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Abstract: Objective: To explore the effect of smoking on gene expression in human alveolar macrophages and 
the value of identified key genes in the early diagnosis and prognosis of lung cancers. Methods: We downloaded 
three data sets (GSE8823, GSE2125, and GSE3212) from the Gene Expression Omnibus (GEO) database, includ-
ing 31 non-smoking and 33 smoking human alveolar macrophage samples. We identified common differentially 
expressed genes (DEGs), from which we obtained module genes and hub genes by using STRING and Cytoscape. 
Then we analyzed the protein-protein interaction (PPI) network of DEGs, hub genes, and module genes and used 
David online analysis tool to carry out functional enrichment analysis of DEGs and module genes. Results: A to-
tal of 85 differentially expressed genes was obtained, including 42 up-regulated genes and 43 down-regulated 
genes. The Human Protein Atlas and Survival analysis showed that GBP1, ITGAM, CSF1, SPP1, COL1A1, LAMB1 
and THBS1 may be closely associated with the carcinogenesis and prognosis of lung cancer. Conclusion: DEGs, 
module, and hub genes identified in the present study help explain the effects of smoking on human alveolar mac-
rophages and provide candidate targets for diagnosis and treatment of smoking-related lung cancer.
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Introduction

Cigarette smoke is so harmful that a retrospec-
tive study found that secondhand smoke alone 
killed more than 600,000 people worldwide [1]. 
Smoking is also a significant risk factor for lung 
cancer and other lung diseases. It mainly ca- 
uses damage to the lungs and other organs 
through the inflammatory response, oxidative 
stress, genetic changes, cell aging and differ-
ent pathways [2]. Studies have found that 
smoking causes changes in alveolar macro-
phage genes involved in the occurrence and 
development of lung cancer [3]. For example, 
tumor-associated macrophages (TAM) can po- 
larize into both M1 and M2 phenotypes. The 
M1 type is involved in the inflammatory and 
toxic reactions of tumor cells [4]. Transforming 
growth factor secreted by M2-type macro-
phages is associated with tumor progression 
[5]. In the face of intractable lung cancer, many 

studies have shown that intervention in the 
tumor microenvironment from the perspective 
of alveolar macrophages reduces cancer recur-
rence and development. In recent years, an 
anti-tumor strategy centering on macrophages 
by limiting the infiltration of cancer cells has 
been suggested as a cancer treatment method 
[6]. However, the study of the effects of smok-
ing on gene expression in human alveolar mac-
rophages is still immature. Therefore, it is nec-
essary to strengthen the research on the mo- 
lecular mechanism of the occurrence and de- 
velopment of lung cancer mediated by changes 
in alveolar macrophages caused by tobacco 
smoke exposure.

With rapid development in recent years, micro-
array technology has become more convenient 
and economical, and it can screen different 
genes in high throughput for research on the 
molecular mechanism of related diseases [7]. 
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The limitation of false positives, and the limited 
number of included samples reduce reliability 
of the analysis results. Based on microarray 
technology’s application to generate a large 
number of data sets, bioinformatics can effi-
ciently utilize the above data to obtain more 
reliable results [8]. Therefore, we used bioinfor-
matic tools to get three expression profile data 
sets, including GSE8823, GSE2125, and 
GSE3212. The DEGs of alveolar macrophages 
in smoke-exposed and non-smoking individu-
als were analyzed. Secondly, we screened out 
the most significant module gene and Hub gene 
and constructed the protein interaction net-
work diagram of DEGs, module genes, and Hub 
genes. Then we conducted a functional enrich-
ment analysis of the identified DEGs and mod-
ule genes. Third, we analyzed the differential 
expression of Hub genes in lung cancer pa- 
tients and healthy control groups and further 
selected 7 Hub genes to explain their value in 
predicting the prognosis in lung cancer. Finally, 
we tried to explore the influence of Hub gene 
mutation on the survival of lung cancer pa- 
tients. In summary, the differentially identified 
genes may be therapeutic targets and biomark-
ers for smoking-related lung disease.

Materials and methods

Microarray data

Data came from GEO (http://www.ncbi.nlm.nih.
gov/geo) [9], an online public functional genome 
data warehouse. We downloaded three gene 
expression datasets (GSE8823 [10], GSE2125 
[11], and GSE3212 [12]). GSE8823 included 
11 non-smoking alveolar macrophages sam-
ples and 13 smoking alveolar macrophages 
samples, based on platform GPL570[hg-u133_
plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array. GSE3212 included five non-smoking 
alveolar macrophage samples and five smoking 
alveolar macrophage samples, based on plat-
form GPL80[Hu6800] Affymetrix Human full-
length HuGeneFL Array. GSE2125 included 15 
non-smoking alveolar macrophages sample 
and 15 smoking alveolar macrophage samples, 
based on platform GPL570[hg-u133_plus_2] 
Affymetrix Human Genome U133 Plus 2.0 
Array.

Identification of DEGs

To further analyze the DEGs between smoking 
alveolar macrophages and non-smoking alveo-

lar macrophages, we used an interactive online 
analysis tool--GEO2R (http://www.ncbi.nlm.nih.
gov/geo/geo2r). The deletion occurs when one 
gene corresponds to multiple probes, or one 
probe does not have a corresponding homolo-
gous gene. |logFC (fold change)| ≥1 and adj. 
p-value <0.01 were considered statistically 
significant.

PPI network construction, module analysis, 
and Hub genes selection

To explore the interactions between proteins 
and further explore the mechanism of disease 
occurrence or development, we first construct-
ed a PPI network for screened DEGs based on 
an online protein interaction prediction tool 
-STRING [13]. Then we imported the resulting 
data into Cytoscape (version 3.7.2) [14] for 
analysis. Cytoscape is a biological information 
platform for visualization of molecular interac-
tions. Third, we use Cytoscape’s plug-in MCODE 
(version 1.5.1) [15] to filter essential modules 
in the network diagram. The detailed criteria 
were as follows: Max depth =100, k-score =2, 
node score cutoff =0.2, degree cutoff =2, and 
find clusters in the whole network. Finally, we 
used cytoHubba [16], a plug-in of Cytoscape, to 
screen the Hub genes in the network graph, 
and obtained the top 20 genes with the highest 
score based on the MCC algorithm.

Functional enrichment analysis of DEGs

The Database for Annotation, Visualization, 
and Integrated Discovery (DAVID; http://david.
ncifcrf.gov) (version 6.8) [17] is an online Da- 
tabase for feature enrichment. We performed 
GO enrichment analyses on screened DEGs, 
including biological process (BP), cellular com-
ponent (CC), molecular function (MF), and 
KEGG analysis [18]. The visual network dia-
gram presented the GO enrichment analysis 
results, and Cytoscape plugin, BiNGO (version 
3.0.3) [19] drew the network diagram. The set-
ting criteria were as follows: Organism selects 
Homo sapiens, Ontology file selects GO_full, 
P<0.05 was considered statistically signifi- 
cant.

Hub genes analysis

First, we conducted KEGG and GO enrichment 
analysis on Hub genes, and the specific opera-
tion was the same as DEGs enrichment analy-
sis. Then the hierarchical clustering of Hub 
genes is constructed by using UCSC online 
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tools (https://xenabrowser.net/heatmap/). The 
Gene Expression Profiling Interactive Analysis 
(GEPIA, http://gepia.cancer-pku.cn/), UALCAN 
[20], and The Human Protein Atlas (https://
www.proteinatlas.org) were used to analyze  
the differential expression of Hub genes in  
lung adenocarcinoma (LUAD), Lung squamous 
cell carcinoma (LUSC), and standard tissue 
samples. Among them, immunohistochemical 
(IHC) results from the Human Protein Atlas 
database were used to verify the translation 
level of hub genes. Fourth, we used UALCAN--
an online platform for analyzing cancer omics, 

screening Genes correlated with the Hub Ge- 
nes in LUSC. Finally, we used Kaplan-Meier 
plotter to draw the Kaplan-Meier survival gra- 
ph [21]. Kaplan-Meier plotter is capable of de- 
tecting the effect of any gene or gene com- 
bination on survival in a variety of tumors. All 
forms of gene changes such as Missense Mu- 
tation, Truncating Mutation, and Amplification 
of Hub genes in patients with LUSC were an- 
alyzed using the cBioPortal database [22]. 
Furthermore, whether the genetic changes af- 
fect the overall and disease-free survival of 
LUSC patients was further investigated.

Figure 1. Identification of differentially expressed genes in human alveolar macrophages between smokers and 
non-smokers. A, B, abd C: GEO2R was used to analyze the expression of DEGs in three data sets (GSE8823, 
GSE2125, and GSE3212 respectively, which are presented as a volcano plots. The red and green dots represent up 
and down, respectively. D: Venn diagram shows that there are 85 DEGs in the three databases.
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Results

Identification of 85 DEGs shared by three gene 
expression datasets

Three microarray datasets (GSE8823, GSE- 
2125, and GSE3212) were obtained through 
strict screening, including 1205,974 and 1312 
DEGs, respectively. The analysis results were 
presented by a volcano diagram (Figure 1A-C). 
There were 85 overlapping genes in the three 
datasets, including 42 up-regulated genes and 
43 down-regulated genes, as shown by the 
Venn diagram (Figure 1D).

PPI network construction, module analysis, 
and Hub gene selection

First, we constructed the PPI network of DEGs 
with STRING (Figure 2A). Then, we used Cyto- 

scape’s plug-in MCODE to screen the most sig-
nificant module genes in the system (Figure 
2B). BiNGO, a plug-in of Cytoscape, was used  
to obtain 20 Hub genes in PPI network (Fi- 
gure 2C). All Hub genes are shown in Table 1, 
including gene symbol, full name and primary 
function.

Functional enrichment analysis of DEGs and 
the most significant module

We used the DAVID tool to carry out GO and 
KEGG enrichment analysis of DEGs. The results 
of the GO analysis showed that the biological 
processes (BP) of DEGs were significantly en- 
riched in cell adhesion, fatty acid metabolic 
process, immune response, inflammatory res- 
ponse, and positive regulation of angiogenesis 
(Figure 3A). Cellular component (CC) of DEGs is 

Figure 2. PPI network of DEGs, mod-
ule genes, and hub genes. A. PPI 
network of 85 DEGs. Brown and red 
represent down-regulated and up-
regulated genes, respectively. B. PPI 
network of the most significant mod-
ule i20 nodes and 58 edges. C. PPI 
network of 20 hub genes.
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mainly enriched in the cell fraction, plasma 
membrane part, plasma membrane, extracel-
lular region part, and extracellular region 
(Figure 3B). The molecular functions (MF) of 
DEGs were significantly enriched in zinc ion 
binding, ribonuclease A activity, prostaglandin 
E receptor activity, 3’,5’-cyclic-amp phosphodi-
esterase activity, and camp-dependent protein 
kinase inhibitor activity (Figure 3C). KEGG anal-
ysis showed that DEGs mainly concentrated in 
Hematopoietic cell lineage, Transcriptional mis-
regulation in cancer, pi3k-Akt signaling path-
way, focal adhesion, and ECM-receptor interac-
tion (Figure 3D). The results of GO enrichment 
analysis are presented by the visual network 
diagram (Figure 3E). 

Functional enrichment analysis of the most 
significant module

DAVID was used for the GO and KEGG enrich-
ment analysis of the most significant module 
genes. The GO analysis results showed that  
the BP of module genes were mainly enriched 
in cell adhesion, fatty acid metabolic process, 

inflammatory response, immune response, and 
receptor internalization (Figure 4A). CC chang-
es of module genes are mainly concentrated in 
extracellular space, extracellular exosome, ex- 
tracellular region, external side of the plasma 
membrane, and cytosol (Figure 4B). The varia-
tions of MF of module genes were mainly con-
centrated in zinc ion binding, ribonuclease A 
activity, prostaglandin E receptor activity, cA- 
MP-dependent protein kinase inhibitor activity, 
and 3’,5’-cyclic nucleotide phosphodiesterase 
activity (Figure 4C). KEGG analysis showed th- 
at module genes were mainly enriched in He- 
matopoietic cell lineage, pi3k-Akt signaling pa- 
thway, Focal adhesion, ECM-receptor interac-
tion, and Transcriptional misregulation in can-
cer (Figure 4D). 

Hub gene analysis

First, we performed hierarchical clustering an- 
alysis on the 20 previously screened Hub ge- 
nes, based on the UCSC online tool. The an- 
alysis results showed that there was a differ-
ence between the gene expression of the Hub 

Table 1. Functional roles of 20 hub genes

No. Gene 
symbol Full name Function

1 GBP1 Guanylate binding protein 1 Overexpression of GBP1 promotes the progress of cervical cancer

2 IFIT2 Interferon induced protein with tetratrico-
peptide repeats 2

Low IFIT2 expression is associated with poor survival in non-small cell lung cancer.

3 IFIT1 Interferon induced protein with tetratrico-
peptide repeats 1

High expression of IFIT1 in head and neck squamous cell carcinoma is associated 
with poor prognosis

4 IFI44L Interferon induced protein 44 like IFI44L is associated with metastasis and drug resistance of liver cancer

5 MX2 MX dynamin like GTPase 2 MX2 is a restriction factor of hepatitis B virus replication.

6 IFI27 Interferon alpha inducible protein 27 Down-regulation of the IFI27 gene inhibited the proliferation of oral squamous cell 
carcinoma

7 IGF1 Insulin like growth factor 1 Association of serum IGF1 and adiponectin are involved in the metastasis of 
breast cancer.

8 ITGAM Integrin subunit alpha M ITGAM is a risk factor for systemic lupus erythematosus and may also be a protec-
tive factor for rheumatoid arthritis

9 ITPKB Inositol-trisphosphate 3-kinase B ITPKB may be associated with lung cancer cell metastasis

10 CSF1 Colony stimulating factor 1 CSF1 is involved in regulating macrophage differentiation and promoting the 
release of pro-inflammatory factors

11 SPP1 Secreted phosphoprotein 1 SPP1 is closely associated with non-small cell lung cancer, breast cancer, colorec-
tal cancer and other cancers.

12 IL7 Interleukin 7 Il-7 may have anti-tumor effects

13 TNFSF10 TNF superfamily member 10 Viral therapy using TNFSF10 combined with plasminogen k5 may treat cancer

14 COL1A1 Collagen type I alpha 1 chain Down-regulation of COL1A1 expression inhibits the growth and metastasis of 
breast cancer cells

15 LAMB1 Laminin subunit beta 1 LAMB1 may be a biomarker for colorectal cancer

16 CD36 CD36 molecule CD36 mediates inflammation, molecular adhesion, and apoptosis

17 MDM2 MDM2 proto-oncogene MDM2 inhibitors may have anticancer effects.

18 THBS1 Thrombospondin 1 Activation of THBS1 promotes metastasis of oral squamous cell carcinoma.

19 AR Androgen receptor AR antagonists may be used in the treatment of breast cancer

20 FABP4 Fatty acid binding protein 4 FABP4 inhibitor inhibited oxidative stress in mice with acute lung injury
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genes in lung cancer tissue samples and stan-
dard tissue samples (Figure 5). Then, we used 
the GEPIA database and UALCAN cancer data-
base to analyze the differential expression of 
20 Hub genes in LUAD, LUSC, and standard tis-
sue samples. The results showed that 7 Hub 
genes were found to be different, including 
GBP1, COL1A1, SPP1, ITGAM, CSF1, LAMB1, 

and THBS1. The expression of GBP1 and LA- 
MB1 in LUSC tissues was lower than that in 
healthy tissues (Figure 6A, 6B, 6K and 6L). 
Compared with standard tissue samples, the 
two Hub genes SPP1 and COL1A1 were highly 
expressed in LUSC patients, and the three Hub 
genes ITGAM, CSF1 and THBS1 in lung tissu- 
es of LUSC patients were down-regulated, with 

Figure 3. GO and KEGG enrichment analyses of DEGs. Enrichment analysis of BP (A), CC (B), MF (C), and KEGG (D), 
was carried out by DAVID. (E) The results of GO enrichment analysis are presented as a visual network diagram.
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Figure 4. GO and KEGG enrichment analyses of the most significant module. Enrichment analysis of BP (A), CC (B), 
MF (C), and KEGG (D) was carried out by DAVID.

Figure 5. Heatmap of hub genes. Blue is the Primary Tumor specimen, and dark red is Solid Tissue Normal. Red 
indicates high gene expression, and blue indicates low gene expression.
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statistically significant differences (P<0.05; Fi- 
gure 6B-J and 6M-N). Subsequently, IHC stain-
ing results obtained from the Human Protein 
Atlas database were used to verify the high 
expression of COL1A1 and SPP1 Hub genes, as 
shown in Figure 7A-L, which showed that the 
expression levels of these two proteins were 
higher in LUSC patients than in the healthy con-
trol group. We analyzed the top 20 genes most 
closely related to the seven hub genes in Ta- 
ble 2. Further, we used the KM-plotter to plot 
the Kaplan-Meier curve of 7 Hub genes. High 
expression of SPP1 and COL1A1 genes were 
associated with a better survival rate in lung 
cancer patients. In contrast, high expression of 
the other five hub genes SPP1, ITGAM, CSF1, 
LAMB1, and THBS1 was associated with low- 
er OS, all of which had statistical significance 
(P<0.05; Figure 8A-G). Finally, we analyzed the 
gene mutation of 7 Hub genes, and the results 
were as follows (Figure 9A-G): in 167 cases, 6 
percent of GBP1 had gene change: 1 case Tr- 
uncating Mutation, 1 case, Amplification, and 
eight instances mRNA High. In 183 cases, 6 
percent of the ITGAM gene from genetically 
altered: 6 cases Missense Mutation, 1 case 

Amplification, and three instances mRNA High. 
Among the 200 samples, 3 percent of CSF1 
had gene changes: 2. Missense Mutation, 3 
Deep Deletion, and one mRNA High. Among 
182 cases, 11 percent of SPP1 had gene ch- 
ange: 1 case Missense Mutation, 1 case Am- 
plification, 1 case Deep Deletion, and 17 in- 
stances mRNA High. Among the 175 samples, 
12 percent of COL1A1 had gene changes. 
Among 278 samples, 9 percent of LAMB1 had 
gene changes: 1 Truncating Mutation, 3 Am- 
plification, ten mRNA High, 2 Missense Mu- 
tation, and mRNA High mixture. 4 Missense 
Mutation, 2 Truncating Mutation, 4 Amplifi- 
cation, and six mRNA High. Among the 200 
samples, 3 percent of THBS1 had gene chang-
es: 1 case of Missense Mutation, five instanc- 
es of mRNA High. Mutations in all of the ab- 
ove genes were not associated with overall  
survival or disease-free survival of LUSC pa- 
tients (Figure 10A-N).

Discussion

Cigarette smoke remains a significant risk fac-
tor for lung diseases such as COPD and lung 

Figure 6. Differential expression of 7 Hub genes in lung cancer and healthy lung tissues. Compared with normal 
tissues, the expressions of GBP1, ITGAM, CSF1, LAMB1, THBS1 in NSCLC patients were down-regulated, and the 
expressions of SPP1 and COL1A1 were increased. In addition to GBP1, the difference was statistically significant 
(*P<0.05). Lung adenocarcinoma (left column); squamous cancer (right column).
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complex. A growing number of fundamental 
studies suggest that smoking-induced chan- 
ges in alveolar macrophages may play an 
important role. In addition to increasing the 
number and activation of alveolar macro-
phages, smoke also induces their secretion of 
inflammatory mediators, adhesion molecules, 
and other mediators to increase expression, 
thus causing lung injury [26]. Therefore, it is 
urgent to find new candidate genes for smok-
ing-induced lung cancer and screen out the 

cancer. A recent study based on 2770 partici-
pants showed that smoking had an odds ratio 
(OR) of 2.63 (95% CI 1.86-3.73) for COPD [23]. 
In a systematic review of 12 lung cancer stud-
ies conducted by [24], the lung cancer preva-
lence of passive smokers was RR 1.25 (95% CI 
1.10-1.39, P<0.001). In a study by [25], lung 
cancer mortality in male and female smokers 
was 4.46 (95% CI 3.10-6.41) and 3.58 (95% CI 
2.24-5.73), respectively. The molecular mecha-
nisms of smoking-induced lung cancer are very 

Figure 7. IHC experiment showed that the expression of SPP1 and COL1A1 in NSCLC was higher than that in healthy 
tissues. (A-C) SPP1 was low in normal tissues, and (D-F) was moderately expressed in COL1A1 tissues. (G-I) COL1A1 
expression was low in normal tissues, and (J-L) expression was up-regulated in NSCLC.
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Table 2. The top 20 genes most closely related to the seven hub genes in LUSC

No.
GBP1 ITGAM CSF1 SPP1 COL1A1 LAMB1 THBS1

genes CC genes CC genes CC genes CC genes CC genes CC genes CC
1 GBP2 0.77 SH2B3 0.73 GPR84 0.73 CBR3 0.61 COL5A1 0.96 FSTL1 0.61 BICC1 0.70
2 BATF2 0.75 NFAM1 0.69 CSF1R 0.72 SRXN1 0.59 COL3A1 0.95 LEPRE1 0.59 CRISPLD2 0.70
3 STAT1 0.75 ITGB2 0.68 CACNA2D4 0.68 GCLM 0.57 COL6A3 0.92 FN1 0.56 ITGA1 0.67
4 TAP1 0.74 DOCK10 0.68 CLEC5A 0.67 EPHX1 0.56 COL1A2 0.91 LTBP1 0.54 CTGF 0.63
5 UBE2L6 0.73 LGALS9 0.67 HIC1 0.65 PRDX1 0.55 COL5A2 0.91 LAMC1 0.54 CYR61 0.62
6 IRF1 0.73 PILRA 0.66 CD14 0.65 GSR 0.55 PDGFRB 0.9 TCF7L1 0.53 SPON1 0.62
7 GBP5 0.73 SIGLEC9 0.66 RNASE2 0.64 OSGIN1 0.54 ADAMTS2 0.89 CRIM1 0.53 IL1R1 0.61
8 GBP4 0.71 NCKAP1L 0.66 AGAP2 0.63 AKR1B10 0.52 SPARC 0.88 LAMA5 0.53 LAMA4 0.61
9 APOL6 0.70 IL21R 0.65 STAB1 0.62 G6PD 0.51 NID2 0.87 PXDN 0.52 GREM1 0.61
10 PRF1 0.68 HK3 0.65 ABI3 0.62 NQO1 0.51 BGN 0.87 AFAP1 0.52 LRRC32 0.61
11 LAP3 0.68 FCGR2C 0.64 ADAP2 0.62 AKR1C3 0.51 COL11A1 0.87 RBM9 0.52 MRVI1 0.60
12 PSMB9 0.68 TNFRSF1B 0.64 CD300C 0.62 MAP2 0.49 COL6A2 0.87 C1QTNF6 0.52 FGF7 0.60
13 CXCL9 0.67 LILRB4 0.64 ENG 0.62 CBR1 0.49 MMP2 0.86 LATS2 0.52 COL6A3 0.60
14 PSME2 0.67 LRRC25 0.64 LRRC25 0.62 CYP4F3 0.49 LRRC15 0.86 FBLN1 0.52 ACTA2 0.60
15 CCL4 0.67 SPI1 0.63 TNFRSF1B 0.61 CES1 0.49 AEBP1 0.86 ARHGEF17 0.51 ZEB2 0.60
16 IL18BP 0.66 STAT5A 0.63 COL8A1 0.61 ME1 0.49 THBS2 0.85 CDK14 0.50 C13orf33 0.60
17 B2M 0.65 CD4 0.63 NLRP3 0.61 TXNRD1 0.48 TIMP2 0.85 GLI3 0.50 NID2 0.59
18 LAG3 0.65 CD74 0.63 SIGLEC9 0.61 ASPH 0.48 ZNF469 0.85 IGDCC4 0.50 CD93 0.59
19 WARS 0.65 HLA-DOA 0.62 ITGB7 0.60 AKR1C1 0.47 FNDC1 0.84 KIAA1462 0.49 PMP22 0.59
20 HLA-E 0.65 CLEC5A 0.62 SLC7A7 0.59 TDP2 0.47 POSTN 0.84 TGFB3 0.49 COL3A1 0.59
Note: CC correlation coefficient.
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module genes include inflammatory response, 
immune response, fatty acid lean process, and 
cell ledges. GG pathway analysis revealed th- 
at the most significant module was primarily 
enriched in the following aspects of the FoxO 
signaling pathway, Amoebiasis, Transcriptional 
misregulation in cancer, the ECM - receptor in- 
teraction, Focal adhesion, pi3k-Akt signaling 
pathway, and Hematopoietic cell lineage. Parts 
of the repeated KEGG pathway of the DEGs  
and the most significant module include Tr- 
anscriptional misregulation in cancer, pi3k-Akt 
signaling pathway, Hematopoietic cell lineage, 
ECM-receptor interaction, and Focal migrati- 
on. Many studies have confirmed the results  
of our analysis. Studies have found that cell 

markers with diagnostic and therapeutic poten-
tial for lung cancer.

To study the effects of smoking on gene expres-
sion in human alveolar macropages, we includ-
ed a total of three microarray datasets. Finally, 
85 DEGs genes were selected, including 42 up-
regulated genes and 43 low-expressed genes. 
We mapped the interaction network of DEGs 
and module gene and carried out functional 
enrichment analysis. The changes in BP term  
of the DEGs enrichment were mainly in the fol-
lowing aspects, including signal transduction, 
positive regulation of angiogenesis, inflamma-
tory response, immune response, fatty acid 
metabolic process, and cell adhesion. EGs and 

Figure 8. Overall survival analysis of 7 hub genes was con-
ducted using Kaplan-Meier plotter. The down-regulated 
expressions of GBP1 (A), ITGAM (B), CSF1 (C), LAMB1 (F), 
and THBS1 (G) in lung cancer patients were associated with 
poor survival. However, the low expression of SPP1 (D) and 
COL1A1 (E) in lung cancer patients was associated with a 
better prognosis (P<0.05).
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of anticancer drugs. For lung diseases and so- 
me tumors closely related to smoking, the con-
clusions of these studies are consistent with 
our results.

We used Cytoscape to screen the critical ge- 
nes in the DEGs network map, identified the  
top 20 genes with the strongest correlation, 
and constructed PPI network, including GBP1, 
IFIT2, IFIT1, IFI44L, MX2IFI27, IGF1, ITGAM, 
ITPKB, CSF1, SPP1, IL7, TNFSF10, COL1A1, 
LAMB1, CD36, MDM2, THBS1, AR, FABP4. Fur- 
thermore, we conducted a hierarchical cluster-
ing analysis of the above genes, and the results 
showed that these Hub genes could be clearly 
distinguished between Primary Tumor and So- 
lid Tissue Normal. Then, we compared the dif-
ferential expression of 20 Hub genes in healthy 

adhesion inhibitors may play an important th- 
erapeutic role in the prevention and treatment 
of COPD [27]. Inflammatory response and im- 
mune response also play an essential role in 
the occurrence and development of diseases 
such as COPD and lung cancer [28]. Also, in 
terms of pathway enrichment, the FoxO signal-
ing pathway is most closely related to the pi3k-
Akt signaling pathway [29], especially the FoxOs 
protein in the FoxO signaling pathway, which 
plays an essential role in inhibiting tumor cell 
proliferation and inducing apoptosis. FoxO’s 
dysfunction is involved in the disease progres-
sion of breast cancer, prostate cancer, thymic 
tumors, and many other tumors [30]. There- 
fore, an in-depth study of the star molecules  
in the FoxO signaling pathway may have broad 
prospects for the discovery and development 

Figure 9. Gene alteration of seven hub genes in lung squamous cell carcinoma. The incidences of GBP1 (A), ITGAM 
(B), CSF1 (C), SPP1 (D), COL1A1 (E), LAMB1 (F), and THBS1 (G) in lung squamous cell carcinoma were 6%, 6%, 3%, 
11%, 12%, 9%, and 3%, respectively.
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Figure 10. Correlation analysis between Mutations in 7 hub genes and overall survival or disease-free survival. Mu-
tations in GBP1 (A and B), ITGAM (C and D), CSF1 (E and F), SPP1 (G and H), COL1A1 (I and J), LAMB1 (K and L), and 
THBS1 (M and N) were not associated with overall survival or disease-free survival of LUSC patients.

with a low survival rate. Mutations in the SPP1 
gene did not affect the overall or disease-free 
survival of LUSC patients. Our conclusion is 
consistent with the results of Zhang and Li [33, 
34]. The latest research also found that SPP1 
may be an essential mechanism of afatinib 
resistance. As we know, afatinib is applied as 
second-generation EGFR Tyrosine Kinase Inhi- 
bitor in the treatment of non-small cell lung 
cancer, and the high expression of SPP1 can 
enhance the resistance of afatinib and enhan- 
ce the invasion ability of lung cancer cells.  
SPP1 may also be involved in disease progres-
sion by mediating macrophage polarization in 
lung adenocarcinoma [35], and the specific 
mechanism remains to be further studied. 
Compared with healthy tissues, LAMB1 expres-
sion in lung tissues of patients with pulmonary 
fibrosis was increased [36]. The up-regulation 
of LAMB1 expression was associated with the 
occurrence and development of multiple tu- 
mors in colorectal cancer, glioblastoma multi-
forme (GBM), and others. In our study, it was 
observed that the expression of THBS1 was 
down-regulated in lung cancer, and survival 
analysis found that the high expression of TH- 
BS1 was associated with a good prognosis.  
The above analysis results all suggested that 

tissues and LUAD, LUSC patients in the GEPIA 
database and screened out seven genes with 
significant differences, including GBP1, ITGAM, 
CSF1, SPP1, COL1A1, LAMB1, and THBS1. Th- 
en, we verified two genes-SPP1 and COL1A1, 
which were significantly highly expressed in  
the samples of patients with lung cancer-in The 
Human Protein Atlas, and the results further 
confirmed that the expression levels of SPP1 
and COL1A1 in lung cancer tissues were signifi-
cantly higher than that in healthy tissues.

CSF1 is a growth factor secreted by many types 
of cells, such as macrophages and cancer cells, 
which has autocrine and paracrine effects on 
the CSF1 receptor (CSF1R). Now studies have 
found that mir-1207-5p activates the expres-
sion of CSF1 and is involved in the proliferation, 
migration, and invasion of lung cancer cells, 
thus affecting the survival and metastasis of 
lung cancer patients [31]. In addition to its 
involvement in the progression of lung cancer, 
CSF1 is also significantly expressed in breast, 
ovarian, prostate, and other diseases [32]. Our 
study found that SPP1 was significantly highly 
expressed in both LUAD and LUSC patients and 
that the up-regulation of SPP1 expression in 
lung cancer patients was closely associated 
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to lung disease. The study identified 85 DEGs 
and 20 Hub genes that may be involved in the 
development and progression of smoking-relat-
ed lung cancer. However, the biologic function 
and clinical diagnostic and prognostic value of 
these genes in lung cancer need more study.

Data sharing

Figure 10 and Table 2 are available from author 
on reasonable request. Figure 10: Correlation 
analysis between survival of the Hub genes  
and gene alteration. Table 2: The top 20 genes 
most closely related to the seven hub genes in 
LUSC.
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