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Abstract

Purpose of Review—Proper cartilage development is critical to bone formation during 

endochondral ossification. This review highlights the current understanding of various aspects of 

glucose metabolism in chondrocytes during cartilage development.

Recent Findings—Recent studies indicate that chondrocytes transdifferentiate into osteoblasts 

and bone marrow stromal cells during endochondral ossification. In cartilage development, 

signaling molecules, including IGF2 and BMP2, tightly control glucose uptake and utilization in a 

stage-specific manner. Perturbation of glucose metabolism alters the course of chondrocyte 

maturation, suggesting a key role for glucose metabolism during endochondral ossification.

Summary—During prenatal and postnatal growth, chondrocytes experience bursts of nutrient 

availability and energy expenditure, which demand sophisticated control of the glucose-dependent 

processes of cartilage matrix production, cell proliferation, and hypertrophy. Investigating the 

regulation of glucose metabolism may therefore lead to a unifying mechanism for signaling events 

in cartilage development and provide insight into causes of skeletal growth abnormalities.
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Endochondral Ossification Is a Continuous Process of Cartilage and Bone 

Formation

The skeleton of vertebrates plays a critical role in supporting the body and facilitating 

movement. Most bones, including long bones and the irregular vertebral bones, form by the 

process of endochondral ossification, in which a cartilage template (or anlage) is replaced by 

mineralized bone tissue [1–3]. Within the anlage lie chondrocytes at different developmental 

stages (Fig. 1A). At the end of the bone, or the epiphysis, is the resting zone, which provides 

a reserve of cells for proliferation and differentiation [4, 5]. Proliferating chondrocytes form 

distinct columns along the long axis of the bone and express the master transcriptional 

regulator, Sox9, as well as the signature cartilage matrix proteins aggrecan and collagen II. 

As these cells exit the cell cycle, they enter the prehypertrophic phase. This is quickly 

followed by hypertrophy, during which chondrocytes increase in size and express another 

key transcription factor (Runx2) and the cartilage matrix protein collagen X.

For many years, it was believed that chondrocytes die at the end of the hypertrophic stage [6, 

7]. However, recent lineage tracing studies demonstrate that an estimated 20% to 80% of 

chondrocytes actually transdifferentiate into osteoblasts and osteocytes as part of a single, 

continuous developmental process in both the long bone and the mandibular condyle [4, 7–

13]. Furthermore, these hypertrophic chondrocytes can also differentiate into marrow 

stromal and reticular cells, but not into bone marrow adipocytes [4]. This transdifferentiation 

process is additionally replicated in the fracture callus and in cartilage grafts, where bone 

formation in the recipient was contributed by cells derived from the donor graft [7, 11, 14]. 

Other studies have shown both bone morphogenetic protein receptor 1 a (BMPR1a) and β-

catenin to be critical for hypertrophic chondrocyte contribution to bone formation [8, 15]. 

Ablation of β-catenin function in collagen X-positive hypertrophic chondrocytes in mice 

directly decreased the number of chondrocyte-derived osteoblasts, while increased activity 

increased osteoblastic cells and decreased osteoclast number [15]. It is interesting to note 

that hypertrophic chondrocytes during fracture healing express the well-known pluripotency 

genes Sox2, Oct4, and Nanog, and that conditional knockout of Sox2 prevents the transition 

of chondrocytes to bone cells, suggesting a progenitor-like intermediate between 

chondrocytes and osteoblasts [14, 16, 17]. With the transition of hypertrophic cells to 

osteoblasts, the cartilage of the hypertrophic zone calcifies and is subsequently destroyed, 

giving rise to mineralized bone matrix. This occurs first at the primary ossification center in 

the middle (diaphysis) of the anlage. Shortly after birth, a secondary ossification center 

forms at the epiphysis, thus restricting developing chondrocytes between two ossification 

centers.

Because of the pivotal roles of proliferation and hypertrophy in expanding the cartilage 

template, and the transdifferentiation of hypertrophic chondrocytes into osteoblasts and 

marrow stromal cells, the control of the pace of chondrocyte maturation ensures properly 

sized anlagen and sufficient progenitors for bone formation. Dysregulation of this process 

therefore leads to smaller templates and short stature, which is often associated with lower 

bone density and abnormal adult bone structure [18].

Hollander and Zeng Page 2

Curr Osteoporos Rep. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiple Signaling Pathways Regulate Cartilage Development

In developing cartilage, PTHrP and IHH function as a signaling loop, whereby chondrocytes 

and perichondrial cells at the end of the bone produce PTHrP to promote proliferation [19, 

20]. Most recently, certain PTHrP-positive cells in the resting zone were found to be stem 

cells for growth plate chondrocytes, osteoblasts, and bone marrow stromal cells [4]. As 

chondrocytes proliferate and distance themselves from the PTHrP signal, they become 

prehypertrophic and produce IHH. In turn, IHH induces PTHrP expression, which feeds 

back into the proliferating zone to delay hypertrophy and maintain sufficient numbers of 

chondrocytes to lengthen the cartilage template [19, 21, 22]. IHH simultaneously promotes 

full hypertrophic differentiation of prehypertrophic chondrocytes in a PTHrP-independent 

manner [23].

In addition to PTHrP and IHH, other signaling molecules regulate bone development. BMPs, 

for example, directly regulate the PTHrP-IHH signaling loop by enhancing expression of 

IHH [24]. FGF2, on the other hand, acts upstream of IHH and negatively regulates 

chondrocyte proliferation and BMP activity [25]. Wnt family members also regulate the 

pace of cartilage development [26–29]. While the canonical Wnt pathway can inhibit the 

entire endochondral ossification process, the non-canonical pathways vary in that they can 

both promote hypertrophy and inhibit it [29–31]. Another molecule, transforming growth 

factor β (TGFβ), acts in a PTHrP-dependent manner to inhibit hypertrophy, but in a PTHrP-

independent manner to inhibit cartilage mineralization [32]. Insulin-like growth factor 1 

(IGF1) is known to mediate the effects of growth hormone and to promote chondrocyte 

hypertrophy in parallel to the IHH pathway, while IGF2 was found to inhibit hypertrophy 

[33, 34••]. The effect of IGFs may also be influenced by IGF-binding proteins [35, 36]. 

Additionally, biomechanical factors are known to regulate cartilage growth [37, 38]. The 

signals regulating chondrogenic differentiation are thus interconnected and highly complex 

(Fig. 1A) [39].

Despite the identification of these signaling events, it is still unclear how they control basic 

metabolism in chondrocytes to change cell behavior. During the long period of cartilage 

development from embryo to adolescence, chondrocytes experience bursts of both nutrient 

availability and energy expenditure, which demand sophisticated usage and control of 

resources. This important aspect of cartilage development is still largely elusive. The aim of 

this review is therefore to discuss the emerging role and regulation of glucose metabolism in 

growth plate development.

Overview of Glucose Metabolism

Cellular glucose metabolism initiates with the transport of glucose into cells (Fig. 1B). In the 

first committed step of metabolism, hexokinase uses adenosine triphosphate (ATP) to add a 

phosphate to glucose and form glucose 6-phosphate (G6P), which can enter a number of 

pathways. The vast majority of glucose will enter glycolysis to form pyruvate, producing 2 

molecules of nicotinamide adenine dinucleotide (NAD+, NADH in its reduced form) and a 

net gain of 2 ATP. Pyruvate is either converted to lactate to regenerate NAD+ and complete 

the process of glycolysis or is shuttled into the mitochondria and converted into acetyl-CoA. 
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Each acetyl-CoA that enters the citric acid (TCA) cycle produces 3 molecules of NADH and 

1 molecule of flavin adenine dinucleotide (FAD, FADH2 in its reduced form). NADH and 

FADH2 are oxidized by the electron transport chain (ETC) to NAD+ and FAD. The 

complexes (complexes I to IV) of the ETC use the energy of these molecules as they are 

transferred to pump protons from the mitochondrial matrix into the intermembrane space, 

generating a proton gradient. ATP synthase (complex V) uses the energy of protons traveling 

down that gradient and back into the mitochondrial matrix to produce ATP [40]. Oxidative 

phosphorylation gives a net yield of about 36 molecules of ATP per molecule of glucose. In 

addition to glycolysis and oxidative phosphorylation, some glucose may be converted to 

glycogen, for storage, and some may enter the pentose phosphate pathway (PPP), to make 

nucleotides (Fig. 1B) [40].

Glycolysis is the preferred method for ATP production by cells under hypoxic conditions, 

and thus is traditionally called anaerobic glycolysis. However, it is widely known that certain 

types of cells, such as cancer cells, use glycolysis even when there is an abundance of 

oxygen (the “Warburg effect” or “aerobic glycolysis”) [41]. The lack of blood vessels and 

low oxygen tension in the tissue environment, coupled with the high energy demand for 

production of glucose-derived matrix glycosaminoglycans and the difference in energy 

requirements for proliferation and hypertrophy, constitute a unique challenge for developing 

cartilage in balancing various aspects of glucose metabolism.

Glucose Uptake

Because cartilage is avascular, glucose diffuses into the growth plate via capillaries derived 

from the epiphyseal artery, located outside the cartilage template [42]. In mammalian cells, 

glucose uptake is dependent on facilitative glucose transporters (GLUTs), which allow for 

passive diffusion across the cell membrane, and sodium-coupled glucose transporters 

(SGLTs), which transport Na+ and glucose across the membrane using an electrochemical 

gradient. There are many GLUT family members, but not all transport glucose and not all 

are expressed in the developing cartilage. Among the GLUTs that are expressed in the 

developing cartilage are GLUTs 1–4, which transport glucose, and GLUTs 5 and 9, which 

transport fructose and urate, respectively [43••, 44, 45]. For a comprehensive review of the 

GLUT family members, please refer to [44]. As no members of the SGLT family have been 

reported to be expressed in growing cartilage, this review will focus on GLUT family 

members expressed in the growth plate.

GLUT1 is considered insulin-insensitive and responsible for basal glucose uptake. In the 

growth plate, it appears mainly in prehypertrophic chondrocytes and the upper hypertrophic 

zone. GLUT2 is a low-affinity transporter, while GLUT3 is a high-affinity transporter [46, 

47]. Both GLUT2 and GLUT3 are expressed in the hypertrophic zone of the rat growth plate 

at postnatal day 7 (P7), but disappear by P28 [43••]. GLUT4 also has a high affinity for 

glucose, but unlike the GLUTs previously mentioned, it is responsive to insulin. It has been 

widely characterized in insulin-responsive tissues such as muscle and fat, but is now also 

known to be present in hypertrophic chondrocytes [43••]. GLUT4 mRNA expression is 

interestingly different: it is more strongly expressed in proliferating chondrocytes than in 

hypertrophic chondrocytes [48•]. The amount of glucose consumed in each zone of cartilage 
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has not been conclusively determined. Results from a short-term experiment with 

radiolabeled glucose indicated that proliferating chondrocytes took in less glucose than 

hypertrophic chondrocytes [43••]. Another study, however, showed that proliferating 

chondrocytes consumed more glucose than hypertrophic chondrocytes over time [49••]. 

Despite these opposite findings, studies thus far suggest that GLUT expression and glucose 

uptake are tightly controlled and dynamic during cartilage development (Table 1).

Both insulin and the IGFs play important roles in regulating glucose uptake and chondrocyte 

differentiation [50–52]. Using the acute diabetes mouse model of streptozotocin (STZ)-

induced insulin deficiency, Maor and Karnieli showed that GLUT4, but not GLUT1, was 

significantly downregulated in the growth plate in this model, confirming that GLUT4 is 

insulin-responsive in chondrocytes [48•]. As expected, STZ-treated mice are smaller than 

their untreated counterparts. It is interesting to note that, although the insulin receptor (IR) is 

clearly expressed during proliferation, cartilage-specific knockout of this receptor did not 

lead to shorter bones, suggesting that insulin may also affect cartilage development 

indirectly [53]. Since IGF1 receptor (IGF1R) expression is induced in IR knockout mice, it 

is possible that some effects of insulin are mediated through the IGF1 signaling pathway 

[53].

IGF1 signaling functions primarily through IGF1R, and to a lesser extent, through IR [54, 

55]. Knockout of IGF1R resulted in a shortened cartilage template, with a smaller 

hypertrophic zone and reduced GLUT4 expression, suggesting that IGF1R signaling is 

required for both hypertrophy and GLUT4 expression [56•]. Whether IGF1R KO affects 

glucose uptake in chondrocytes is not known, but this was the case in osteoblasts [50, 57]. 

IGF1 appears to affect glucose uptake in epiphyseal chondrocytes in a concentration-

dependent way: in one study, IGF1 promoted glucose uptake only at a high concentration of 

100 ng/mL, but in another study, it failed to promote glucose uptake at an even higher 

concentration of 1 μg/mL [58, 59]. IGF2 is also known to act through IGF1R to promote 

body growth, but can also bind to IR and IGF2R, though IGF2R is thought to act as a decoy 

receptor to sequester IGF2 [60–64].

Our laboratory has shown that the hypertrophic zone of Igf2 null bones is larger in 

proportion to total bone length, suggesting a very different mechanism of action than that of 

IGF1 [34••]. Interestingly, despite the small size of the mice, Igf2 null epiphyseal 

chondrocytes displayed increased glucose consumption [34••]. The results of our study and 

the STZ study by Maor and Karnieli imply that cartilage growth is negatively impacted by 

both too much and too little glucose consumption in chondrocytes. Although it is still not 

clear whether IGF2 regulates GLUT expression in this context, a recent study by Lee et al. 

revealed that BMP signaling could regulate GLUT1 expression [65••]. Additionally, Glut1 
null bones exhibited growth arrest and disorganization of the proliferating and hypertrophic 

zones, indicating an important role for GLUT1-mediated glucose metabolism in cartilage 

development [65••].

As the cartilage template grows, its center becomes increasingly hypoxic. This environment 

induces expression of hypoxia-inducible factor 1α (HIF1α), an important regulator of 

cartilage development [66, 67]. HIF1α knockout studies have shown that the expression of 
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this factor is required for Glut1 expression, thus it will be interesting to examine how HIF1α 
regulates glucose uptake [68]. Hypoxia may also induce expression of the glucose sensor 

AMP-activated kinase (AMPK) [69]. AMPK has been found to promote glucose uptake in 

muscle and inhibit catabolic events and osteoarthritis in articular chondrocytes [70–72]. 

However, it is still unclear whether AMPK is required for growth plate chondrocytes to 

regulate glucose uptake and whether it is controlled by IGFs or other signaling molecules in 

this process.

Glycolysis and Oxidative Phosphorylation

To determine whether chondrocytes use glycolysis or oxidative phosphorylation for ATP 

production, Rajpurohit et al. utilized the uncoupling reagent 2,4-dinitrophenol (DNP) [49••]. 

Uncoupling reagents separate electron transport from ATP synthesis, thus abolishing ATP 

production derived from oxidative phosphorylation [73]. When skin fibroblasts, a type of 

cell that primarily rely on oxidative phosphorylation for ATP, were treated with DNP, they 

exhibited the typical switch to glycolysis and lactate production [49••]. This caused an 

overall reduction in ATP, because glycolysis produces less ATP than oxidative 

phosphorylation [49••]. However, in epiphyseal chondrocytes, DNP did not increase lactate 

levels, a proxy measure of glycolysis, suggesting glycolysis already takes place at a high 

rate. Interestingly, DNP did substantially reduce ATP production, more so in embryonic 

chondrocytes than epiphyseal chondrocytes, suggesting that these chondrocytes still rely on 

oxidative phosphorylation to some extent for energy. Compared to embryonic chondrocytes, 

however, postnatal growth plate chondrocytes had lower mitochondrial function and were 

less dependent on oxidative phosphorylation for ATP production [49••].

Two shuttles facilitate transport of the electrons associated with NADH in the cytoplasm to 

the mitochondria, since NADH cannot diffuse across the mitochondrial membrane (Fig. 1B). 

The first is the malate-aspartate shuttle, in which malate is converted to oxaloacetate with 

electrons from NADH. Oxaloacetate crosses the mitochondrial membrane and is converted 

to aspartate, releasing the electrons to reform NADH [40]. In the second shuttle, the glycerol 

phosphate shuttle, the interconversion of glycerol-3-phosphate (Gly3P) and 

dihydroxyacetone phosphate (DHAP) by glycerol phosphate dehydrogenase, allows electron 

transport from cytoplasmic NADH into the mitochondria [40]. Brighton et al. discovered, 

strikingly, that glycerol phosphate dehydrogenase is inactive in chondrocytes, suggesting 

that chondrocytes may only depend on the malate-aspartate shuttle for this process, a notion 

that has yet to be verified [74].

Although epiphyseal chondrocytes as a whole rely heavily on glycolysis, they differ in 

glucose usage between zones of the growth plate. Using cartilage slices, Rajpurohit et al. 

found a lower lactate to glucose consumption ratio, and lower NADH production, in 

cartilage slices comprising proliferative chondrocytes than those comprising hypertrophic 

chondrocytes; furthermore, treatment with DNP significantly reduced ATP production in 

proliferating chondrocytes, but not in hypertrophic chondrocytes [49••]. These data suggest 

that proliferating chondrocytes partially use oxidative phosphorylation for their energy 

production, consistent with their higher mitochondrial membrane potential, and that 

hypertrophic chondrocytes are “uncoupled” from mitochondria [49••]. In fact, hypertrophic 
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chondrocytes express higher levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

and lactate dehydrogenase (LDH), enzymes used in glycolysis and lactate production, as 

well as β-hydroxyacyl-CoA dehydrogenase (HOAD), the enzyme that converts fatty acids 

into acetyl-CoA to feed into the TCA cycle (Table 1) [75, 76•]. The lower mitochondrial 

membrane potential in hypertrophic chondrocytes could be mediated by HIF1α, which 

promotes glycolysis and inhibits oxidative phosphorylation via uncoupling proteins (UCPs) 

[67, 77]. This may also be related to the increase in inorganic phosphate associated with 

increased levels of alkaline phosphatase upon hypertrophy, as inorganic phosphate has been 

found to reduce mitochondrial activity through the ERK pathway [49, 78–80]. Since calcium 

efflux from mitochondria is upregulated by low pH, heightened glycolysis may be a way to 

prepare for calcification after hypertrophy [81, 82]. Whether low pH is the driving force for 

calcification remains to be determined, but this stage is certainly critical for subsequent bone 

formation, as osteoblasts are now known to derive from hypertrophic chondrocytes [4, 9–

12].

Is ATP generation the sole function of mitochondria in chondrocytes? A key TCA cycle 

enzyme, succinate dehydrogenase (SDH), which converts succinate to fumarate, is highly 

active; in fact, it is more active in hypertrophic chondrocytes, implicating the presence of 

active mitochondria even though these cells do not use them for ATP production [76•]. 

Mitochondrial uncoupling has been shown to reduce lactate production in hypertrophic 

chondrocytes, suggesting that glycolysis somehow relies on the mitochondria to achieve its 

full activity [49••]. The answer to the above question is not clear. Mitochondrial activity may 

be required for redox balance in chondrocytes, perhaps via the malate-aspartate shuttle. In 

articular cartilage, which is also highly glycolytic, a similar phenomenon was found. 

Supplementation with oxidants (electron acceptors) was sufficient to elevate lactate 

production even under anoxic conditions when mitochondria could not undergo respiration, 

suggesting mitochondria in articular chondrocytes provide electron acceptors to sustain 

glycolysis [83, 84]. Whether this is also the case in growth plate chondrocytes remains to be 

investigated.

The balance between glycolysis and oxidative phosphorylation for ATP production is thus 

dynamic from embryonic to postnatal growth and from the proliferation phase to the 

hypertrophic phase. However, very little is known about the signals that control this intricate 

balance in growth plate chondrocytes. Recently, our group has discovered that IGF2 is a key 

regulator for redox balance in epiphyseal chondrocytes. We found that Igf2 null 

chondrocytes exhibit increased glycolysis and oxidative phosphorylation, leading to 

increased reactive oxygen species (ROS) levels and ATP production [34••]. We then used an 

advanced two photon fluorescence imaging technique that captures the endogenous 

fluorescence emitted by FAD and NADH with high resolution [85]. Since FAD and NADH 

represent the oxidized and reduced cellular states, and FADH2 and NAD+ are not 

fluorescent, the optical redox ratio of FAD/(FAD+NADH) fluorescence levels reflects the 

redox state in cells. When there is an increase in glycolysis with respect to oxidative 

phosphorylation, there is less conversion of NADH to NAD+, resulting in a decreased optical 

redox ratio. Thus, this ratio has been used to assess the balance of glycolysis and oxidative 

phosphorylation [85–88]. Interestingly, two photon imaging analysis suggested that the loss 

of Igf2 causes a shift from oxidative phosphorylation to glycolysis, which can be restored by 
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exogenous IGF2 treatment [34••]. Considering that Igf2 null cartilage showed premature 

hypertrophy, our work is consistent with the prior study demonstrating a glycolytic shift in 

hypertrophic chondrocytes [34••, 49••].

Little is known about the potential role of other signaling pathways on the regulation of 

glycolysis and oxidative phosphorylation in growth plate chondrocytes. Recent analysis 

using the Seahorse metabolic analyzer showed BMP2 could enhance oxygen consumption in 

articular chondrocytes [89]. Furthermore, glucose depletion also enhanced oxygen 

consumption, consistent with the “Crabtree” effect [90]. While Wnt signaling has not been 

shown to regulate these processes in growth plate chondrocytes, Wnt3a is known to induce a 

number of glycolytic proteins and stimulate glycolysis in osteoblasts [91, 92]. The 

importance of glucose metabolism in controlling the pace of cartilage development has been 

demonstrated in Igf2 knockout mice, in which a glycolysis inhibitor, 3-bromopyruvate (3-

BrPA), was able to rescue premature chondrocyte hypertrophy and shortened bone 

phenotype in Igf2 null bones [34••]. When taken in the context of results obtained in 

articular chondrocytes showing that AMPK and ATP-citrate lyase are essential for regulating 

matrix production, our study clearly demonstrates the importance of tight control of glucose 

metabolism to ensure normal cartilage development [34••, 93, 94].

Pentose Phosphate Shunt

The pentose phosphate pathway (PPP) is another pathway for glucose utilization. In this 

pathway, G6P is converted to ribose 5-phosphate while generating reduced nicotinamide 

adenine dinucleotide phosphate (NADPH) (Fig. 1B) [95]. In addition, multiple sugars that 

are shared with glycolysis (such as glyceraldehyde 3-phosphate and fructose 6-phosphate) 

are generated. No ATP is consumed or produced in this process. The PPP is especially 

important because ribose 5-phosphate is the backbone of nucleic acids, which are required 

for cell proliferation and replacement. Additionally, NADPH serves as a major electron 

donor to balance the redox ratio and reduce oxidative stress [50, 95]. In growth plate 

chondrocytes, it was found that about 20% of oxygen is actually consumed by the PPP [96•, 

97]. Interestingly, a higher level of glucose 6-phosphate dehydrogenase (G6PD), the first 

enzyme that acts on G6P in this pathway, was found in hypertrophic chondrocytes, 

concomitant with a lower level of G6P, but higher NADPH in these cells (Table 1) [96•]. 

This suggests that usage of the PPP is regulated during cartilage development. Since 

proliferating chondrocytes require a high level of ribose backbone for nucleic acid 

production, the increased PPP usage in hypertrophic chondrocytes implies that it may serve 

another purpose, perhaps as an energy source to compensate for the lowered oxidative 

phosphorylation level. Insulin and calcium supplementation were found to induce 14C 

incorporation into the PPP and to decrease the activity of glycolysis. This demonstrates that 

they regulate the balance of the PPP and glycolysis, which may directly influence 

chondrocyte proliferation and hypertrophy during cartilage template expansion [97]. In the 

case of articular chondrocytes, nitric oxide was found to attenuate the PPP and promote 

oxidative injury [98]. Whether the balance of the PPP versus glycolysis and oxidative 

phosphorylation is shifted by oxidative stress or other regulatory factors in developing 

cartilage remains to be determined.
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Glycogen

Glucose can be stored as glycogen, a multi-branched polymer that ensures availability of 

glucose on-demand [99, 100]. Glycogen formation begins with conversion of G6P to 

glucose 1-phosphate (G1P) by phosphoglucomutase. A series of enzymes, including the 

glycosyltransferase glycogenin, glycogen synthase, and glycogen branching enzyme, 

subsequently facilitate the production of a chain of 8–12 glucose residues [99]. A key 

regulatory step in glycogen synthesis is the control of glycogen synthase by glycogen 

synthase kinase 3 (GSK3). GSK has two isoforms, GSK3α and GSK3β, that can be 

inactivated by a reversible phosphorylation reaction [101]. A decrease in GSK3 

phosphorylation therefore leads to an increase in GSK3 activity, which subsequently 

decreases glycogen synthase activity and glycogen synthesis. When additional glucose is 

needed, glycogen is broken down in a process called glycogenolysis, facilitated by glycogen 

phosphorylase (to regenerate G6P for glycolysis and the PPP) and by glucose 6-phosphatase 

(G6Pase) to generate free glucose [100, 102]. The level of glycogen is thus balanced by the 

control of glycogen synthesis and glycogen breakdown (Fig. 1B).

Glycogen presence in the growth plate has been established for over a century [102–105]. 

Electron microscopy and histological analyses indicated that glycogen particles are present 

in both the proliferating and hypertrophic zones, with greater aggregation in the 

hypertrophic zone [56•, 103–106]. GSK3β was also found to be mainly in the 

prehypertrophic and hypertrophic zones, but GSK3α was uniformly expressed in all zones 

of the growth plate (Table 1) [107]. Mice lacking Igf1 exhibited less phosphorylated GSK3β 
and less glycogen in the growth plate; furthermore, Igf1R null mice showed diminished 

glycogen stores, suggesting that IGF1 controls GSK3β activity and glycogen levels in 

growth plate chondrocytes [56•, 108]. Our laboratory found that glycogen levels are also 

lower in Igf2 null chondrocytes, particularly in the prehypertrophic zone [34••]. This 

coincided with diminished expression of the prehypertrophic marker IHH, as if Igf2 null 

chondrocytes had prematurely entered the hypertrophic phase from the proliferating phase 

[34••]. Considering Igf2 null chondrocytes exhibited overactive glucose uptake, glycolysis, 

and oxidative phosphorylation, it appears that the lack of IGF2 sacrifices glycogen synthesis 

in favor of using other glucose metabolism pathways. Therefore, IGF2 plays a pivotal role in 

balancing the various pathways of glucose utilization [34••].

Enzymes involved in glycogen breakdown are also expressed in chondrocytes [102]. 

Glycogen phosphorylase and G6Pase are both strongly expressed in the proliferating zone 

and upper hypertrophic zone, suggesting active glycogen metabolism at these stages [102].

The roles of glycogen synthesis and utilization in the growth plate are still unclear. 

Inhibition of phosphorylated GSK3β increased the length of the proliferating zone and the 

bone as a whole, and decreased that of the hypertrophic zone [107]. However, cartilage-

specific knockout of GSK3β in vivo resulted in compensatory upregulation of GSK3α and 

no skeletal phenotype [107]. Since GSK3β is a key component of other signaling pathways, 

most notably the Wnt pathway, it cannot be concluded that GSK3β affects cartilage growth 

solely through regulating glycogen synthesis [109]. Additional genetic manipulation of 
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components specific to glycogen metabolism is needed to reach a more definitive 

conclusion.

Conclusion

Mutations and dysregulation of genes controlling growth plate development are known to 

cause multiple skeletal growth abnormalities. For example, IGF1 deficiency is prevalent in 

children with short stature [110, 111]. IGF2 mutation and insufficiency lead to growth 

restriction consistent with Silver-Russell Syndrome, whereas IGF2 overexpression results in 

Beckwith-Wiedemann Syndrome and gigantism [60, 112–115]. FGFR3 mutations cause 

achondroplasia, a major form of dwarfism [116]. Aside from genetic skeletal diseases, 

growth abnormality is also common in children with Type I diabetes and in chronic 

inflammatory diseases like juvenile idiopathic arthritis (JIA) and cystic fibrosis [117–119]. 

Insulin, IGFs, and FGFs, as well as pro-inflammatory cytokines such as IL1, IL6, and 

TNFα, are all known to regulate glucose metabolism and growth plate cartilage development 

[50–52, 58, 59, 120–125]. Although glucose metabolism has not been assessed in many 

growth abnormalities, the incidence of hypoglycemia in Beckwith-Wiedemann syndrome 

was found to reach approximately 50% [126]. It is entirely possible that dysregulation of 

glucose metabolism is not only casually associated with the abnormalities of cartilage 

growth, but is also the driving force of these changes.

The investigation of glucose metabolism was initiated decades ago, with elegant and rich 

biochemical characterization of multiple aspects, including glucose uptake, glycolysis, 

oxidative phosphorylation, the pentose phosphate pathway, and glycogen synthesis and 

glycogenolysis. In the current era, metabolism is increasingly recognized as a central control 

for countless biological processes, but how glucose metabolic pathways control cartilage 

development is still largely unknown, and their regulation in chondrocytes remains poorly 

understood. This new dimension of study may lead to a unifying mechanism explaining the 

actions of the elaborate web of signaling molecules, and provide insights into designing 

treatment options for a variety of growth abnormalities.
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Fig. 1. 
(A) Schematic diagram showing chondrocyte stages in the growth plate during development 

and selected signals that regulate these processes, including PTHrP, IHH, WNTs, FGFs, 

BMP and TGFβ, IGF1 and IGF2. Wnts have pleiotropic effects on chondrocyte development 

and are not illustrated here. PTHrP, parathyroid hormone-related peptide; IHH, Indian 

hedgehog; IGF, insulin-like growth factor; BMP2, bone morphogenetic protein 2; TGFβ, 

transforming growth factor β. (B) Pathways of glucose metabolism. Glucose is transported 

into the cells by GLUTs and converted to G6P. G6P can be utilized by multiple pathways, 

including glycolysis, oxidative phosphorylation, the pentose phosphate pathway, glycogen 

synthesis, and GAG synthesis. Two shuttles are typically used to transfer electrons 

associated with NADH from the cytosol to the mitochondria for the ETC to produce ATP. 

One is the malate-aspartate shuttle, and the other is the glycerol phosphate shuttle, although 

a key enzyme in the glycerol phosphate shuttle, G3PDH, is not present in chondrocytes 

(indicated by *). G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; F6P, fructose 6-

phosphate; G3P, glyceraldehyde 3-phosphate; Gly3P, glycerol 3-phosphate; DHAP, 

dihydroxyacetone phosphate; PEP, phosphoenolpyruvate; OAA, oxaloacetate; HK, 

hexokinase; GS, glycogen synthase; GSK3, glycogen synthase kinase 3; GP, glycogen 

phosphorylase; PFK, phosphofructokinase; GAPDH, glyderaldehyde 3-phosphate 

dehydrogenase; G3PDH, glycerol 3-phosphate dehydrogenase; PK, pyruvate kinase; LDH, 

lactate dehydrogenase; PDH, pyruvate dehydrogenase; SDH, succinate dehydrogenase; 

HOAD, β-hydroxyacyl-CoA dehydrogenase; ECM, extracellular matrix; GAG, 

glycosaminoglycan; ETC, electron transport chain
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