements of one or a set of joints (e.g.,

wrist extension or finger flexion). These assumptions can be justified by previous studies that

examine muscle synergy in upper limbs [35, 43, 44]. Therefore, we defined the structure of the

synergies by representing each extracted synergy in terms of activation level across move-

ments. Specifically, for each synergy extracted from one subject, a 17 × 1 feature vector was

defined. Each element of this vector is the averaged activation coefficient of this synergy for all

repetitions of one movement type from Exercise B. The feature vectors of each synergy were

normalized to zero-mean and unit standard deviation to remove the scaling ambiguity of the

NMF. In other words, the feature vectors describe the relative activation strength of a given
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synergy across all simple movements. We excluded Exercise C movements when building fea-

ture vectors because Exercise C includes mostly functional grasping and manipulation move-

ments, which are more complex and challenging to perform consistently due to inter-personal

preferences than joint-based Exercise B movements. This between-subject variability would

significantly deteriorate the reliability of the clustering result (i.e., less average Silhouette score,

see below).

Representative movements that were strongly associated with synergies (i.e., high activation

coefficients) were revealed using clustering analysis on these feature vectors pooled from all

able-bodied subjects. Specifically, we used k-means clustering method with 1-r as distance

metric, in which r is the Pearson’s correlation coefficients between two feature vectors. We

repeat k-means algorithm 50 times for a given k (from 2 to 15), and the optimal number of

clusters was determined using the Silhouette scores averaged across all samples. The Silhouette

score is a metric that quantifies how similar a sample is to its own cluster compared to other

clusters [45]. A higher Silhouette scores represents better clustering quality. Subsequently, we

defined the primary representative movements as those with the strongest synergy activation,

which are all at least 2 S.D. greater than the mean activation strength within each cluster. Addi-

tionally, secondary representative movements were also defined in some clusters if the move-

ment with the second strongest activation was 1 S.D. greater than the mean.

Lastly, we compared synergies extracted from amputee subjects with those extracted from

able-bodied subjects. We choose not to cluster synergies from amputees because the high

degree of heterogeneity that make the clustering less reliable (i.e., low Silhouette scores).

Instead, we tried to assign these synergies to the closest synergy cluster extracted from the

able-bodied group. This was accomplished by computing the distance metric (i.e., 1-r) between

a given amputee synergy vector and the centroid of an able-bodied cluster. The amputee syn-

ergy is considered similar to a cluster with the smallest distance, if this distance is smaller than

the maximum within-cluster sample-to-centroid distance. Note that we only performed the

analysis described in this section using synergies extracted from 10-electrode configuration.

Two amputee subjects with 8-electrode configuration were not examined because it was found

that they had very low number of synergies (see Results).

Statistical analysis

We seek to examine the effect of clinical parameters on the number of synergies in amputee

subjects (DB3). Spearman’s correlation coefficients and the corresponding significance were

obtained using number of synergies as the dependent variable and residual arm length, years

after amputation, age, and phantom sensation as independent variables. The DASH score was

not used because it correlates with the residual arm length and is influenced by many factors,

e.g., type of prosthesis use and side(s) of amputation. We used t-tests for comparing subject

age, height and weights. Moreover, we used nonparametric statistical tests (Wilcoxon Signed

Ranks Test and Mann-Whitney U Test) for comparing the number of synergies between

groups or conditions, as well as other subject characteristics.

Results

Dimensionality of forearm surface EMG in able-bodied subjects

The dimensionality of forearm muscle EMG across 40 movements were estimated in able-bod-

ied adults using either an eight-electrode configuration or a ten-electrode configuration. As

the number of synergies used to reconstruct the raw data increased, more variance was

explained by the NMF algorithm in both configurations (Fig 1A). To meet our criteria on both

global and local VAF, it was found that five synergies were required in most subjects (Fig 1B),
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with only a few subjects showing less than five synergies. The global VAF of five synergies

reconstruction were 95.5 ± 2.5% and 94.0 ± 3.4% (mean ± SD) for eight- and ten-electrode

configurations respectively. The addition of two electrodes located at the extrinsic finger mus-

cles led to a significantly larger estimation of the dimensionality (p< 0.001). Specifically, the

use of ten-electrode configuration yielded 5.7 ± 1.0 synergies, whereas the eight-electrode con-

figuration yielded 5.2 ± 0.8 synergies (reduction in 17 of 40 subjects). Subject height, weight,

and age were found not to predict the number of synergies. However, we found male subjects

exhibited a larger number of synergies than female subjects in both eight-electrode (5.3 ± 0.8

versus 4.8 ± 0.9) and ten-electrode (5.9 ± 0.9 versus 5.2 ± 1.0) configurations. Both differences

were significant (p = 0.039 and 0.015, respectively). Considering the significant difference in

body sizes (i.e., height and weight, both p< 0.001) between two genders, we think that this dif-

ference may be linked to the volume conduction in forearms with different sizes (see

discussion).

Dimensionality of forearm surface EMG in amputee subjects

The amputee subjects were older than the male control subjects (42 ± 12 versus 30 ± 4 years; t-

test, p< 0.001), but they had similar height and weight. The EMG dimensionality in amputee

subjects was first estimated with the actual electrode configurations (9 had ten electrodes, 2

had eight electrodes). With a global VAF of NMF reconstructions of 96.2 ± 0.5%, it was found

that the number of synergies extracted from these subjects was highly variable: between 1 and

7, averaging less than four (3.6 ± 1.7). As expected, this is significantly less than the dimension-

ality estimated from able-bodied subjects (p< 0.001 compared to both eight- and ten-elec-

trode configurations). This difference remains (3.9 ± 1.5 synergies) if we exclude subject 7 as

an outlier due to his significant loss of muscle volume (~0% residual limb length) compared to

other amputee subjects. We also estimated the EMG dimensionality with only eight evenly

spaced electrodes, but the result was not statistically different from the one obtained with all

available electrodes. A close examination of the results showed that the number of synergies

decreased by one for the four patients with� 70% residual arm length, but it did not change

for other patients. This means that FDS and EDS electrodes had little independent

Fig 1. Dimensionality estimation of forearm muscle activation in able-bodied subjects. (A) EMG data variance explained (VAF) by synergies extracted

from able-bodied subjects, plotted as electrode count increased. (B) Histogram distribution of the number of synergies extracted from all forty able-bodied

subjects.

https://doi.org/10.1371/journal.pone.0242921.g001
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contribution to the EMG dimensionality in trans-radial amputees with medium to high level

of amputation.

With all available electrodes, we found that the number of synergies cannot be predicted by

either phantom limb sensation intensity (Fig 2A) or time since amputation (Fig 2A). In con-

trast, the residual limb length and age were both found to be positively correlated with the

number of synergies (Fig 2C and 2D). These statistical significance did not change if we

removed subject 7 as an outlier. Lastly, we did not find differences in the number of synergies

between myoelectric device users and non-users who had the same average residual limb

length.

Representative movements for extracted synergies

To understand the neuromuscular structure of the extracted synergies, we first pooled all fea-

ture vectors corresponding to each synergy extracted from all able-bodied subjects (only for

the 10-electrode configuration). As described earlier, each feature vector represents the relative

activation strength of a given synergy across 17 movements performed by one individual.

There was a total of 227 feature vectors, which were analyzed using k-means clustering with

silhouette scores to reveal an optimal cluster number of six. This indicates that there were at

Fig 2. Relation between clinical parameters and number of synergies in amputee subjects (DB3). The red dashed lines are the linear fit lines

for all subjects. Spearman’s coefficient is shown on the side. The filled circle and cross represent Sub7 (zero remaining forearm) and Sub6 (8

electrodes), respectively. The green circles represent myoelectric device users. Single asterisk and double asterisks indicate p< 0.05, and

p< 0.01 respectively.

https://doi.org/10.1371/journal.pone.0242921.g002
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least six distinct types of muscle synergies extracted from able-bodied subjects. Fig 3 illustrates

these synergy types represented by the centroids of these clusters (in terms of relative activa-

tion strength across movements). These synergies can be qualitatively described using repre-

sentative movements that had significantly larger activation strengths (Table 3).

The structure of the synergies extracted from 9 of 11 trans-radial amputees, who had 10

electrodes, was examined with respect to these synergy clusters formed within able-bodied

subjects (Table 4). We tried to define the type of each synergy using a cluster from able-bodied

subjects. However, 5 out 37 synergy samples cannot be defined because their distances to any

cluster centroid are too far. For the remaining 32, the most common type is Cluster 2 (8 sub-

jects), whereas the least common type was Cluster 5 (1 subjects). The appearance of other clus-

ter types is quite variable (Cluster 1: 6 subjects, Cluster 6: 4 subjects, Cluster 3: 4 subjects,

Cluster 4: 3 subjects).

Fig 3. Activation strength of synergy types extracted from able-bodied subjects. Each row represents the relative

activation strength for movements from Exercise B, averaged within a cluster of normalized synergies. The dashed

horizontal lines represent the Mean + 2 S.D. of these averaged activation strength. The asterisks and crosses indicate

the primary and secondary representative movements for the synergy clusters. The movement number is defined in

Table 2 Exercise B.

https://doi.org/10.1371/journal.pone.0242921.g003
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Discussion

Our results demonstrated that the synergistic activities of forearm muscle contractions are

generally impaired in trans-radial amputees, and the extent to which the dimensionality of the

muscle contraction is reduced is related to several clinical parameters (level of amputation and

age). Importantly, we identified six main synergy types that are common in able-bodied indi-

viduals, and we classified amputee synergies with these types. It was found that, although syn-

ergies representing wrist and finger flexions were mostly preserved, there were high degrees of

heterogeneity in the residual muscle synergy structure across amputees. We discuss our results

with respect to the muscle synergy framework and prosthesis control applications below.

Methodological limitations

The present study is a retrospective analysis using an open-source dataset. While the dataset

contains a wide range of movements and a relatively large number of control and amputee

subjects, there are two main limitations associated with the present study and the results. First,

the EMG signals were obtained from surface locations that are not precisely linked to individ-

ual functional muscles. This prevents physiologically accurate extraction and direct compari-

son of muscle synergies, due to spatial uncertainties associated with the electrode locations.

Therefore, this study only provides an approximation of the muscle synergies and their

dimensionality. Ideally, the EMG signals for synergy extraction should be acquired at precise

anatomical sites [18, 43, 44], or using high-density electrode arrays that provide more spatial

information [38, 46]. Moreover, EMG recordings from the intact limb should be acquired to

enable within-subject comparisons. Second, the movements included in the original dataset

are missing in some cases that could potentially improve the estimation of the dimensionality

Table 3. Characteristics of clusters computed from the synergy pool of 40 able-bodied subjects.

Cluster No. No. of Synergy samples % variance explained in EMG per synergy Primary (and Secondary) representative movements

1 53 15.8 ± 6.0 Wrist flexion (Wrist ulnar deviation)

2 45 16.7 ± 5.5 Finger flexion (wrist radial deviation)

3 42 23.0 ± 7.8 Wrist extension

4 36 13.9 ± 5.2 Wrist extension & finger flexion

5 27 14.1 ± 4.7 I&M finger extension (R&L finger flexion)

6 24 15.2 ± 6.7 Wrist pronation (Wrist supination)

https://doi.org/10.1371/journal.pone.0242921.t003

Table 4. Classification of synergy type in amputee subjects with respect to the synergy clusters of able-bodied subjects.

Subject (% arm) Identified synergy (cluster) type ranked by variance explained

1 (50) 1 (31.8) 6 (30) 6 (18.1) 2 (15.0)

2 (70) 6 (27.6) 2 (24.5) 1 (21.8) 6 (21.1)

3 (30) 3 (44.3) 2 (35.7) 4 (10.9) 0 (4.1)

4 (40) 2 (48.4) 5 (46.6)

5 (90) 4 (24.6) 6 (22.5) 0 (16.7) 0 (14.8) 1 (6.9) 0 (5.5) 1 (4.0)

8 (50) 1 (51.3) 2 (43.7)

9 (90) 0 (27.1) 1 (22.0) 2 (17.1) 3 (17.0) 4 (11.8)

10 (50) 1 (32.1) 3 (26.0) 6 (19.8) 2 (17.1)

11 (90) 3 (25.1) 3 (24.3) 2 (19.0) 2 (14.0) 6 (12.6)

Sub6 and Sub7 were excluded. The cluster number refers to Fig 3 and Table 3, and zero indicates no appropriate cluster was found. These synergies are ranked with a

descending value of explained variance (the numbers in the parentheses following the cluster number) in the corresponding subject’s EMG.

https://doi.org/10.1371/journal.pone.0242921.t004
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of forearm muscles, a notable one being the extension of all fingers. Also, the dataset includes

only a few movements that focus on coordinated motion of the fingers and wrist, which are

functionally important for manual dexterity [47]. Future studies that quantify muscle control

capabilities in amputees should consider these limitations and adjust the experimental proto-

col accordingly. Despite the inaccuracies in estimating the exact physiological structure of the

muscle synergies, our results obtained from the able-bodied control group is consistent with

previous studies, suggesting the validity of the present method. We believe that the present

study provides good estimations about the dimensionality of the forearm muscles contrac-

tions, which has several important indications to the clinical investigation of non-invasive

myoelectric control.

Dimensionality of hand/wrist muscle contraction in able-bodied

individuals

The muscle synergy framework has emerged in recent years as a technique to understand how

motor control is coordinated across combinations of muscles, with applications for clinical

assessment and rehabilitation after injuries and diseases that impair the neural pathways of sen-

sorimotor control [48, 49]. It has been argued that multiple muscles can generate covarying

activities as a ‘functional unit’, i.e., muscle synergy, which enables the central nervous system to

operate in a low-dimensional functional (neural) space instead of a high-dimensional muscle/

joint (mechanical) space for common tasks [24, 50]. Such dimensionality reduction can often

be quantified using matrix factorization methods such as principle component analysis (PCA),

independent component analysis, and NMF on EMG signals [51]. Precise estimation of the

dimensionality of hand/wrist muscle activation is challenging because experimental setups do

not usually record from all relevant muscles given the many DoFs and complex musculoskeletal

structure of the forearm. Weiss and Flanders demonstrated approximately 3–4 synergies were

needed to account for> 90% of the variance of EMG recorded from five intrinsic and two

extrinsic finger muscles during grasping or spelling tasks [44]. Manickaraj et al., identified 2–3

synergies from five forearm muscles to account for> 90% of the variance during wrist move-

ment tasks [52]. Zariffa et al., showed 5 synergies can be extracted from eight electrodes (> 85%

variance explained) across in-hand and forearm muscles during functional grasping tasks [43].

The structure of the synergies varies greatly across these studies due to the differences in elec-

trode configuration and measured movements. Therefore, these investigations only captured a

subset of the hand/wrist motor synergies, considering that kinematic analysis indicates 9 syner-

gies were needed to explain > 90% variance measured across 19 finger joints during activities of

daily living [53]. Constrained by the experimental setup of the dataset used in the current study,

we demonstrated approximately five to six synergies for each able-bodied individual which can

be clustered into six distinct types (Fig 3). The variation of the individual synergy number could

be caused by subject-to-subject variations in muscular structure and electrode placement. One

can observe that these extracted synergy types do not explain most of the finger movements.

This was expected since the electrode configuration does not include intrinsic finger muscles,

and it only grossly focused on wrist and extrinsic finger muscles, which may vary little across

finger movements. An important finding is the effect of gender: less synergies were extracted

from female subjects than from male subjects. Gender was mostly overlooked in previous stud-

ies of upper-limb muscle synergies due to small sample sizes. For the present study, we think

that this effect could be best explained by body size differences. It was found that forearm cir-

cumference of females is about 16% less than that of males [54]. A larger circumference of the

forearm enables larger inter-electrode distances, which allows the sensors to capture more inde-

pendent muscle activities. Future studies are needed to better examine this finding.
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Dimensionality of hand/wrist muscle contraction in transradial amputees

and the effects of clinical parameters

The structure and activation of muscle synergies of upper limbs can be altered by impaired

sensorimotor neural pathways, such as those found in stroke [37], spinal cord injury [43], dys-

tonia [55], and pain [52]. Most of these previous studies focused on injury/diseases occurring

at or above spinal motor neuron level. In contrast, amputation could lead to several distinct

damage to the motor system at peripheral sites. First, muscular structure can be significantly

altered due to surgical management. Specifically, for transradial amputation, myodesis of

deeper forearm muscles and myoplasty of superficial muscles are needed for bone coverage

and contraction stability post-surgery [56]. These procedures, as well as retractions and fibro-

sis after surgery, may alter the conduction of the muscle unit action potentials within the fore-

arm tissue due to changes of the source signal locations and tissue conductivity. Consequently,

the pattern of surface EMG signals could be altered in an even-spaced electrode setup as in

most myoelectric control applications. Such disturbance to the musculature could be less for

individuals who have longer residual arm length [57, 58]. For instance, a distal third forearm

amputation could leave the origin and insertion of the pronator teres and supinator intact, and

tenodesis can be used for more distal amputations in which tendons are preserved. Another

factor that could potentially change volume conduction is the circumference of the forearm, as

demonstrated in able-bodied subjects between genders. Although the amputees in this study

have similar body size as the male able-bodied controls, surgery and muscle atrophy could

cause reduction in the forearm circumference. However, we think this effect does not play rela-

tively small role since only small difference (< 0.5 synergy) was found between males and

females. This is also supported by the fact that no difference was found between myoelectric

device users and non-users, considering the latter are more likely to develop atrophy due to

non-use. In addition to these changes at musculature level, changes in muscle synergies could

also be attributed to the missing afferent signals. Although questions remain regarding the

contribution of sensory feedback in organizing and activating muscle synergies, it has been

demonstrated that deafferented frogs exhibit different synergy structure and activation com-

pared to intact frogs. Moreover, it was demonstrated that deafferentation could induce phan-

tom limb pain and reorganization of cortical somatotopic map [59, 60], which may led to

alternation of synergy structures as seen in Table 4. Therefore, it is possible that the lack (or

alteration) of sensory feedback from the missing part of the limb could impact how synergies

are modulated in amputee subjects (Table 3). Considering these two types of damage, our

result that the dimensionality and the structure of forearm muscle contractions change as

remaining limb length reduces can be expected.

We found that the dimensionality of forearm muscle contraction does not correlate with

the number of years after amputation (Fig 3B). This could suggest that natural usage (contrac-

tion) of the muscles may not be important to maintain muscle synergies as those synergies are

already well developed in these patients before trauma induced amputation. In contrast, we

did find that the number of synergies increase as a function of age (Fig 3D). However, it is dif-

ficult to speculate why this was the case because age did not strongly predict the number of

synergies in able-bodied subjects, and the sample size of amputee subjects is considerably

smaller than the able-bodied subject dataset. This correlation could be an artifact caused by

other unreported clinical parameters mentioned in the previous paragraph.

Lastly, we would like to compare the present study to the work of Atzori and colleagues

[29], in which the same dataset was used to examine muscle control in the form of generating

discrete muscle activation patterns. These independent patterns were identified by using classi-

fication algorithms on the EMG data for each amputee subject, and the number of discrete
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patterns was determined as the largest subsets of 40 movements (Exercise B and C) that can

achieve>90% classification accuracy. Therefore, this study quantified individual’s muscle con-

traction space as discrete movement classes. In contrast, our analysis quantified the muscle

contraction space as axes on which the activations can co-vary continuously. Atzori et. al. dem-

onstrated that the number of independent movements can vary between 2 and 11 within the

amputee subjects (DB3), which is potentially smaller than that in able-bodied subjects [61].

This number is generally larger than the number of synergies we found in the current study,

because each synergy can afford more than one independent movement at distinct activation

levels. Furthermore, Atzori et. al. found that the number of independent movements can only

be weakly predicted by the remaining limb length, but that they can be strongly predicted by

the phantom limb sensation and number of years after amputation. A closer examination of

the dataset suggested that six myoelectric prosthesis users had larger averaged number of years

after amputation is (7.3 years) and higher averaged degree of phantom sensation (3.3) than

five non-myoelectric users (5.6 years and 2.4, respectively) in this dataset (same trend can be

observed if Sub 7 is excluded). Therefore, we speculate that the ability to produce discrete

movements patterns can be improved by the experience of using prosthesis devices. Active use

of myoelectric prosthesis requires muscle contraction on a day-to-day basis, which could lead

to motor learning at the cortical level [62] that may help the patient to generate contraction

patterns more consistently for a given movement and more distinct across movement, i.e.,

higher signal-to-noise ratio in offline classifiers. Indeed, it has been found that movement clas-

sification accuracy in pattern recognition based controllers was higher in myoelectric hand

users than non-myoelectric users, and non-myoelectric users could get better if training is

given [63]. Similar observation was also reported with functional clinical outcome measures

for conventional myoelectric hands users (and non-users) [26]. Moreover, prosthesis use has

been shown to maintain phantom sensation vividness better than non-use [64], and prosthesis

use can preserve mental rotation ability [65] which is shown to be influenced by phantom sen-

sation [66]. Lastly, neuroimaging studies have shown that use of myoelectric prosthesis could

reduce cortical reorganization, i.e., the ‘invasion’ by neighboring cortical areas that may be

related to the phantom limb pain [62]. Given the above evidence, we think that the ability to

produce discrete muscle pattern involves both supraspinal structures which can be facilitated

by usage of myoelectric prosthesis. In contrast, our current study addresses the muscle control

capability mainly defined by the dimensionality of the overall EMG signal variance, which is

less affected by the cortical level use-dependent changes.

Clinical implications in neuroprothetics

NMF is one of the common methods to define simultaneous and proportional myoelectric

interfaces in hand-wrist prosthesis, while other methods (e.g., regression, PCA) are also based

on the muscle synergy framework to extract intuitive motor commands [67]. Although these

methods are usually not completely unsupervised as implemented in the present study, the

number of DoFs that can be controlled by such interfaces is still directly related to the

dimensionality of the forearm EMG. Most existing studies that involve transradial amputees

use 2-DoF interfaces, in which the first DoF is usually wrist flexion/extension [20, 68, 69]. This

accords well with our result that a muscle synergy associated with this DoF is mostly intact in

amputees with varying clinical parameters. The mapping of the second DoF in these studies

includes: wrist pronation/supination [68], finger flexion/extension [69], and wrist radial/ulnar

deviation [20]. These DoFs were all consistently found in the able-bodied subjects, but highly

variable in amputees. In fact, some of the amputee synergies does not resemble any of the able-

bodied synergies. Therefore, our results indicate that the optimal choice of 2-DoF interface is

PLOS ONE Dimensionality of forearm muscle control in transradial amputees

PLOS ONE | https://doi.org/10.1371/journal.pone.0242921 December 3, 2020 14 / 19

https://doi.org/10.1371/journal.pone.0242921


highly user dependent, and we cannot simply use one-size-fit-all approach in clinical testing.

A suboptimal selection of DoFs could force the user to use synergies that have relatively small

variances, which may limit the performance or increase the energy expenditure. 3-DoF inter-

faces have also been tested in able-bodied subjects [18, 38]. However, it may be challenging to

define 3-DoF interfaces using surface EMG for amputees with remaining forearm length

<70% due to the reduced muscle contraction space. Furthermore, motor synergies that

involve partial hand motions may not be a good option for amputees, although it has been suc-

cessfully implemented to drive a multi-DoF hand for able-bodied subjects [70]. In summary,

clinical parameters play an important role in determining the DoFs for clinical implementa-

tions of simultaneous and proportional myoelectric interfaces, and studies with able-bodied

subjects may not always be translational for clinical use. It is important to test patient’s muscle

control capacity before fitting the terminal device for better customization (i.e., precision med-

icine). We propose that mechanical designs (e.g., how to map the DoFs) should also be cus-

tomized to match the available dimensionality of the patient’s muscle control. Moreover,

mechanically complimentary prosthetic hands could enhance the capability of simultaneous

and proportional interfaces (limited by number of muscle synergies) by providing additional

flexibility in day-to-day operations such as grasping [71, 72].

Conclusions

Due to difficulties in recruiting subjects with upper limb amputation at single study sites, it is

traditionally challenging to examine the characteristics of this population with a reasonable

sample size. Most existing studies have used able-bodied subjects, and some have been able to

test 2–3 amputee subjects. The present study analyzed the largest publicly available dataset of

surface EMG recordings of hand/wrist movements performed by transradial amputees and

able-bodied controls. We found that the dimensionality of muscle contraction in the forearm

varies greatly in amputees, with correlation to the level of amputation and age. Building on

these results, in future studies we will investigate how to personalize terminal devices for indi-

viduals with distinct muscle control capabilities to maximize usability, as well as examine the

development of muscle synergies in patients with congenital limb amputation.
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