Skip to main content
. 2020 Dec 4;43(4):1399–1414. doi: 10.1007/s13246-020-00952-6

Table 4.

Class-wise performance metrics as achieved on different models used in this implementation

Model Class Precision Recall F1-Score Support Accuracy (%) Sensitivity (%) Specificity (%)
Covid 0.6601 0.994 0.7933 168
StackNet-DenVIS Non-Covid 0.9993 0.9461 0.972 1596 95.07 99.4 94.61
Macro-average 0.8297 0.9701 0.8827 1764
Weighted-average 0.967 0.9507 0.955 1764
Covid 0.7703 0.9583 0.9825 168
VGG19 bn Non-Covid 0.9955 0.9699 0.8541 1596 96.88 95.83 96.99
Macro-average 0.8829 0.9641 0.9183 1764
Weighted-average 0.9741 0.9688 0.9703 1764
Covid 0.6653 0.9583 0.7854 168
SE-ResNeXt50-32 × 4d Non-Covid 0.9954 0.9492 0.9718 1596 95.01 95.83 94.92
Macro-average 0.8303 0.9538 0.8786 1764
Weighted-average 0.964 0.9501 0.954 1764
Covid 0.5189 0.9821 0.679 168
Inception ResNet v2 Non-Covid 0.9979 0.9041 0.9487 1596 91.16 98.21 90.41
Macro-average 0.7584 0.9431 0.8139 1764
Weighted-average 0.9523 0.9116 0.923 1764
Covid 0.3756 0.881 0.5267 168
DenseNet-121 Non-Covid 0.9854 0.8459 0.9103 1596 84.92 88.1 84.59
Macro-average 0.6805 0.8634 0.7185 1764
Weighted-average 0.9273 0.8492 0.8738 1764