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Abstract

Purpose To investigate the association of partial-AZFc deletions in Chilean men with primary spermatogenic failure and their
testicular histopathological phenotypes, analyzing the contribution of DAZ dosage, CDY! copies, and Y-chromosome
haplogroups.

Subjects and methods We studied 479 Chilean men: 334 infertile patients with histological examination (233 cases with
spermatogenic defects and 101 normal spermatogenesis, obstructive controls, OC), and 145 normozoospermic controls (NC).
AZFc¢ subdeletions were detected by single-tagged sequences and single nucleotide variants analysis. DAZ-copy number was
quantified by real-time qPCR. Y-chromosome haplogroups (Y-hg) were hierarchically genotyped through 16 biallelic-markers.
Results The prevalence of AZFc-partial deletions was increased in cases (6%) compared with NC (1.4%) (P = 0.035). There was
no difference between 143 Sertoli-cell only syndrome, 35 maturation arrest, or 35 mix atrophy patients and controls. However,
gr/gr deletions were more frequent in 16 subjects with hypospermatogenesis compared with NC (P =0.003) and OC (P =0.013).
Y-hg R was the most prevalent (~50%), but decreased among gr/gr deletions (21%, P=0.03). The prevalence of Y-hg M
increased in cases versus controls, both in total and non-deleted men (3.9 and 3.7% versus 0.4%, P=0.009 and P=0.016,
respectively). Among gt/gr deletions, Y-hg H increased compared with non-deleted men (14.3% versus 0.4%, P =0.0047).
Conclusion Partial-AZFc deletions in a Chilean admixed population are associated with secretory azo/oligozoospermia and might
have a role in the development of hypospermatogenesis. Low represented haplogroups, Y-hg M and Y-hg H, show an association
with the occurrence of spermatogenic failure and gr/gr deletions respectively; however, additional studies are required.
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Introduction

Maria Cecilia Lardone and Victoria Ortega should be considered as joint

first authors The classic deletions on the long arm of the Y chromosome

(Yg-microdeletions), comprising one or more regions of the
azoospermia factors (AZFa, AZFb, and AZFc), have a preva-
lence of 5-10% in secretory azo/oligozoospermic men. These
deletions represent the main cause of primary spermatogenic
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oligozoospermic infertile men, but they are also observed in
obstructive, fertile, and/or healthy normozoospermic men.
Several meta-analysis of selected case-control studies have sug-
gested that the most prevalent gr/gr and b2/b3 deletions repre-
sent true risks for infertility, depending on the ethnicity and
geographic location of the subjects, and call for performing
larger additional studies [9-11].

Regarding South American populations, association studies
of partial-AZFc deletions with spermatogenic failure and the
connection with certain Y-chromosome lineages are scarce. To
our knowledge, three studies performed in South America have
shown a similar prevalence gr/gr deletions between cases and
controls [12—14], with an apparently lower prevalence compared
with Caucasians and European populations [9, 10]. This evi-
dence suggests that these discrepancies can be caused by the
different genetic composition of admixed populations and par-
ticular Y-chromosome haplogroups, which may have a genetic
predisposition to rearrangements, and a different prevalence
among human populations. A previous study showed that the
haplogroup Q1la3a (Q-M3), characteristic of the Y chromosome
in South Amerindians, was more frequent among Chilean pa-
tients with complete AZFb deletions, although no difference was
observed in patients with complete or subdeletions of AZFc [15].

Greater complexity in the analysis of the effects of AZFc gene
variations and subdeletions, and the impact of different lineages
of the Y chromosome are related to the occurrence of duplica-
tions that involve this region, either in men without deletions or as
a subsequent event in men partially deleted. The analysis of the Y
chromosome structure and gene dosage in AZFc has revealed the
presence of duplications on complete [16] or on AZFc partially
deleted Y chromosomes [17, 18], with no certainty regarding
their spermatogenic effects. Recently, a meta-analysis showed
that AZFc duplications, including gr/gr duplication-only or more
than 4 DAZ gene copies, seem to increase the infertility risk by
two- to threefold in Asian, although not in European men [19].

The aim of this study was to investigate the association of
partial-AZFc deletions with histologically diagnosed primary
spermatogenic failure by comparing their prevalence between
Chilean secretory infertile and control men. For this purpose,
we classified the different types of AZFc subdeletions (gr/gr,
b2/b3, and b1/b3) by the presence or absence of single-tagged
sequence (STS) markers, the type of DAZ, and CDYI copy
retained by sequence nucleotide variants (SN'Vs) analysis and
DAZ dosage by qPCR. Additionally, we investigated the con-
tribution of Y-chromosome haplogroups.

Material and methods
Subjects

We studied 334 consecutive Chilean men who consulted for
infertility and required testicular sperm extraction (TESE)
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between March 2003 and March 2017 at two University in-
fertility clinics in Santiago, Chile. Among them, the first 248
subjects had been previously defined for the Qla3a
(YCC2008) haplogroup by the Y chromosome single-
nucleotide polymorphism M3 (Y-SNP M3) [15]. All patients
underwent a complete evaluation that included a physical ex-
amination, hormonal determinations, analysis of Y chromo-
some microdeletions, and karyotype. Patients were excluded
if they had Y chromosome microdeletions, karyotype abnor-
malities, cryptorchidism, varicocele grades II or III, chronic
diseases, morbid obesity, hypogonadism hypogonadotropic,
hyperprolactinemia, recent or concomitant hormonal treat-
ment, chronic diseases, retractile testis, male accessory gland
infections, genital trauma, occupational exposure to pesti-
cides, and excessive drugs consumption.

Histological analysis was performed as previously de-
scribed [15], showing 233 patients with spermatogenic failure
(cases) and 101 with normal spermatogenesis (obstructive
controls). Among the 233 cases biopsy-documented, we ob-
served 143 Sertoli cell-only syndrome (SCOS, 111 complete
and 32 focal), 35 maturation arrest (MA), 30 mixed atrophy
(MixA), 16 hypospermatogenesis (HSP), and 9 severe atrophy
(SA) (Supplementary Table S1).

Additionally, we recruited healthy volunteers for seminal
analysis and selected 145 men as normozoospermic controls.
Eighty-eight of them had been selected previously [15]. The
volunteers were students recruited from the Faculty of
Medicine, University of Chile, and fertile patients or public
employees from one of the university hospitals where the
infertile patients came from. They were interviewed regarding
lifestyle, andrological history, chronic diseases, and fertility
history. Subjects with chronic diseases, morbid obesity, and
drug consumption were excluded. Similarly to infertile men,
blood samples were obtained for hormonal assessment and
weight and height were determined for BMI calculation. .

All subjects were genetically unrelated and originated from
different geographic regions of Chile [20].

Hormonal measurements

Blood samples were collected between 8 and 10 a.m. for de-
terminations of LH and FSH by immunoradiometric assay
(Siemens Medical Solutions Diagnostics, LA, CA, USA),
and total testosterone by radioimmunoassay (Diagnostic
System Laboratories, Webster, TX, USA).

Semen analysis

Semen quality was assessed according to the criteria of World
Health Organization (WHO) for the examination of human
semen [21]. The Kruger’s strict criteria was used for the eval-
uation of sperm morphology [22], and the cut-off >4 of nor-
mal forms was used to describe a morphologically normal
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sample according to WHO 2010 [23]. The seminal pattern of
the subjects was defined by at least two separate seminal
analyses.

Screening of complete and partial-AZFc deletions

Peripheral blood was obtained for DNA isolation using the
Wizard® genomic DNA purification kit (Promega, WI,
USA). Azo/oligozoospermic patients were evaluated for Yg-
microdeletions with a standard set of 21 Y-specific STS
primers covering the AZFa (sYS83, sY85, DFFRY, DBY,
sY90), AZFb (CDY2, XKRY, EIFIAY, sY142, sY143,
RBMY), and AZFc (BPY2a, sY221, sY255, sY153, sY283,
sY158) regions, inter-region markers (sY98), Yp (7SPY), the
centromere (sY78), and heterochromatic region (sY160).
Reaction was performed in a multiplex end-point PCR as pre-
viously described [24]. Yg-microdeletions were detected in
6.8% of all azo/oligozoospermic infertile men and in 13% of
secretory infertile men. Partial-AZFc deletions were evaluated
according to a three-step screening of STS described by
Repping et al. [6] and Lardone et al. [15], with some modifi-
cations. Briefly, PCR assays included the amplification of
STS in single reactions (sY 1258, sY1197, sY1161, sY1191,
sY1291, sY1206, sY1201), and also in multiplex reactions
(mix-a: sY1291 and sY1191 in a ratio 2:1; mix-b: sY 1201,
sY1206, and sY1161 in a ratio 1:1:1; mix-c: sY1258 and
sY14 in a ratio 2:1). Indicative of the different subtypes of
AZFc subdeletions were the exclusive absence of sY1291
(gr/gr) or sY1191 (b2/b3) and the loss of sY1191, sY1291,
sY1161,and sY1197 (b1/b3). At least three independent PCR
assays were performed for confirmation of the negative PCR
reactions. As a positive control, we used a pair of primers that
amplify one specific STS in the DAZ gene (sY254), and an-
other for the centromere of the Y chromosome (sY78).

In order to discriminate among DAZ copies, we performed
SNVs analysis by the amplification of the target sequence and
the following digestion with restriction enzymes (PCR-RFLP)
for DAZI, DAZ2, and DAZ4, and DAZ3 by PCR of the STS
Y-DAZ-3, as previously described [12, 15]. In addition, to
differentiate between CDYI copies (CDYIla and CDY1b) in
partial-AZFc-deleted subjects, we analyzed the C/A SNV sit-
uated 7750 bp upstream of the CDY1 translation start codon
(CDY1-7750: 01025/01026 pair of primers) by PCR follow-
ed by digestion of CDY1b with the Pvull restriction enzyme as
previously described [25]. Further characterization of the de-
leted subjects with partial deletions of AZFc included the de-
tection of additional STS to determine the breakpoints to Yq
palindromes [26-30].

Quantification of the number of DAZ copies

DAZ gene copy number was quantified by real-time PCR
through the amplification of STS SHGC-35663 (GenBank

accession number (G29902) mapped one time in each DAZ genes
(exon 10). As reference gene, a sequence of the single-copy
DAZL gene was amplified using a pair of primer designed with
Primer3 software (DAZL-sense: 5'-GAATGCTGAATTTT
TACTCTTGAAG-3" and DAZL-antisense: 5'-CTCT
ATACGTGGCTAGAGTTC-3'). PCR was performed in tripli-
cate and in separate reactions for DAZ and DAZL gene
copy quantification. Each reaction consisted in 10 pl of Fast-
Plus EvaGreen® gPcR Master Mix (Biotium, Fremont, CA),
350 nM of each primer and 100 ng of genomic DNA in a final
volume of 20 pl. PCR conditions for both amplification were an
initial step of 2 min at 95 °C, 40 cycles of 5 s at 95 °C, 30 s at
60 °C, and 30 s at 72 °C, and a final step of 15 s at 95 °C. The
efficiency of PCR was calculated using the slope of a standard
curve generated through the amplification of serial dilutions of
known concentrations of an identical fragment (1 x 10°to 1 x 10°
fragment copies/pl) to that amplified in the sample and inserted in
a plasmid. PCR efficiencies for the amplification of STS 60325
and DAZL were 96% and 101%, respectively. The number of
copies of the DAZ gene was calculated using the 2" method.
The quantification was expressed relatively to a calibrator group
(n=10) selected among those control samples with a ACt value
between Creference—Cliarget = 1. The same calibrator group was
used in every PCR run. Additionally, 2 DNA samples with AZFc
partial deletion, identified by STS markers as described above,
were included in every experiment as control of 2 DAZ gene
copies as well as 2 DNA samples with AZFc duplication detected
in previous experiments. Rq or fold-change equal to 1 means the
double of DAZ gene copies compared to the reference gene (i.c 4
DAZ copies). Rq equal to 0.5, 1.5, and 2 stands for 2, 6, and 8
DAZ gene copies, respectively. Cut-off values for Rg were deter-
mined as the mean =2 SD in a first set of subjects that included
209 samples with Rg ~ 1 (Rq 0.97 +0.12), 8 subjects with partial
deletions (Rg 0.52 +£0.03), 4 samples with Rg~=~1.5 (Rg 1.46+

0.9) and 3 subjects with Rg~2 (1.77 £0.06).

Genotyping of the Y-chromosome haplogroups

We genotyped all 479 male DNA samples (100 ng/ul) for Y-
chromosome haplogroups with a set of 16 biallelic markers
(SNPs) following a hierarchical approach: first DE-YAP and
F-M89, then we determined the derived linages of DE-YAP
(D-M174, E-M40), F-M89 (G-P257, H-L901, I-M258J-M304,
12-M172, K-M9), K-M9 (L-M20, M-Page93, P-M45), and P-
M45 (Q-M242, Qla3al-M3 and R-M207), according to Karafet
etal. [31]. The primers for G-P257, H-L.901, M-Page93, and R-
M207 were designed using the online software Primer-BLAST
[32], while the other 14 come from literature (Supplementary
Table S2). Since there is knowledge about the proportion of
paternal lineages in admixed Chilean population [33], the
haplogroups Qla3al-M3 and R-M207 were examined first on
those individuals belonging to P-M45 haplogroup, as they are
the most frequent in the Amerindian and European populations,
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respectively. The Q-M3 haplogroup was also independently re-
analyzed as previously described [15, 34].

The determination of the allelic state of SNPs was done by
PCR-RFLP. The temperatures of annealing and restriction
enzymes used are available on Supplementary Material
(Supplementary Table S2). Due to the mutation defining
haplogroup DE (Alu insertion), only a PCR was carried out,
enabling the direct observation of the base pair differences
through an agarose gel (2%). The results of the applied tech-
niques were directly analyzed by electrophoresis in an agarose
gel 2%).

Statistical analysis

We used the SPSS software version 21 (IBM Corp, Armonk,
NY, USA) for statistical comparisons. Differences in propor-
tions between cases and controls were tested by Pearson’s x>
with Bonferroni correction in contingency tables greater than
2 x 2, and by Fisher’s exact test in contingence tables of 2 x 2.
The strength of the association between dichotomous vari-
ables between two groups was calculated by the odds ratio
(OR) and was used to estimate the risk among different sub-
sets of cases and/or controls. Differences in continuous vari-
ables among groups were compared by the Kruskal-Wallis
test and the Mann-Whitney U test. P values less than 0.05
(2-sided) were considered as statistically significant.

Results
Subjects

Clinical and hormonal characterization of the infertile and nor-
mozoospermic subjects is shown in Supplementary Material
(Table 1). All infertile patients (N = 334) required sperm testicu-
lar extraction and most had azoospermia (85%) or severe oligo-
zoospermia (11%) (0.8 £1.6; range: 0.1-5.2 millions/ml)
followed by aspermia or cryptozoospermia (4%). The proportion
of azoospermia and oligozoospermia between cases and obstruc-
tive controls was similar, and there was a greater proportion of
aspermia in obstructive controls (8% versus 1%, P=0.001). As
expected, infertile patients with spermatogenic impairment
showed increased gonadotropin concentrations, reduced testos-
terone levels, and a high proportion of subjects had reduced
testicular volume compared with controls. Normozoospermic
controls were younger, had lower BMI, higher testosterone,
and lower FSH than obstructive controls.

Proportion of partial-AZFc deletions and characteri-
zation of DAZ/CDY1 gene copies

The screening for partial deletions of AZFc in 233 secretory azo/
oligozoospermic men and 246 controls (101 obstructive and 145
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normozoospermic) showed a total of 21 subjects (4.4%) with
partial-AZFc deletions (Table 2). No statistical differences were
observed in the proportion of partial-AZFc deletions between
total cases and total or obstructive controls (P=0.118 and P=
0.802, respectively), nor between the control groups (P =0.127).
Nevertheless, we observed a greater prevalence of partial-AZFc
deletions in total cases compared with normozoospermic con-
trols (6% versus 1.4%, P =0.035). Furthermore, we detected
statistical differences when we grouped the cases by testicular
phenotypes of spermatogenic failure and compared the preva-
lence of partial-AZFc deletions with both groups of controls
(P=0.024), normozoospermic (P=0.011), or all controls to-
gether (P =0.026) (Supplementary Table S3).

In this sense, only cases with the testicular phenotype of
HSP showed a statistical significant higher proportion of
partial-AZFc deletion compared with total controls (18.8%
versus 2.8%, P=0.017), with an OR of 7.88 (95% Cl=
1.82-34.03), and with normozoospermic controls (18.8%
versus 1.4%, P=0.007) with an OR of 16.5 (95% Cl=
2.52-107.82) (Table 2). Likewise, the proportion of gr/gr
subtype was significantly increased in HSP compared with
the total and normozoospermic controls (P=0.013 and
P =0.003, respectively), reaching an OR of 9.2 (95%
C1=2.07-41.12) and 33.2 (95% C1=3.22-342.67), re-
spectively. Among men with severe atrophy, the b1/b3
deletion showed a higher proportion compared with total
controls (11.1% versus 0%, P=0.036) (Table 2).
Additional comparisons performed for the types and sub-
types of partial deletions in more than two groups of sub-
jects are shown in Supplementary Table S3.

Supplementary data on Table S4 and S5 shows the clinical,
histological, genetic, and seminal characterization of men with
partial-AZFc deletions.

Concerning which of the DAZ gene copies were removed
in partial-AZFc deletions, we observed that the loss of the
gene pair DAZ1/2 (11/14, 78.6%) was more frequent than
the loss of DAZ3/4 in gr/gr deletions compared with b2/b3
deletions where the loss of DAZ3/4 was more common (5/6,
83.3%) (P=0.018). The same analysis in cases showed that
gr/gr deletions involved the loss of DAZ1/2, and that b2/b3
deletions involved exclusively the loss of DAZ3/4 (P= 0.07),
and no differences were observed in controls. Moreover, no
significant differences were observed when we separated by
types of spermatogenic failure or control groups
(Supplementary Table S3). Concerning b1/b3 deletions, the
only patient with this deletion showed the loss of DAZ1/2
gene copies.

As regards the absent CDY1 copy in partial deletions, the
same proportion of loss of CDYIa and CDY1b was observed
in subjects with gr/gr (7/14, 50%) or b2/b3 deletions (3/6,
50%). In addition, there was no difference in the proportion
of CDY1 copy types deleted between cases and controls either
with gr/gr or b2/b3 deletions (Supplementary Table S3).
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Table 1 Clinical and hormonal
characterization in cases and
controls

Cases

All controls

oC

NC

Age (years) 34 (30-38)* ® 32.0 (25-38)° 35.0 (32-39)* ¢ 27.0 23-35)* ¢
BMI (Kg/m?) 27.1 (25-30)* 26.8 (24-29) 26.9 (25-29)° 23.7 2127 ¢
FSH (mIU/ml) 13.8 (9-24)~® 29 (2-5)° 3.1 2-6)*°¢ 2.8 2-4)*°¢

LH (mIU/ml) 5.1 3-8)*° 24 (24P 22 (2-3)*¢ 2.5 24"
Testosterone (nmol/l) 11.1 (8-14)*® 13.9 (10-19)° 11.8 (9-15)° 15.9 (12-23)* ¢
Estradiol (pmol/1) 122.4 (97-169) 124.8 (94-159) 118.8 (81-164) 128.5 (107-158)
SHBG (nmol/l) 27.1 (21-39) 31.2 (19-48) 27.0 (19-45)° 47.9 (35-67)°
Free testosterone (pmol/l) 218.1 (174-305)  241.8 (184-297)  241.7 (184-295)  245.0 (183-389)
Sperm count 0.0 (0.0-0.0) - 0.0 (0.0-0.0) 89.3 (54-149)
Reduced testicular volume 54 6 7 0

Number of subjects 233 246 101 145

Values show the median (25th—75th percentile) or percentage of patients with reduced testicular volume (average
of both testicles less than 15 ml measured with the Prader orchidometer). * P < 0.05 between Cases and obstructive
controls (OC) or normozoospermic controls (NC) by Mann-Whitney test. > P<0.05 between Cases and All
controls by Mann-Whitney test. © P < 0.05 between OC and NC by Mann-Whitney test. Reference ranges (com-
mercial kit): FSH 1.0-8.0 mIU/ml; LH 1.0-8.0 mIU/ml; Testosterone (T) 2.0-8.0 ng/ml; Estradiol <50 pg/ml;
SHBG 10-80 nmol/l. Free testosterone was calculated from T and SHBG as previously described [1]

1. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free
testosterone in serum. J Clin Endocrinol Metab. 1999;84(10):3666—72. https://doi.org/10.1210/jcem.84.10.6079

In patients with HSP, the constitution gr/gr-del DAZ1/2
was significantly more frequent compared with total controls
(18.8% vs 1.2%, P=0.004), obstructive controls (18.8% vs
2.0%, P=0.019), or normozoospermic controls (18.8% vs
0.7%, P= 0.003); and the association with the loss of
CDYla (gr/gr-del DAZ1/2-CDY la) was observed exclusively
in five cases (2.2% vs 0% of controls, P=0.026) including
two patients with HSP (13.3% versus 0% of controls; P =
0.003). Furthermore, when we compared gr/gr deletions with-
out DAZ duplication, DAZ1/2(DAZx2), and gr/gr-DAZ1/
2(DAZx2)-CDY la, significant higher proportions were ob-
served in cases with HSP compared with normozoospermic
(20% vs 0.7%; P=0.003 and 14.3% vs 0%; P = 0.08, respec-
tively), or obstructive controls (20% vs 2.2%; P=0.020 and
14.3% vs 0%; P=0.018, respectively). As expected, the sub-
ject with the b1/b3 deletion showed two copies of CDY/
(CDYla and CDY1b).

The complete characterization of the STS employed and the
breakpoints defined for subjects with partial-AZFc deletions
based on the structure of the non-inverted reference Y chromo-
some is shown in Fig. 1. The possible rearrangements and Y-
chromosome structures from which these deletions might be
occurred are shown in Supplementary Material (Fig. S1).

Dosage of DAZ gene copies in partial-AZFc deleted
and non-deleted men

The quantification of DAZ copies was performed in 473/479
subjects. We observed that most men with AZFc-partial dele-
tions showed 2 DAZ copies, except for 2 patients with com-
plete SCOS and gr/gr-DAZ1/2-CDY1b deletion in whom 4
DAZ gene copies were detected (Table 3 and Supplementary
Table S4). As expected, in most non-deleted men, the number
of DAZ copies was 4, and only 25 of them showed a higher

Table 2 Frequency of partial-AZFc deletions in cases and controls
Histopathological phenotypes in cases Type of controls

All cases SCOS MA HSP MixA SA All controls ocC NC
Partial-AZFc deletions 14 (6)* 8 (5.6) 0 3(19)¢ 2 (6.7) 1(11) 7(2.8)° 5(5) 2 (1.4)* ¢
gr/gr 8(3.4) 32.1) 0 3(19)%¢ 2(6.7) 0 6 (2.4 5(5) 1(0.7)°
b2/b3 5@2.1) 5@3.5) 0 0 0 0 1(0.4) 0 1(0.7)
b1/b3 1(0.4) 0 0 0 0 1aDf of 0 0
Total 233 143 35 16 30 9 246 101 145

Values are presented as number of subjects (percentage). SCOS, Sertoli cell only syndrome; MA, maturation arrest; HSP, hypospermatogenesis; MixA,
mixed atrophy; SA, severe atrophy; OC, obstructive controls; NC, normozoospermic controls. Same superscript letter indicates statistical difference
between a group of cases and a control group, by Fisher’s exact test; * P=0.035; ®P=0.017;°P=0.007; *P=0.013; *P=0.003; ' P=0.036
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Fig. 1 Schematic representation of the Y chromosome in patients with
partial-AZFc deletions. (A) Reference Y-chromosome structure (R1b
haplogroup) showing palindromes P1 through P8 (gray arrowheads),
pseudoautosomal regions PAR1 and PAR2 (green blocks) and hetero-
chromatic (orange blocks). (B) Expanded and detailed view of AZF re-
gions and palindromes, with STSs employed in the determination of
partial-AZFc deletion and full characterization of the patients. AZF re-
gion residing genes are indicated with black arrowheads. (C) Schematic

number of DAZ copies (5/133 SCOS, 1/35 MA, 1/16 HSP, 5/
28 MixA, 13/236 controls): with 6 (7 cases and 12 controls), 8

Table 3 DAZ gene duplications in partial-AZFc deleted and non-
deleted men

Group of Subjects Cases All controls  OC NC
Non-deleted 216 236 94 142
DAZ duplicated 12 (5.6) 13 (5.5) 664 749
Partial-AZFc deleted 14 7 5 2
DAZ duplicated 2(143) 0 0 0
gr/gr deleted 8 6 5 1
DAZ duplicated 2(25.0) 0 0 0

For each group of subjects, the number of men is shown in the upper row
and the number and percentage (in parenthesis) of subjects with duplica-
tions of DAZ gene copies is shown in the row below. No significant
differences in the proportion of DAZ duplications were observed
(P>0.05, x2 test after Bonferroni correction and Fisher’s exact tests)
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line-drawing showing different types of partial-AZFc deletions observed
in this study with each possible structure of the Y chromosomes from
which the rearrangements could have originated in parenthesis (see Fig.
S1 for more detail). Solid white bars encompass STSs found to be present.
Dotted lines indicate the chromosomal segments and/or STS deleted.
Diagonally striped bars indicate breakpoint intervals involved in the
recombination

(4 cases and 1 control) or >8 (1 case) DAZ gene copies
(Table 3). Regardless of the presence of partial-AZFc dele-
tions, the comparison of DAZ duplications between cases and
controls, and among the different histological groups, showed
no significant differences.

Haplogroups of the Y chromosome

The analysis of the Y-chromosome haplogroups (Y-hg) showed
that Y-hg R was the most prevalent (51%), followed by the
haplogroups J, E, Q-M3, I (16-8%) and F, M, G, H and Q-
M242 (2.3-0.2%). No significant differences were observed be-
tween obstructive and normozoospermic controls (P =0.063),
hence why they were treated as one group for further compari-
sons. Moreover, a similar distribution of the Y-hg was observed
when we compared cases and both control groups originating
from different regions of Chile (P =0.889). Among total sub-
jects, 368 (77%) were living in the Metropolitan Region (MR),
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and the rest in different regions of Continental Chile (I-XII and
XIV-XVI). While normozoospermic controls came mainly from
MR (97%), and only 67% of cases and 71% obstructive controls
came from this area, similar residence was observed among cases
and subgroups of controls in MR (P=0.332). In addition, a
similar geographic distribution was observed between subjects
with or without partial-AZFc deletion (P =0.980) or among gt/
gr, b2/b3, and b1/b3 subdeletions (P =0.941).

The analysis of different Y chromosome lineages showed
different distribution between cases and controls (P = 0.005)
(Fig. 2). We observed a higher proportion of Y-hg M in cases,
both in all subjects or in those without partial-AZFc deletions
(P<0.01), with an OR 0f 9.8 and 9.0, respectively (Fig. 2).We
did not observe any significant difference in the proportion of
Y-hg M among all types of documented spermatogenic failure
(MIXA, MA, SCOS, HSP, and SA, P=0.283).

Although a similar Y-hg distribution was observed between
cases and controls with AZFc-partial deletions (P=0.71) or gr/
gr deletions (P=0.277), Y-hg H, one of the least represented
haplogroups in our population, showed an increased proportion

among subjects with partial-AZFc¢ deletions (P = 0.009), or with
the gr/gr deletion (P =0.004) compared with non-deleted sub-
jects, increasing the risk estimation by 24- and 38-fold, respec-
tively (Fig. 2 and Supplementary Table S4). Moreover, we ob-
served that Y-hg H is highly represented in gr/gr and gr/gr-
DAZ1/2-CDY 1a deleted cases (P =0.034 and P =0.02, respec-
tively). In contrast, the analysis of the Y-hg R, the most prevalent
Y-hg in our population, showed a lower proportion in AZFc
partially deleted and in gr/gr-deleted patients, compared with
those without partial-AZFc deletions (P =0.04) (Fig. 2).

Meanwhile, Y-hg G was exclusively present in controls (4
obstructive and 5 normozoospermic), all of which showed
absence of partial deletions or DAZ duplications.

On the other hand, the analysis of Y-hg distribution between
subjects with or without DAZ duplications did not show any
statistical difference, either in all subjects (P =0.969), in cases
(P=0.987), in total controls (P=0.887), in obstructive P =
0.756), or normozoospermic controls (P = 0.825). DAZ duplica-
tions were found in patients with R (14/241), Q-M3 (2/42), M
(1/10), J (4/72), 1 (1/37), F (1/11), and E (4/46) Y-haplogroups.

CF DE
Yﬁl Yap+
[ m89[ ma0
M9 Lo01] P257
K
M45 Page93| M304| M258
P1
M207|M242 Q
M3
Y-Haplogroup:
Groups of subjects N R Q“"‘ M J I H G F E
Total subjects: 479 244(509) 43(9.0) 10(21) 74(154) 37(7.7) 4(08) 9(19) 11(23) 46(9.6)
Cases 233 114(489) 19(82) 9(3.9)“ 34(146) 19(82)  1(0.4) on 8(34) 28(12)
Controls 246 130 (52.8) 24(9.8) 1(0.4)% 40(163) 18(73) 3(12) 9G3MH" 3(12) 18(7.3)
Obstructive 101 53(52.5)  10(9.9) 0 17(168) 2(20) 1(1.0)  4(40) 3(30) 11(10.9)
Normozoospermic 145  77(53.1)  14(9.7) 1(0.7) 23(159) 16(11) 2(14)  5(3.4) 0 7(4.8)
Partial AZFc deleted overall: 21 6 (28.6) v 2(9.5) 1(4.8) 6 (28.6) 0 2(9.5) p 0 2(9.5) 2(9.5)
grigr 14 3(21.4)° 1(7.1) 0 6 (42.9) 0 2(14.3)° 0 1070 171
b2/b3 6 2(33.3) 1(167)  1(16.7) 0 0 0 0 1(16.7)  1(16.7)
b1/b3 1 1(100) 0 0 0 0 0 0 0
No deletion overall: 458 238 (52.0)"° 41(90) 9(20) 68(148) 37(81) 2(0.4)™° 9(20) 9(20) 44(9.6)
Cases 219 129 18(82) 8(37)° 31(142) 19(8.7) 0° 0o 7(32) 26(11.9)
Controls 239 129(54.0) 23(96) 1(0.4)° 37(155) 18(75) 2(08) 9(3.8)' 2(0.8) 18(7.5)
Partial AZFc deletion in cases: 14 5(35.7) 1(74) 171 3(214) 0 1(7.1) 0 1(71)  2(14.3)
grigr 8 3(37.5) 0 0 3(37.5) 0 1(12.5)° 0 0 1(12.5)
b2/b3 5 1(20) 1 (20) 1(20) 0 0 0 0 120)  1(20)
b1/b3 1 1(100) 0 0 0 0 0 0 0 0
Partial AZFc deletion in controls: 7 1(14.3) 1(14.3) 0 3 (42.9) 0 1(14.3) 0 1(14.3) 0
arigr 6 0 1(16.7) 0 3 (50) 0 1(16.7) 0 1(16.7) 0
b2/b3 1 1(100) 0 0 0 0 0 0 0 0

Fig. 2 Phylogeny of the Y chromosome with the Y-haplogroups
determinated by binary markers. For each of the haplogroups of the Y
chromosome, it is shown the number of subjects and in parentheses the
percentage that they represent. Odds ratio (OR) were calculated fora2 x 2
contingence table and P values were calculated by two-tailed Fisher’s
exact test.“OR = 9.84; 95% CI=1.24-78.32; P= 0.009." OR = 24;95%

CI=3.21-179.66; P=0.010.Y OR=0.37; 95% CI=.14-0.97; P=
0.044.> OR=9.0; 95% Cl=1.12-72.74; P=0.016. OR =38, 95%
CI=.93-292.86; P=0.0047. © OR=0.25, 95% CI=0.07-0.92; P=
0.03.1 P=0.037. ® P=0.0035." P=0.0039. Symbol indicates the com-
pared groups
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Discussion

Most of the studies which associate partial-AZFc deletions with
an increased risk of infertility have been performed in azo/
oligozoospermic men and show that gr/gr deletions have an
impact among Caucasian populations [9, 10]. Besides, the con-
tribution of b2/b3 deletion is more controversial and has shown
some significance in East Asia and North Africa populations
[9-11]. Otherwise, there are very few studies conducted in
South American patients, and even less in patients with known
spermatogenic phenotypes [12—14, 35-37]. Moreover, until
now, there were no studies that analyze the contribution of
DAZ gene dosage, CDYI copies, and haplogroups of the Y
chromosome in Chilean men, which is characterized by the
admixture of European and Native indigenous population
(Amerindians and Polynesians from Easter Island) [38, 39].

Several studies have reported that partial-AZFc deletions
occur in azoospermic, oligozoospermic, or normozoospermic
men; however, they are more commonly associated with low
sperm counts. Therefore, gr/gr deletions are considered pre-
disposing factor for oligozoospermia in European and South
Asia populations [9, 40, 41]. In agreement with this concept,
we observed that patients with the histopathological pheno-
type of hypospermatogenesis showed a higher proportion of
total partial-AZFc deletions and gr/gr subdeletions which, as
expected, was the most common type. Moreover, the loss of
DAZ1/2 pair observed among gr/gr deletions was significant-
ly increased in patients with hypospermatogenesis, in concor-
dance to previous findings of their association with severe
oligozoospermia or spermatogenic impairment [7, 42, 43].
Even though we studied a limited number of 16 subjects with
hypospermatogenesis, all our cases with primary spermato-
genic failure were documented by a rigorous evaluation of
testicular biopsy. On the other hand, most of the previous
studies include patients classified as secretory testicular insuf-
ficiency after physical examination and anamnesis [9, 10, 16,
44], while others exclusively show the spermatogenic pheno-
types of patients with partial deletions [35], likely under- or
over-estimating the impact of partial deletions on each testic-
ular phenotypes. It should be noted that SCOS was the main
histological condition observed among our secretory patients
and, similarly to the MA and MixA groups, had a comparable
prevalence of partial AZFc deletions. Therefore, in Chilean
secretory azo/oligozoospermic men, partial-AZFc deletions
do not seem to represent a risk factor for all types of spermato-
genic failure; and they are more likely associated with the
hypospermatogenesis phenotype. However, a larger group of
subjects with histological diagnosis of hypospermatogensis
or, at least secretory oligozoospermia, would be necessary to
support these findings.

In this work, we also included azoospermic obstructive
infertile patients, as quantitative normal spermatogenesis con-
trols since these subjects were recruited from the same infertile
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population and the same geographical area as cases,
preventing selection biases for the subsequent Y chromosome
haplogroup analysis. Even though obstructive controls present
normal spermatogenesis in their biopsy analysis, this cannot
predict normal seminal parameters other than sperm count,
leaving sperm morphology and motility as non-evaluable pa-
rameters on biopsy. Therefore, the suggestive higher relative
proportion of partial-AZFc deletions in obstructive than nor-
mozoospermic controls (not statistically significant, Table 2)
could be attributed to the association of partial-AZFc deletions
with sperm morphology and/or motility, as some authors have
suggested [18, 37].

Among ethnic factors, the differential prevalence of certain
lineages of the Y chromosome may affect the association be-
tween partial-AZFc deletions and spermatogenic failure in
human populations. For example, after the exclusion of the
N1 or N* haplogroups, which are fixed with b2/b3 deletion
and distributed in North/Eastern Europe and Asia [6, 45, 46],
the b2/b3 deletion has a lesser prevalence than gr/gr deletions
[11]. In addition, the greater prevalence of the gr/gr deletion in
Asian men may be due to the presence of the gr/gr-deleted Q1
[47] and D2 [6, 48] haplogroups, commonly seen in China
and Japan, respectively.

The typing of Y-chromosome biallelic markers in the pres-
ent study shows similar prevalences to those obtained by
Toscanini et al. [38] in 978 unrelated Chilean males using
Y-haplogrouping prediction. European Y chromosomes be-
longing to the Y-hg R are the most prevalent in Chilean pop-
ulation, with R1b reaching 97% within Y-hg R [38].
Moreover, a similar distribution of haplogroups was observed
in different regions of Chile, indicating that our population is
quite uniform throughout the country. In addition, the distri-
bution of the residential areas of the cases and controls (in or
outside the capital) was similar, and between the subjects with
or without partial-AZFc deletions, suggesting that this was not
a contributing factor for the prevalence of partial-AZFc
deletions.

In our subjects, Y-hg H was present at a low frequency,
similarly as observed by Toscanini et al. [38]. This haplogroup
is prevalent in Dravidians population of the Indian subconti-
nent (South Asia) [49], and in Romani subjects from Europe
[50], but is also present in a lower proportion in Chile [38] and
the rest of the world. In accordance with our findings, a
Brazilian study observed that gr/gr-deleted men had the
haplogroups R, F*, K*, and E, which were common among
men in this population [14]. However, we discriminated
among haplogroups G, H, I included in F* (xJ,K), and showed
that Y-hg H increases the odds of partial-AZFc deletions and
of gr/gr deletions by 24- and 38-fold respectively. One addi-
tional study performed in South Americans, showed that
Uruguayan men have a higher prevalence of the Y-hg F(xK)
among subjects with abnormal sperm morphology compared
with men from other Y-chromosome lineages [37]. However,
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it should be noted that Y-hg H was observed only in 4/479
subjects and, therefore, it is premature to draw definitive con-
clusions. Interestingly, the subclade Hlala (M82) of the Y-hg
H is prevalent in India, and recently Rani et al. [S1] showed a
higher proportion of AZFc partial deletions in this population.

Similarly, the Y-hg M also has a restricted geographical
distribution. It is found in Oceania, mainly in Melanesia and
less frequently in West and Central Polynesia [52—54]. In this
study, Y-hg M was present in 10/479 (2.1%) of subjects that
could have been originated in Easter Island (Chilean island in
the South-Eastern Pacific Ocean), in agreement with the pro-
posal of its Polynesian ancestral origin [53, 54], and/or with
the repatriation of Polynesian slaves that were not native to
this island in the nineteenth century [55, 56]. Although, the
low frequency of this haplogroup does not allow us to draw
definite conclusions, it is interesting to note that Y-hg M is
more represented in cases than in controls, both in all subjects
or after removing AZFc partially deleted men, showing a ten-
fold higher risk.

In contrast to Y-hg M, Y-hg G is widely represented in
western Eurasia and was detected exclusively among the con-
trols without partial-AZFc deletions, CDY! loss, or DAZ du-
plications. Balaresque et al. [57] reported that, compared with
Y-hg R, this haplogroup has a higher rate of rearrangements in
the proximal part of AZFc. In agreement with our results,
other authors have reported that Y-hg R could have a protec-
tive role, based on their lesser representation in partial-AZFc
deletions [1, 57]. Further studies that include the characteriza-
tion of greater number of subjects and more refined Y-
chromosome haplogrouping will help to elucidate the signif-
icance of the associations observed in this study.

In reference to the number of DAZ copies, some studies
suggest a compensation in gr/gr-deleted males [18], or even
further spermatogenic deterioration in b2/b3-deleted men
[17]. Interestingly, the study of Lu et al. [58] in secretory
azoospermic men of the Han Chinese population suggested
that a greater susceptibility to spermatogenic impairment giv-
en by the Y-hg K* was related to an increased dosage of DAZ
[58]. The Y-hg K* has been observed more frequently among
azo/oligozoospermic Han Chinese men compared with fertile
controls [59]. We did not observe an increased proportion of
DAZ duplications in the derivate haplogroups R, Q-M3, and
M. However, after discriminating haplogroups R, Q-M3, and
M, we observed that the Y-hg M would increase the risk of
primary spermatogenic failure but not partial-AZFc deletions
or DAZ duplications.

Conclusions

In the present study we observed that partial-AZFc deletions
are associated with spermatogenic failure, and gr/gr deletions
show a potential association with the histological phenotype

of hypospermatogenesis in Chilean men. Moreover, two un-
derrepresented Y-chromosome haplogroups in this admixed
population have an association with the occurrence of sper-
matogenic failure (Y-haplogroup M) or gr/gr deletions (Y-
haplogropup H); however, larger studies are required
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