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ABSTRACT

We investigated locking behaviors of coupled limit-cycle oscillators with phase and amplitude dynamics. We focused on how the dynamics
are affected by inhomogeneous coupling strength and by angular and radial shifts in coupling functions. We performed mean-field analy-
ses of oscillator systems with inhomogeneous coupling strength, testing Gaussian, power-law, and brain-like degree distributions. Even for
oscillators with identical intrinsic frequencies and intrinsic amplitudes, we found that the coupling strength distribution and the coupling
function generated a wide repertoire of phase and amplitude dynamics. These included fully and partially locked states in which high-degree
or low-degree nodes would phase-lead the network. The mean-field analytical findings were confirmed via numerical simulations. The results
suggest that, in oscillator systems in which individual nodes can independently vary their amplitude over time, qualitatively different dynam-
ics can be produced via shifts in the coupling strength distribution and the coupling form. Of particular relevance to information flows in
oscillator networks, changes in the non-specific drive to individual nodes can make high-degree nodes phase-lag or phase-lead the rest of the
network.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031031

Models of coupled oscillators have been widely used across a vari-
ety of disciplines including physics, chemistry, and biology to
describe the dynamics of systems with interacting elements. For
example, fireflies adjust their blinking according to the light-
flashes they see around them, and clusters of neurons produce
rhythmic firing whose timing depends on the input from other
neurons. Previous studies have analyzed these coupled systems
in phase-reduced models, in which each node in the network is
treated like a cycling clock. However, in many real-world appli-
cations, such as in brain networks, the amplitude of activity at
one location affects the response at another location, just as more
neuronal firing will produce a larger effect at recipient sites.
Therefore, it is important to study dynamics of such systems
using models that account for both the phase and amplitude of
the dynamics of each node. To this end, we analyzed the dynamics
of coupled identical oscillator with phase and amplitude dynam-
ics. We focused on how the dynamics are altered by two factors:
first, the inhomogeneity in the coupling strength (so that some
nodes have stronger connections than others) and second, the
coupling function (how the response of a target node depends on
the phase and amplitude of a source node). Building on previous
works that have focused on the phase dimension of the dynamics,

we mapped a rich repertoire of amplitude dynamics and phase
dynamics depending on the distribution of connection strengths
and the form of the coupling function. Conditions for each of
the possible classes of dynamics were identified using stability
analysis, following a self-consistency argument, and the results
were confirmed via numerical simulation. Of particular interest
for neuroscience, we found that groups of nodes could shift from
phase-leading to phase-lagging depending on minor changes in
the coupling function. Thus, small changes in a non-specific driv-
ing signal in the brain can cause shifts in the direction of signaling
between brain regions. More generally, we also observed a vari-
ety of non-locked states (”drifting” dynamics) in which only a
subset of strongly connected nodes in the network are strongly
synchronized, while other nodes on the periphery operate more
independently.

I. INTRODUCTION

Coupled oscillator systems provide models for systems of inter-
acting elements in many fields, including physics, chemistry, and
biology.1–8 The intrinsic dynamics of the oscillators, the couplings
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between the oscillators, and the connectivity among the oscillators
jointly determine the dynamics of the coupled system. For the gen-
erality of the model and ease of analysis, many studies have focused
on phase dynamics of the coupled oscillator systems.9–15 Even within
phase-reduced systems, lacking any variation in amplitude, oscilla-
tor systems exhibit a rich repertoire of various synchronous behav-
iors such as in-phase synchronization, full locking, chimera state,
and partial locking.16 However, the physics of many real-world
systems includes dramatic amplitude dynamics: for example, in
populations of neurons, the amplitude of oscillations varies dramat-
ically across different brain regions and over time with important
functional implications.17–20 Therefore, oscillator models incorpo-
rating both phase and amplitude dynamics have been investigated
with a focus on the global stability of the system. These stability-
focused studies revealed diverse outcomes, including amplitude
death, chimera states, and phase-delay effects.21–27 In the present
work, rather than focusing on whether synchronization occurs, we
focus on the variability in phase and amplitude across nodes, and
how these are controlled by system-wide parameters. In particular,
we focus on cases in which the network has inhomogeneous degree
distributions so that some nodes are more influential than others
and aim to characterize how high (or low) degree nodes may come
to have increased (or decreased) amplitudes and to phase-lag (or
phase-lead) the rest of the network.

The detailed interactions of phase-and-amplitude dynamics are
especially important in the understanding of neural systems because
they may explain global state transitions associated with distinct
modes of brain function. For example, Moon et al.28 showed that
the phase-and-amplitude relationships differ before and after anes-
thesia and demonstrated how this phenomenon could be captured
in a Stuart–Landau model. More generally, it is critical to provide a
theoretical framework to organize diverse various locking behaviors
observed in neural oscillatory systems, as the changes in these sys-
tems are associated with large-scale functional changes (sleep/wake,
active/passive), and the controllers of such state-shifts remain largely
unknown.29–43

In this paper, we study how the phase and amplitude dynam-
ics of coupled oscillators depend on (i) spatial inhomogeneity in
coupling strengths and (ii) the form of coupling function between
nodes. These two factors combine to produce rich repertoire of syn-
chronous behaviors in terms of both phases and amplitudes of the
oscillators. Numerical simulations with Gaussian, power-law, and
brain-network distributions of the coupling inhomogeneity show
the conditions for different categories of various synchronous states
ranging from un-locked state, partially locked state to fully locked
state. Analytical approximations were in agreement with our numer-
ical results. This work can be understood as a generalization of
previous work examining coupling inhomogeneity in phase-based
oscillators,16 extending the analysis to include variability in ampli-
tude.

II. MODEL AND ANALYSIS

We investigate a generalized form of coupled identical limit-
cycle oscillators in the form of the Stuart–Landau model. The
Stuart–Landau model is a canonical model in the sense that
oscillator systems reduce to the Stuart–Landau model near a Hopf

bifurcation.44,45 Thus, we consider a mean-field model of N weakly
coupled Stuart–Landau oscillators, each near a Hopf bifurcation,

żj = {λj − |zj|2 + iωj}zj +
SKj

N

N
∑

k=1

(zke
−iβ − zjd0e

−iα),

j = 1, 2, . . . , N, α ∈ [0, π), β ∈ [0, π/2), d0 ∈ R, (1)

where zj(t) = rj(t)e
iθj(t) is the position of an oscillator j in the com-

plex plane at time t. S is a parameter controlling the global coupling
strength in the system, and Kj(> 0) corresponds to the effective cou-
pling strength to an oscillator j from the population. All oscillators
possess identical intrinsic frequency ωj = ω. λj is the bifurcation
parameter controlling how fast the trajectory decays onto the attrac-
tor; in this model, we consider λj = λ > 0 for all j = 1, 2, 3, . . . , N

such that
√

λ is considered as the “intrinsic amplitude” to which the
oscillator converges in the absence of the coupling. β is a phase-delay
term, and d0e

−iα is a constant that translates zj by a fixed amount
in both amplitude and phase. (Alternatively, one could consider
α ∈ [0, 2π) and d0 ∈ R > 0, but for simplicity in analysis, we con-
sider the above parameters.) Note that Eq. (1) is a generalized form
of diffusively coupled Stuart–Landau oscillators such that when
α = 0, β = 0, and d0 = 1, the coupling function becomes H
= zk − zj, which has been studied extensively.22,46–51 In polar coor-
dinates, the model is written as

θ̇j = ω +
SKj

N

N
∑

k=1

[

rk

rj

sin(θk − θj − β) + d0 sin α

]

, (2)

ṙj = (λ − |rj|2)rj

+
SKj

N

N
∑

k=1

[rk cos(θk − θj − β) − rjd0 cos α], (3)

where θj(t) is the phase and rj(t) is the amplitude of an oscillator
j at time t. This is a direct extension of the phase-reduced model
investigated in Ref. 16. The phase-reduced model is derived from
Eq. (2) by setting the amplitudes of all oscillators to be constant and
equal. As explained further in Sec. IV, the mean-field model serves
as an approximation of a full network model with sufficiently large
N, where Kj, the coupling strength, is directly proportional to the
degree of node j.52,53

We investigate the effect of β , α, d0, and {Kj} on the dynamics
of the coupled oscillators. {Kj} describes the distribution of coupling
strengths, while different values of β , α, and d0 further determine the
form of the coupling function between nodes. Note that the main
source of inhomogeneity in the system is through inhomogeneous
values of Kj for the oscillators. Instead of varying the intrinsic prop-
erties of oscillators through ωj, which has been an often adopted
approach for many previous studies,10,54,55 we focus on the dynamics
created through inhomogeneous coupling strengths while assuming
identical oscillators with ωj = ω. This has a more practical impli-
cation for understanding real-world complex networks: in brain
networks, for example, individual patches of cortical tissues are often
modeled as identical units, differentiated only by the pattern and
strength of connections they maintain with other nodes.56
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To study the effect of d0, α, β , and {Kj} on the dynamics of the
system, we perform a similar self-consistency analysis as in Ref. 16
with the added amplitude dimension. To simplify our notation, we
set S = 1 in the following analysis without loss of generality.

Let � denote the frequency of the population oscillation

described by the order parameter R̃ei2 ≡ 1
N

∑N
j=1 rje

iθj in a stationary

state. Then,

φ̇j = 1 + Kj

[

d0 sin α +
1

rj

R̃ sin(8 − φj − β)

]

, (4)

where φj ≡ θj − �t, 1 ≡ ω − �, and 8 ≡ 2 − �t. When the sys-

tem reaches a stationary state, R̃ and 8 do not depend on time.
Additionally,

ṙj = λrj − rj
3 + Kj

[

R̃ cos(8 − φj − β) − rjd0 cos α
]

. (5)

The oscillators phase-locked with frequency � in the origi-
nal frame of reference are those with Kj ∈ Dl ≡ {Kj : KjR̃ > |1 +
Kjd0 sin α|rj

∗ } asymptotically approaching a stable fixed point z∗
j

= (φj
∗, rj

∗) of Eqs. (4) and (5), satisfying the following equations:

(1 + Kjd0 sin α)r∗
j = KjR̃ sin

(

φj
∗ − 8 + β

)

, (6)

(λ − r∗
j

2 − Kjd0 cos α)r∗
j = −KjR̃ cos

(

φj
∗ − 8 + β

)

(7)

from φ̇j = 0 and ṙj = 0, respectively. This coupled system yields an
exact equation for rj

∗ as

{(1 + Kjd0 sin α)
2 + (λ − r∗

j
2 − Kjd0 cos α)

2}r∗
j

2

= (KjR̃)
2
. (8)

Furthermore,

cos
(

φj
∗ − 8 + β

)

> 0, (9)

λ − 3r∗
j

2 − Kjd0 cos α < 0 (10)

due to the stability of the fixed point. Combining Eqs. (7) and (9)
gives

λ − r∗
j

2 − Kjd0 cos α < 0, (11)

which, when applied to Eq. (8), yields one real positive solution for
r∗
j .

From Eqs. (6), (7), and (9), we obtain the fixed points:

φj
∗ = sin−1

[

(1 + Kjd0 sin α)r∗
j

KjR̃

]

+ 8 − β (12)

= cos−1

[

−(λ − r∗
j

2 − Kjd0 cos α)r∗
j

KjR̃

]

+ 8 − β . (13)

Here, we consider two curves (Kj, φj
∗) and (Kj, rj

∗), defined as
the distributions of φj

∗ and rj
∗ as functions of Kj. The slopes of

these curves can provide useful information for understanding the
dynamics of the oscillators with regard to coupling strength. First,
the slope of the (Kj, φj

∗) curve for locked oscillators describes the

phase distribution over the oscillators with regard to the distribution
of the coupling strength. This slope is given by

∂φj
∗

∂Kj

= −
1 · r∗

j

Kj
2R̃ cos

(

φj
∗ − 8 + β

) . (14)

With the condition [Eq. (9)], the sign of the slope further
reduces to

sign

(

∂φj
∗

∂Kj

)

= −sign
(

1 · r∗
j

)

= −sign (1) (15)

since r∗
j > 0 at the stable point. This means that only the sign of

1 determines the sign of the slope and the phase monotonically
increases or decreases as Kj increases within the locking range of
Kj values. When the locked oscillators oscillate with frequency �

greater than the intrinsic frequency ω (1 < 0), the slope is posi-
tive. On the other hand, the oscillators with Kj ∈ Dd ≡ {Kj : KjR̃ <

|1 + Kjd0 sin α|r∗
j } drift monotonically without locking. We refer

to these oscillators as drifting population.
In order to reveal how the amplitudes of the locked oscil-

lators change as a function of the coupling strength, the slope
of the (Kj, rj) curve can next be found. From Eq. (6), we can
derive

∂rj
∗

∂Kj

=
1R̃ sin

(

φ∗
j − 8 + β

)

(

1 + Kjd0 sin α
)2

, (16)

which reduces to

sign

(

∂rj
∗

∂Kj

)

= sign
{

1 sin
(

φ∗
j − 8 + β

)}

,

=











sign (1) if φ∗
j − 8 + β ∈ (0, π

2
),

−sign (1) if φ∗
j − 8 + β ∈ (− π

2
, 0),

0 if φ∗
j − 8 + β = 0.

(17)

This indicates that the slope is not necessarily monotonic. Since
8 = 0 at the stationary state by definition, the values of φ∗ and β

determine the sign of the slope with respect to 1. For example, if
φ∗

j + β falls in the range of (− π

2
, π

2
), then the inflection point will

occur at where φ∗
j + β = 0.

We now calculate the order parameter contributions from the
locked and drifting subpopulations in the rotating frame. The self-
consistency condition requires that R̃ = R̃lock + R̃drift. Noting that
ei(φ−8+β) = cos(φ − 8 + β) + i sin(φ − 8 + β), and using Eq. (6),
the contribution from the locked oscillators can be calculated as
follows for a given coupling strength distribution g(K):

R̃l =
∫

Dl

g(K)r∗eiφdK

= e−iβ

∫

Dl

g(K)r∗

√

K2R̃2 − (1
′
)

2
r∗2 + i1

′

KR̃
dK, (18)

where the abbreviation 1
′ ≡ 1 + Kd0 sin α is used for simpli-

fication. Combining Eqs. (8) and (11) yields an exact solution
for r∗.
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In order to determine the order parameter contribution from
the drifting subpopulation, we follow the similar perturbation
method used in Ref. 48. The difference here is that the cur-
rent model replaces the term 1 with the added desynchroniza-
tion factor 1 + Kjd0 sin α as shown in Eq. (4). In an incoher-

ent state, R̃ = 0 and r =
√

λ − Kd0 cos α ≡ a. To find the bifur-
cation, we give a small perturbation ε to the system such that
R̃ = εR̃1, where R̃1 is a nonzero constant, r = a + O(ε), and φj(t)
= φ0 + (1 + Kjd0 sin α)t + O(ε). We seek a self-consistent partially
locked solution to the first order in ε by finding the bifurca-
tion from the incoherent state. By perturbing around the ε = 0
solution rj(t) = a, φj(t) = (1 + Kjd0 sin α)t + φ0, we obtain the
path of the limit cycle as rj = a + ε[A cos(φ − 8 + β) + B sin

(φ − 8 + β)] + O(ε2), where A = 2a2

(1
′
)
2+4a4

and B = 1
′

(1
′
)
2+4a4

. We

now impose the stationary condition requiring that oscillators with
coupling strength Kj form a stationary distribution along their
limit cycles. Then, the contribution to the centroid from the drift-
ing oscillator of degree Kj is Rd(Kj) = e−iβε(A + iB)/2 + O(ε2).

Therefore,

R̃d =
∫

Dd

g(K)Rd(Kj)dK + O(ε2)

=
1

2
e−iβ

∫

Dd

g(K)KR̃
2a2 + i1

′

1
′ + 4a4

dK + O(ε2). (19)

Thus, from R̃ = R̃l + R̃d, we obtain two independent equations for
the values of R̃ and 1, which we can solve numerically for given α,
β , d0, and g(K). We note that other non-perturbative methods may
be applicable.57

Now, let us determine the range of Kj for which the oscilla-
tors are phase-locked and classify the locked states. We can find
the “locking” range of Kj by jointly considering the sign of sin α,
the sign of 1 + Kjd0 sin α, the sign of 1, and the locking condition

KjR̃ > |1 + Kjd0 sin α|r∗
j . The range of Kj and the slope of (Kj, φj

∗)

for the locked oscillators are as follows:
(i) If d0 sin α ≥ 0:































(a) S1 :
|1|r∗j

R̃+d0 sin α r∗j
< Kj, l+ if R̃ ≥ d0 sin α r∗

j , 1 ≤ 0,

(b) S2 :
1r∗j

R−d0 sin α r∗j
< Kj, l− if R̃ > d0 sin α r∗

j , 1 > 0,

(c) S3 :
|1|r∗j

R̃+d0 sin α r∗j
< Kj <

|1|r∗j
d0 sin α r∗j −R̃

, l+ if R̃ < d0 sin α r∗
j , 1 < 0,

(d) S4 : no locking range if R̃ < d0 sin α r∗
j , 1 ≥ 0.

(20)

(ii) If d0 sin α < 0:






























(a) S1 :
|1|r∗j

R̃+|d0 sin α|r∗j
< Kj, l+ if R̃ > |d0 sin α|r∗

j , 1 ≤ 0,

(b) S2 :
1r∗j

R−|d0 sin α|r∗j
< Kj, l− if R̃ ≥ |d0 sin α|r∗

j , 1 > 0,

(c) S3 :
1r∗j

R̃+|d0 sin α|r∗j
< Kj <

1r∗j
|d0 sin α|r∗j −R̃

, l− if R̃ < |d0 sin α|r∗
j , 1 > 0,

(d) S4 : no locking range if R̃ ≤ |d0 sin α|r∗
j , 1 ≤ 0,

(21)

where the two equalities of (ia) and (iid) do not hold at the same
time. l−, l0, and l+ represent the negative, the zero, and the posi-
tive slope of (Kj, φj

∗), respectively. Overall, this analysis reveals the
same set of states S1–S4 originally reported for the phase-reduced
model in Ref. 16. However, one crucial difference from the previous
work is that the set of states is now generalized to include ampli-
tude dynamics that vary independently of the phase dimension.
Furthermore, we have identified more general cases, differentiated
by the sign of the constant term d0 sin α. In particular, the dynam-
ics for d0 sin α < 0 demonstrate the possibility of new sub-states
S3l−, S3l−d, S3dl−, and S3dl−d. Qualitatively, the S3 states are distinct
from other states because the high-degree nodes have the possibil-
ity to drift in phase. The conditions and the characteristics of these
states are summarized in Tables I and II. Table I describes the states
under condition (i), and Table II describes those under condition (ii)
above. Note that the sub-states are defined only in terms of dynam-
ics in the phase dimension (e.g., locked/drifting). The amplitude

dynamics can potentially differ within the same sub-state, as will be
shown in the phase diagrams in Sec. III.

III. NUMERICAL SIMULATIONS

We now describe numerical results of the oscillator model
[Eq. (1)] with coupling strengths derived from networks with differ-
ent degree distributions: Gaussian, power-law, and brain-network-
derived. All numerical simulations were carried out using a fourth
order Runge–Kutta method with a fixed step size of 1t = 0.01.
Oscillators have the identical intrinsic frequency ω = π (0.5 Hz)
and λ = 1. For the initial conditions, each θj(0) was sampled ran-
domly from [0, 2π) to form a near incoherent initial state. Each
rj(0) was sampled randomly from a Gaussian distribution with

mean
√

λ = 1 and a standard deviation of 0.1. Unless noted oth-
erwise, all results are averaged from ten different random initial
conditions.
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TABLE I. Categorization of the synchronous states for the case where d0sinα ≥ 0: The name of the state is given as Snx, following the same naming scheme presented in

Ref. 16: n is the major category index and x is composed of d, l+, l−, and l0 where d stands for a drifting range of K, l for a locking range of K, and l+, l−, and l0, respectively,

for a positive slope, a negative slope, and zero slope of the curve (Kj ,φj
∗) in the locking range of K.1 ≡ω −�. D0 ≡ |d0 sinα|rj∗ in the last column with rj∗ = rmin

∗ for Kmin

and rj
∗ = rmax

∗ for Kmax. For other details, see the text.

States Oscillators with K from Kmin to Kmax Slope of (Kj, φj
∗) Sign(1) (R̃, D0) Locking range of K Additional condition

S1l0 In-phase synchronous 0 0 R̃ > D0 [Kmin, Kmax] max R̃, 1 = 0

S1l+ Fully locked + − R̃ ≥ D0 [Kmin, Kmax]
|1|r∗j
R̃+D0

< Kmin

S1dl+ Drifting–locked + − R̃ ≥ D0

|1|r∗j
R̃+D0

< Kj Kmin ≤
|1|r∗j
R̃+D0

S2l− Fully locked − + R̃ > D0 [Kmin, Kmax]
1r∗j

R̃−D0
< Kmin

S2dl− Drifting–locked − + R̃ > D0

1r∗j
R̃−D0

< Kj Kmin ≤
1r∗j

R̃−D0

S2d Fully drifting − + R̃ > D0 None Kmax ≤
1r∗j

R̃−D0

S3l+ Fully locked + − R̃ < D0 [Kmin, Kmax]
|1|r∗j
R̃+D0

< Kmin, Kmax <
|1|r∗j
D0−R̃

S3l+d Locked–drifting + − R̃ < D0 Kj <
|1|r∗j
D0−R̃

|1|r∗j
R̃+D0

< Kmin,
|1|r∗j
D0−R̃

≤ Kmax

S3dl+ Drifting–locked + − R̃ < D0

|1|r∗j
R̃+D0

< Kj Kmin ≤
|1|r∗j
R̃+D0

, Kmax <
|1|r∗j
D0−R̃

S3dl+d Drifting–locked–drifting + − R̃ < D0

|1|r∗j
R̃+D0

< Kj <
|1|r∗j
D0−R̃

Kmin ≤
|1|r∗j
R̃+D0

,
|1|r∗j
D0−R̃

≤ Kmax

S3d Fully drifting None − R̃ < D0 None
|1|r∗j
D0−R̃

≤ Kmin or Kmax ≤
|1|r∗j
R̃+D0

S4d Fully drifting None +, 0 R̃ ≤ D0 None ·· ·

Figure 1 shows some representative examples of fully locked
states (S1) on the complex plane after the stationary state is reached.
These four states, which have different combinations of phase and
amplitude dynamics, are all observable from model equation (1)
in a different parameter space. In Fig. 1(a), oscillators with larger

coupling strengths (bigger and brighter dots) phase-lead oscillators
with a lower amplitude, whereas in (b), those with larger coupling
strengths phase-lead with a higher amplitude. In (c), oscillators with
smaller coupling strengths (smaller and darker dots) phase-lead
with a lower amplitude, while (d) shows the opposite dynamics in

TABLE II. Categorization of the synchronous states for the case where d0sinα < 0. D0 ≡ |d0 sinα|rj∗ in the last column with rj
∗ = rmin

∗ for Kmin and rj
∗ = rmax

∗ for Kmax.

Other details are as in Table I. Note the difference in signs of 1 and the boundary values in the additional conditions.

States Oscillators with K from Kmin to Kmax Slope of (Kj, φj
∗) Sign(1) (R̃, D0) Locking range of K Additional condition

S1l0 In-phase synchronous 0 0 R̃ > D0 [Kmin, Kmax] max R̃, 1 = 0

S1l+ Fully locked + − R̃ > D0 [Kmin, Kmax]
|1|r∗j
R̃+D0

< Kmin

S1dl+ Drifting–locked + − R̃ > D0

|1|r∗j
R̃+D0

< Kj Kmin ≤
|1|r∗j
R̃+D0

S2l− Fully locked − + R̃ ≥ D0 [Kmin, Kmax]
1r∗j

R̃+D0
< Kmin

S2dl− Drifting–locked − + R̃ ≥ D0

1r∗j
R̃+D0

< Kj Kmin ≤
1r∗j

R̃+D0

S2d Fully drifting − + R̃ ≥ D0 None Kmax ≤
1r∗j

R̃+D0

S3l− Fully locked + + R̃ < D0 [Kmin, Kmax]
1r∗j

R̃+D0
< Kmin, Kmax <

1r∗j
|R̃−D0|

S3l−d Locked–drifting + + R̃ < D0 Kj <
|1|r∗j

|R̃−D0|
1r∗j

R̃+D0
< Kmin,

1r∗j
|R̃−D0| ≤ Kmax

S3dl− Drifting–locked + + R̃ < D0

1r∗j
R̃+D0

< Kj Kmin ≤
1r∗j

R̃+D0
, Kmax <

1r∗j
|R̃−D0|

S3dl−d Drifting–locked–drifting + + R̃ < D0

1r∗j
R̃+D0

< Kj <
1r∗j

|R̃−D0| Kmin ≤
1r∗j

R̃+D0
,

1r∗j
|R̃−D0| ≤ Kmax

S3d Fully drifting None + R̃ < D0 None
1r∗j

|R̃−D0| ≤ Kmin or Kmax ≤
1r∗j

R̃+D0

S4d Fully drifting None 0, − R̃ ≤ D0 None ·· ·
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FIG. 1. Synchronization of limit-cycle oscillators with an inhomogeneous coupling
strength distribution (Gaussian). The amplitude and phase of each oscillator are
represented geometrically on a complex plane. Color and size indicate the respec-
tive coupling strength—oscillators with larger coupling strengths are represented
with bigger and brighter dots, and those with smaller coupling strengths are repre-
sented by smaller and darker dots. All oscillators are pulled toward the collective
mean field (red asterisk) proportionately to each coupling strength. The four states
above show the representative synchronization dynamics for fully locked states.
(a) Higher-degree nodes (with larger coupling strengths) phase-leading with
lower amplitudes. (b) Higher-degree nodes phase-leading with higher amplitudes.
(c) Higher-degree nodes phase-lagging with higher amplitudes. (d) Higher-de-
gree nodes phase-lagging with lower amplitudes. Simulation parameters: λ = 1,
ω = π , S = 12, N = 1000. (Note that for this particular simulation, the global
coupling strength S was set to 12 for the purpose of visualization; when S is
larger, the amplitude difference is exaggerated without a qualitative change in the
dynamics; refer to Fig. S1 in the supplementary material for more details.)

amplitude. Drifting population is observable in other regions of the
parameter space, as shown in Secs. III A–III C.

A. Gaussian coupling strength distributions

First, we investigate the cases of Gaussian distributions for the
coupling strength distributions with N = 1000 oscillators. The val-
ues for inhomogeneous coupling strengths were randomly sampled
from a Gaussian distribution with a mean of 20 × 10−3 and a stan-
dard deviation of 4.5 × 10−3. Figure 2(a) shows the distribution of
the obtained coupling strength set Kj.

When coupling strengths were exactly or nearly homogeneous
or when d0 sin α = sin β , Stuart–Landau systems exhibited in-phase
synchronous states. However, when coupling strengths were inho-
mogeneous and d0 sin α 6= sin β , the system did not exhibit in-phase
synchronous states.

Representative examples of partially locked states of the system
with the coupling strengths for various combinations of α, β , and d0

are presented in Figs. 2(b)–2(f). Using the R̃ and 1 values obtained
from the numerical simulation, we identified the self-consistent the-
oretical values of (Kj, φj

∗) and (Kj, rj
∗) from Eqs. (8) and (12). These

are plotted against Kj for the boundaries within the locking ranges
[unshaded region in Figs. 2(b)–2(f)]. The analytically obtained val-
ues fit well with the simulations. As predicted by Eq. (14), the signs
of the slopes of the (Kj, φj

∗) curve within the locking ranges are given
by the negative of the sign of 1. Similarly, the signs of the slopes of
the (Kj, rj

∗) curve are given by the sign of 1 in combination with φj
∗

and β . In Figs. 2(e) and 2(f), the inflection points in which the slope
of the (Kj, rj

∗) curve changes from positive to negative occurred
when φj

∗ − 8 + β = 0 as predicted by Eq. (14).
In order to understand the effects of the three parameters α,

β , and d0 on the system, we plotted the phase diagrams by fixing
α on a representative value, while varying β and d0. In this way,
we tested different sign-combinations of the contribution from the
constant term d0e

−iα . For instance, at α = 0.5π , the contribution of
the constant term in the phase dynamics is maximal [d0 sin α = d0

in Eq. (2)], but it has no effect on the amplitude dynamics [rjd0

cos α = 0 in Eq. (4)]. Conversely, at α = 0, the d0e
−iα term affects

only the amplitude dimension of the oscillators. Using this reason-
ing, four values of α at {0, 0.25π , 0.5π , 0.75π} were selected. Setting
α = 0.25π and α = 0.75π produces opposite-signed contributions
in the rjd0 cos α term in Eq. (3).

Figure 3 shows the phase diagrams for the system with Gaus-
sian coupling strength distributions. Each column depicts the phase
diagram for a fixed α value, displayed with R̃, 1, and the average
slope of the (Kj, rj

∗) curve from the simulations. R̃ indicates the
degree of global synchrony in the system, as used in Eq. (4): the more
locked oscillators in the system, the larger the R̃ values. 1 gives the
information about the slope of the (Kj, φj

∗) as shown in Eq. (14).
For example, a larger magnitude of 1 indicates that the spread of
phases among the locked oscillators is large, while the sign indi-
cates whether high-degree or low-degree nodes are phase-leading.

〈
∂r∗j
∂Kj

〉 gives the information about the slope of the (Kj, rj
∗) curve.

If 〈
∂r∗j
∂Kj

〉 < 0, it suggests that higher-degree nodes are synchronized

with a lower amplitude at a stationary state. The boundaries between
regions for states were determined from simulations of R̃ and 1

values. More details are provided in the caption of Fig. 3.
The phase diagram for α = 0 [Fig. 3(a)] shows that only four

states are obtainable in the oscillator system: S1l+ , S2l− , S2dl− , and
S2d. This is the fewest number of states observed for any value of α.
Note that the values of R̃ and 1 were nearly uniform across d0 and
were only modulated by the values of β , as indicated by Eq. (2). The
vertical bounding curves also indicate that different states occurred
only as a function of β for α = 0. Negative values of 1, for which
state S1l+ occurs, were obtained near β = 0 (left of the red solid
line). Further increases in the phase-delay term β produce increases
in phase spread 1 and decreases in the order parameter R̃ until
the system reaches an incoherent state (S2d) near β = π/2 (right
to the yellow dashed–dotted line). The term, d0, which describes the
amplitude of the constant term applied to the system, only affects
the slope of the (Kj, rj

∗) curve: for d0 > 1, the system can exhibit
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FIG. 2. Examples of various synchronous states in the system with the Gaussian coupling strength distribution. (a) Distribution of coupling strengths randomly selected
from a Gaussian distribution with a mean of 20 × 10−3 and a standard deviation of 4.5 × 10−3. For the obtained coupling strength set Kj , Kmean = 20.2 × 10−3 (vertical

dotted line), σK = 4.36 × 10−3, Kmin = 7.85 × 10−3, and Kmax = 34.4 × 10−3. (b) State S1l+ with a negative amplitude slope, where l stands for the locking range of

K: R̃ ≥ d0 sinα · max{rj∗} and 1 < 0. Oscillators are fully locked with
|1|rmin∗

R̃+|d0 sinα|rmin∗ < Kmin. The left axis represents φj (in blue) and the right axis rj (in red). (c) State

S2dl− with a positive amplitude slope, where d stands for the drifting range of K: R̃ ≥ |d0 sinα|max{rj∗} and 1 > 0. Oscillators with smaller coupling strengths drift with

Kmin ≤ 1·rmin∗

R̃+|d0 sinα|rmin∗ < Kmax. (d) State S3l+d with a negative amplitude slope: R̃ < d0 sinα · min{rj∗} and 1 < 0. Oscillators with larger coupling strengths drift with

|1|rmin∗

R̃+|d0 sinα|rmin∗ < Kmin and
|1|rmax∗

|d0 sinα|rmax∗−R̃
< Kmax. (e) State S3l+d with a positive–negative amplitude slope. Same additional conditions as in (d). (f) State S3dl+d with a

positive–negative amplitude slope: R̃ < d0 sinα · min{rj∗} and 1 < 0. Kmin ≤ |1|rmin∗

R̃+|d0 sinα|rmin∗ < Kl <
|1|rmax∗

|d0 sinα|rmax∗−R̃
≤ Kmax, where Kl represents the coupling strength for

the locked oscillators. In figures (b)–(f), solid lines are self-consistent theoretical curves for locked phases and amplitudes from Eqs. (8) and (12), and the unshaded range is
for Kj values for locked subpopulations obtained theoretically from Eqs. (20) and (21). Simulation parameters: λ = 1, ω = π , S = 1, N = 1000.

synchronous states where, in the locked state, oscillators with larger
coupling strengths have lower amplitudes.

With nonzero values of α, additional sub-states in S3 and S4
were observed [Figs. 3(b)–3(d)]. Of particular note, states in which
oscillators with weaker coupling strength are locked, while those
with a stronger coupling drift (e.g., S3l+d) were observed only at

α 6= 0. Such states are in contrast to our intuition that oscillators
with larger coupling strength are easier to be locked.

The diagrams for R̃ and 1 (first and second row in Fig. 3)
reveal a symmetry around α = 0.5π such that α = 0.25π and
α = 0.75π are nearly identical. This is as expected theoretically from
the phase equation in Eq. (2), as the values of sin α are symmetric
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FIG. 3. Phase diagrams with the Gaussian coupling strength distribution as a function of α, β , and d0 determining the shape of the coupling function. Representative
fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π where sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and

(d) α = 0.75π where sinα < 0, cosα > 0. Phase diagrams with order parameter R̃ (first row), phase spread 1 = ω − � (second row), and the slope of the amplitude

curve (Kj , rj
∗) calculated as the average value of

∂r∗
j

∂Kj
among the locked oscillators (third row). Regions with fully drifting population are marked in black. For the amplitude

slope, the parameter space in which the inflection point exists in the (Kj , rj
∗) curve (from a positive to negative slope) is additionally marked with green dots. The boundaries

are determined numerically from the model equation (1) for a Gaussian distribution with (Kmean, σK , Kmin, Kmax) = (20.2, 4.36, 7.85, 34.4) × 10−3. The bounding curves are

obtained for1 = 0 (solid red), R̃ = |d0 sinα|〈rj∗〉 (dotted cyan), 1rmin
∗

R̃−|d0 sinα|rmin∗ = Kmin (dashed green),
|1|rmin∗

R̃+|d0 sinα|rmin∗ = Kmin (long dashedmagenta),
|1|rmax∗

|d0 sinα|rmax∗−R̃
= Kmax

(dashed–dotted navy), 1rmax
∗

R̃−|d0 sinα|rmax∗
= Kmax (dashed–dotted yellow),

|1|
√

λ

|d0 sinα|
√

λ−R̃
= Kmin (dashed–dotted gray, d0 ≥ 0), and 1

√
λ

R̃+|d0 sinα|
√

λ
= Kmax (dashed–dotted gray,

d0 < 0). Simulation parameters: λ = 1, ω = π , S = 1, N = 1000.

around α = 0.5π . This is not the case for cos α in Eq. (3), and as
expected, diagrams for the (Kj, rj

∗) slope (third row) differ qualita-
tively. Yet, the effects of the difference in the amplitude dynamics
did not significantly influence the global synchrony of the system.
This was so because coupling strengths Kj normalized by N result
in a small overall coupling relative to the attraction to the limit
cycle. This observation also explains the near-identity between the
phase diagram for α = 0.5π [Fig. 3(c)] with the one observed for the
phase-reduced system of the model equation (1).16 At α = 0.5π , the
coupled amplitude term rjd0 cos α in Eq. (3) vanishes; therefore, the
remaining amplitude dynamics were insufficient to affect the global
synchrony of the system. (Note, however, that with the increase

in the global coupling strength S, the difference in the amplitude
dynamics is amplified; refer to Fig. S1 in the supplementary material
for more details.)

B. Power-law coupling strength distributions

Next, we investigated a coupled Stuart–Landau system in which
the coupling strengths were distributed according to a power-law
distribution. We keep the same number of oscillators (N = 1000).
Figure 4(a) shows the coupling strength distribution randomly sam-
pled from a truncated power-law distribution P(x) ∼ x−γ0 with
γ0 = 2. Here, Kmin and Kmax were chosen such that the mean value
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FIG. 4. Examples of synchronous states in the system with the power-law coupling strength distribution: (a) Distribution for coupling strengths randomly selected
from a power-law distribution with a mean of 20 × 10−3 and an exponent of 2. For the obtained coupling strength set Kj , Kmean = 19.9 × 10−3 (vertical dotted line),

σK = 20.5 × 10−3, Kmin = 6.02 × 10−3, and Kmax = 120.5 × 10−3. (b) State S2dl− with a positive amplitude slope: R̃ > d0 sinα · max{rj∗} and 1 > 0. Satisfies addi-

tional condition Kmin ≤ 1·rmin∗

R̃−|d0 sinα|rmin∗ < Kmax . (c) State S3l+d with a negative amplitude slope: R̃ < D0 and 1 < 0. Satisfies additional conditions
|1|rmin∗

R̃+|d0 sinα|rmin∗ < Kmin

and |1|rmax∗
|d0 sinα|rmax∗−R̃

< Kmax. (d) State S3l+d with a positive amplitude slope. Additional conditions are as in (c). Oscillators with larger coupling strengths drift with higher

amplitudes. (e) State S3dl+d with a positive–negative amplitude slope, R̃ < d0 sinα · min{rj∗} and 1 < 0. Satisfies additional conditions Kmin ≤ |1|rmin∗

R̃+|d0 sinα|rmin∗ < Kl <

|1|rmax∗
|d0 sinα|rmax∗−R̃

≤ Kmax. (f) State S3dl+d with a negative amplitude slope. Additional conditions are as in (e). Other details are as in Fig. 2. Simulation parameters: λ = 1,

ω = π , S = 1, N = 1000.

of the distribution matches that of the Gaussian distributions used
in Sec. III A.

Example observed states of the system are shown in
Figs. 4(b)–4(f). In contrast to the Gaussian coupling strength cases,
in the power-law case, there were only three types of partially

locked states: S2dl− [Fig. 4(b)], S3l+d [Figs. 4(c) and 4(d)], and S3dl+d

[Figs. 4(e) and 4(f)]. Partially locked states S1dl+ and S3dl+ were
not observed from the simulations for the power-law distribution,
as seen in the phase diagrams of Fig. 5. The most noticeable dif-
ference from the previous Gaussian case is the overall decrease in
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FIG. 5. Phase diagrams with a power-law coupling strength distribution as a function of α, β , and d0 determining the shape of the coupling function. Representative
fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π where sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and (d)

α = 0.75π where sinα < 0, cosα > 0. Phase diagrams with order parameter R̃ (first row), phase spread1 = ω − � (second row), and the slope of the amplitude curve

(Kj , rj
∗) calculated as the average value of

∂r∗
j

∂Kj
among the locked oscillators (third row). The boundaries and other details are as in Fig. 3. The coupling strengths are randomly

selected from a power-law distribution P(x) ∼ x−γ0 with γ0 = 2. γ̄ = 2.03 is the average exponent of distributions for the obtained coupling strength sets. For the obtained
coupling strength set Kj , (Kmean, σK , Kmin, Kmax) = (19.8, 20.2, 6.01, 122.7) × 10−3. Simulation parameters: λ = 1, ω = π , S = 1, N = 1000.

the synchronous region, indicated by the darker colored regions in
the diagram for order parameter R̃ (Fig. 5, top row). This suggests
that in general, it is more difficult to achieve global synchrony for
the power-law distribution than for the Gaussian distribution given
the same parameter space. Although the two distributions have the
same mean coupling strength Kj, a majority of oscillators in the
power-law distribution were assigned a minimal coupling strength
of Kj < 0.01. Therefore, a majority of oscillators contribute a smaller
proportion of the total sum of coupling strengths in the power-law
degree distribution relative to the Gaussian degree distribution.

For nonzero cases of α [Figs. 5(b)–5(d)], we also notice the
absence of the regions for the partially locked states S1dl+ and S3dl+ .
However, a new partially locked state S3dl−d was observed along the
more negative values of d0. In this state, only few oscillators with
intermediate coupling strengths are locked. This is reflected in the
lower values of R̃ for the S3dl−d region.

The phase diagram at α = 0 [Fig. 5(a)] shows the same
pattern as with Sec. III A, where only β affects the values of R̃

and 1. The major difference is that incoherent states are reached
for lower values of β . However, the parameter region for fully
drifting populations (S2d) is smaller compared to the Gaussian
distributed couplings. This is reflected by the larger Kmax value
for the power-law coupling strength set, as the condition for

S2d requires Kmax ≤ 1·rmax
∗

R̃
at α = 0. Likewise, the smaller Kmin

value for the power-law coupling strength compared to the Gaus-
sian case results in a decreased area for the S1l+ region, which

requires |1|rmin
∗

R̃
< Kmin. Negative values of 1 were obtained only

at β = 0.

C. Brain-network coupling strength distributions

As an example model application to the real-world complex
network, we now investigate oscillator systems in which the cou-
pling strength approximates that of the couplings between regions
of the human cerebral cortex. The distribution was derived from
the network with 998 cortical regions,58 where the coupling strength
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FIG. 6. Examples of various synchronous states in the system with the human brain network coupling strength distribution. (a) Distribution for coupling strengths obtained
from a brain-network distribution. For the obtained coupling strength set Kj , Kmean = 36.5 × 10−3 (vertical dotted line), σK = 15.8 × 10−3, Kmin = 1.01 × 10−3, and

Kmax = 98.1 × 10−3. (b) State S2dl− with a positive amplitude slope: R̃ > d0 sinα · max{rj∗} and 1 > 0. Satisfies additional condition Kmin ≤ 1·rmin∗

R̃−|d0 sinα|rmin∗ < Kmax .

(c) State S3dl+d with a positive amplitude slope: R̃ < d0 sinα · min{rj∗} and 1 < 0. Satisfies additional conditions Kmin ≤ |1|rmin∗

R̃+|d0 sinα|rmin∗ < Kl <
|1|rmax∗

|d0 sinα|rmax∗−R̃
≤ Kmax.

(d) State S3dl+d with a negative amplitude slope. Additional conditions are as in (c). (e) State S3dl−d with a positive–negative amplitude slope: R̃ < d0 sinα · min{rj∗} and
1 > 0. Satisfies additional conditions Kmin ≤ |1|rmin∗

R̃+|d0 sinα|rmin∗ < Kl <
|1|rmax∗

|R̃−|d0 sinα|rmax∗ |
≤ Kmax. (f) State S3dl−d with a negative amplitude slope. Additional conditions are as

in (e). Other details are as in Fig. 2. Simulation parameters: λ = 1, ω = π , S = 1, N = 989.

corresponds to the degree of each node in the network normalized
by the total number of regions. Figure 6(a) shows the resulting cou-
pling strength set Kj with N = 989 after removing nodes with zero
in-degree.

Figure 7 shows that the regions with fully locked population
(S1l+ and S2l−) are significantly reduced, suggesting that fully locked

states are practically non-existent in the system with a brain-network
distribution. This phenomenon is accounted by the near-zero min-

imum coupling strength (Kmin = 1.01 × 10−3) in the given network
compared to Gaussian and power-law distributions: with small val-

ues of Kmin, the parameter space with
|1|r∗j
R̃+D0

< Kmin (for S1l+) or with
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FIG. 7. Phase diagram with the human brain network coupling strength distribution as a function of α, β , and d0 determining the form of the coupling function. Representative
fixed values of α are chosen at (a) α = 0 where sinα = 0, cosα = 1, (b) α = 0.25π where sinα > 0, cosα > 0, (c) α = 0.5π where sinα = 1, cosα = 0, and (d)

α = 0.75π where sinα < 0, cosα > 0. Phase diagrams with order parameter R̃ (first row), phase spread1 = ω − � (second row), and the slope of the amplitude curve

(Kj , rj
∗) calculated as the average value of

∂r∗
j

∂Kj
among the locked oscillators (third row). The boundaries and other details are as in Fig. 3. For the obtained coupling strength

set Kj with N = 989, (Kmean, σK , Kmin, Kmax) = (36.5, 15.8, 1.01, 98.1) × 10−3. Simulation parameters: λ = 1, ω = π , S = 1, N = 989.

1r∗j
R̃±D0

< Kmin (for S2l−) decreases. Accordingly, the most commonly

observed state in the phase diagrams was the partially locked state

S2dl− (satisfying Kmin ≤
1r∗j

R̃±D0
with a positive value of 1).

Overall, we notice that the shape of phase diagrams for the
brain-network distribution is qualitatively in between the shapes
derived for Gaussian and power-law distributions. The diagrams
for R̃ (Fig. 7, top row) show that the synchronous region is smaller
than for the Gaussian case (Fig. 3) but larger than for the power-
law case (Fig. 5). The coupling strength distribution derived from
large-scale brain networks [Fig. 6(a)] also reflects the intermedi-
ate property between Gaussian and power-law distributions, as a
majority of oscillators are skewed slightly left to Kmean = 0.0365 and
right to Kmin. (For the Gaussian distribution, a majority of cou-
pling strengths are centered around its Kmean; for the power-law
distribution, around its Kmin).

IV. SIMULATION RESULTS WITH FULL COMPLEX

NETWORK CONNECTIVITY

Sections II and III examined a mean-field model with the inho-
mogeneous coupling strength set Kj. In this section, we compare the
simulation results of the coupled oscillator system on a full complex
network. In the simulations, we retain the full connectivity profile;
therefore, the simulated model is described by

żj = {λj − |zj|2 + iωj}zj +
S

N

N
∑

k=1

Ajk(zke
−iβ − zjd0e

−iα),

j = 1, 2, . . . , N, α ∈ [0, π), β ∈ [0, π/2), d0 ∈ R,

(22)

where Ajk is the adjacency matrix describing the topology of the
network. If k influences j, we take Ajk = 1 and Ajk = 0 otherwise.
With sufficiently large N, we can use the following mean-field
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FIG. 8. Phase diagrams of complex networks using full connectivity matrices at α = 0.5π . α, β , and d0 determine the form of the coupling function. Phase diagrams at the
representative fixed value of α = 0.5π are shown for (a) the random network following the Gaussian degree distribution, (b) the random network following the power-law
degree distribution, (c) the random network following the brain-network degree distribution, and (d) the brain network with an empirical connectivity profile. Model dynamics are

shown for order parameter R̃ (first row), 1 = ω − � (second row), and the slope of the (Kj , rj
∗) curve calculated as the average value of

∂r∗
j

∂Kj
among the locked oscillators

(third row). In the third row, regions with fully drifting population are marked in black. The parameter space in which the inflection point exists in the (Kj , rj
∗) curve (from a

positive to negative slope) is additionally marked with green dots. Simulation parameters: λ = 1, ω = π , S = 1, N = 1000 (Gaussian and power-law) or N = 989 (brain
networks).

approximation as in Ref. 53:

N
∑

k=1

AjkH(z) ≈
kj

N

N
∑

k=1

H(z), (23)

where kj is the degree of oscillator j and H is the coupling func-
tion. Then, as an approximation of the model in Eq. (22), we can
write

żj = {λj − |zj|2 + iωj}zj +
Skj

N2

N
∑

k=1

(zke
−iβ − zjd0e

−iα), (24)

which is equivalent to Eq. (1) with Kj = kj

N
. Thus, the network char-

acteristics are incorporated through the coupling inhomogeneity in
Kj, a quantity directly proportional to the degree kj. Equation (1)

is an approximation of Eq. (22) in the sense that the former treats
the connections between nodes as all-to-all but normalize the effect
to each node by its respective degree; hence, it leaves out the topo-
logical information contained in Ajk. Yet, such a mean-field method
renders the system analytically tractable and amenable to numeri-
cal simulation, allowing for the kind of analysis that we have seen
in Sec. III. Thus, in this section, we check whether the mean-field
approximation qualitatively captures the dynamics obtained on the
complex network topology.

We simulate Eq. (22) with the complex networks investigated
in Sec. III. Four networks were generated as follows, using the net-
work generation algorithm provided in Ref. 59. First, N = 1000
random positive integers kj were selected from the Gaussian dis-
tribution with mean 20 and a standard deviation of 4.5. Note that
this is the same distribution used in Sec. III (before dividing each
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FIG. 9. Representative brain states, simulated from themodel with a full connectivity matrix (without mean-field approximation). (a) Brain states in which higher-degree regions
tend to phase-lead with lower amplitudes. (α, β , d0)= (0.25π , 0.22π , 1.35). (b) Higher-degree regions phase-lead with higher amplitudes. (α, β , d0)= (0.25π , 0.21π , 1.3).
(c) Higher-degree regions phase-lag with lower amplitudes. (α, β , d0) = (0.1π , 0.2π , 1.3). (d) Higher-degree regions phase-lag with higher amplitudes. (α, β , d0) =
(0π , 0.1π , 1.0). Simulation parameters: λ = 1, ω = π , S = 1, N = 989.

kj by N). The randomly selected integers were bounded by [kmin

= 8, kmax = 34], which were determined by rounding Kmin ∗ N and
Kmax ∗ N to the nearest integer, respectively. After the degree set
was generated, each oscillator j was randomly assigned kj neighbors
without self-coupling in such a way that the network is bidirec-
tional. Second, using the same method, the power-law distribution
with mean 20 was used to generate a full network of size N = 1000
with [kmin = 6, kmax = 121]. Last, for the brain network, we use the
provided brain network that retains the empirical connection data
between brain regions. As with Sec. III, nodes with zero in-degrees
were omitted from the network. The resulting brain-derived graph
contained N = 989 nodes.

However, given the assumption of mean-field approximation
that posits all-to-all connection (before normalization by degree), we
expect that the unique connectivity profile of the empirical human
brain network would not be incorporated. For this reason, we add
another network following brain network degree distributions but
one in which the edges are randomized. This network was gener-
ated following the same method as above, where N = 989 random
integers were selected from the degree distribution set bounded by
[kmin = 1, kmax = 97].

For simplicity in presentation, we look at the phase diagrams
for model equation (1) in the parameter space of α = 0.5π only.
Figure 8 shows the simulation results for each given network. In the
analogous figures from Sec. III of this paper, we were able to mark
the state boundaries; however, this was not possible for this figure

because Eq. (22) does not allow for the ready classification of states
as was possible for Eqs. (20) and (21).

Comparing the results in Figs. 8(a) and 8(b) with those of the
mean-field approximation in Figs. 3(c) and 5(c), respectively, we see
that the phase diagrams show good agreement. For the case of the
brain-network-derived distribution seen in Fig. 7(c), we note that
the results show better agreement with the brain network with ran-
domized edges [Fig. 8(c)] than with the empirical brain network
[Fig. 8(d)] as expected.

The empirical implication of Eq. (1) is that, in princi-
ple, various combinations of phase and amplitude dynamics
are possible. Figure 9 shows example brain states visualized on
the human cortical network, showing the same four combina-
tions of increasing/decreasing amplitudes and phase dynamics
as in Fig. 1. For example, the state represented in Fig. 9(c) in
which higher-degree regions phase-lag the rest of the network,
while maintaining larger amplitudes, was empirically observed
by Ref. 28. In that work, it was shown that human subjects
in eyes-closed resting states exhibit such behavior when time
averaged over period of minutes in their electroencephalography
(EEG) recording, as opposed to an anesthetized unconscious state
where the pattern disappears. Note that the parameter β plays
the role of time delays between neuronal regions; we estimate
that the values will be around 0.1–0.2 in realistic brain simu-
lations, in which each node is a cortical region.28 In future, it
may also be possible to empirically estimate the parameter d0 by
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measuring changes in the peak-to-trough variation in neural oscil-
lations.

V. CONCLUSIONS

This study combined analytical and numerical methods to
characterize the dynamics of coupled oscillators with both phase
and amplitude dynamics. In particular, we set out to understand
whether phase-locking occurred and which nodes were leading and
lagging in phase depending on the form and strength of inter-
node couplings. Using a mean-field model, we analytically mapped
the effects of coupling strength inhomogeneity and coupling func-
tions and documented parameter regimes associated with phase-
locked (synchronous and asynchronous), partially locked (e.g., par-
tially drifting), and fully drifting states. The analytic results agreed
with numerical simulations employing Gaussian distributions and
power-law distributions for coupling strengths. In addition, we
applied the model to understanding neural phase-lead and phase-
lag relationships by simulating and analyzing the model in the case
where the node degrees are derived from empirical properties of
cortical networks.

These results will deepen the understanding of collective
dynamics in complex systems. In particular, we determined condi-
tions under which high-degree nodes can phase-lead or phase-lag
the rest of the network, both when they have a relatively higher
amplitude and when they have a lower amplitude. Furthermore,
we showed that the high-degree nodes can have higher or lower
amplitudes regardless of whether they phase-lead or phase-lag the
rest of the network. As a result, the system can exhibit four repre-
sentative patterns as shown in Fig. 9. This finding is of particular
significance in the modeling of neural systems, in which patterns of
phase-leading and lagging along with the amplitude variations are
associated with the control of information flow.28,60,61

Future studies could study the transient behavior of the model
in the dynamics leading to the steady state, as the dynamics between
stable states are important in complex real-world systems, such as
brain dynamics.62,63 For practical applications, it may also be use-
ful to develop methods to identify, moment by moment, which
sub-state within the phase-space (Figs. 3, 5, and 7) is occupied by
real-world dynamical systems.

SUPPLEMENTARY MATERIAL

We have Figs. S1–S3 in the supplementary material to supple-
ment our results. In Fig. S1 of the supplementary material, we com-
pare the model behavior as a function of global coupling strength S
and the distribution of Kj. In Figs. S2 and S3 of the supplementary
material, we run additional simulations of the model equations on a
brain network with a smaller number of nodes and show the results.
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