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Abstract

Characterizing the neural dynamics underlying sensory processing is one of the central areas of 

investigation in systems and cognitive neuroscience. Neuroimaging techniques such as 

magnetoencephalography (MEG) and Electroencephalography (EEG) have provided significant 

insights into the neural processing of continuous stimuli, such as speech, thanks to their high 

temporal resolution. Existing work in the context of auditory processing suggests that certain 

features of speech, such as the acoustic envelope, can be used as reliable linear predictors of the 

neural response manifested in M/EEG. The corresponding linear filters are referred to as temporal 

response functions (TRFs). While the functional roles of specific components of the TRF are well-

studied and linked to behavioral attributes such as attention, the cortical origins of the underlying 

neural processes are not as well understood. In this work, we address this issue by estimating a 

linear filter representation of cortical sources directly from neuroimaging data in the context of 

continuous speech processing. To this end, we introduce Neuro-Current Response Functions 

(NCRFs), a set of linear filters, spatially distributed throughout the cortex, that predict the cortical 

currents giving rise to the observed ongoing MEG (or EEG) data in response to continuous speech. 

NCRF estimation is cast within a Bayesian framework, which allows unification of the TRF and 

source estimation problems, and also facilitates the incorporation of prior information on the 

structural properties of the NCRFs. To generalize this analysis to M/EEG recordings which lack 

individual structural magnetic resonance (MR) scans, NCRFs are extended to free-orientation 

dipoles and a novel regularizing scheme is put forward to lessen reliance on fine-tuned coordinate 

co-registration. We present a fast estimation algorithm, which we refer to as the Champ-Lasso 

algorithm, by leveraging recent advances in optimization, and demonstrate its utility through 

application to simulated and experimentally recorded MEG data under auditory experiments. Our 

simulation studies reveal significant improvements over existing methods that typically operate in 

a two-stage fashion, in terms of spatial resolution, response function reconstruction, and 

recovering dipole orientations. The analysis of experimentally-recorded MEG data without MR 

scans corroborates existing findings, but also delineates the distinct cortical distribution of the 

underlying neural processes at high spatiotemporal resolution. In summary, we provide a 
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principled modeling and estimation paradigm for MEG source analysis tailored to extracting the 

cortical origin of electrophysiological responses to continuous stimuli.
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MEG; Temporal Response Functions; Speech Processing; Source Localization; Bayesian 
Estimation

1. Introduction

The human brain routinely processes complex information as it unfolds over time, for 

example, when processing natural speech, information from lower levels has to be 

continuously processed to build higher level representations, from the acoustic signal to 

phonemes to words to sentence meaning. Quantitative characterization of the neural 

dynamics underlying such sensory processing is not only important in understanding brain 

function, but it is also crucial in the design of neural prostheses and brain-machine interface 

technologies.

In modeling neural activity at the meso-scale using neuroimaging modalities such as 

electroencephalography (EEG) and magnetoencephalography (MEG), experimental 

evidence suggests that linear encoding models can be beneficial in predicting the key 

features of sensory processing; examples include encoding models of visual and auditory 

stimuli (Boynton et al., 1996; Lalor et al., 2006, 2009; Ding and Simon, 2012b).

Arguably the earliest and most widely used technique to construct neural encoding models is 

the ‘reverse correlation’ technique, in which neural responses time-locked to multiple 

repetitions of simple stimuli (such as acoustic tones and visual gratings) are averaged, 

weighted by the instantaneous value of the preceding stimulus, to form the so-called evoked 

response function. Originally devised to study the tuning properties of sensory neurons 

(Aertsen and Johannesma, 1983; Aertsen et al., 1981; Ringach and Shapley, 2004), it was 

later incorporated into MEG/EEG analysis. In probing the neural response to more 

sophisticated stimuli such as continuous speech and video, the goal is to understand the 

encoding of the continuous stimuli as a whole, which is composed of both low level (e.g., 

acoustics) and high level (e.g., semantics) features which are bound together and distributed 

across time (Di Liberto et al., 2015; Brodbeck et al., 2018a).

To address this issue, techniques from linear systems theory have been successfully utilized 

to capture neural encoding using MEG/EEG under the continuous stimuli paradigm. In this 

setting, the encoding model takes the form of a linear filter which predicts the MEG/EEG 

response from the features of the stimulus. For example, it has been shown that the acoustic 

envelope of speech is a suitable predictor of the EEG response (Lalor and Foxe, 2010). 

These filters, or impulse response functions, play a crucial role in characterizing the 

temporal structure of auditory information processing in the brain, and are often referred to 

as Temporal Response Function (TRF) (Ding and Simon, 2012b, 2013a,b). For instance, in a 

competing-speaker environment in the presence of two speech streams, it has been observed 

that the TRF extracted from MEG response to the acoustic power consists of an early 
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component at around 50 ms representing the acoustic power of the speech mixture, while a 

later peak at around 100 ms preferentially encodes the acoustic power of the attended speech 

stream (Ding and Simon, 2012a; Akram et al., 2016). More recent studies have expanded the 

TRF framework beyond the acoustic level to account for phoneme-level processing (Di 

Liberto et al., 2015), lexical processing (Brodbeck et al., 2018a) and semantic processing 

(Broderick et al., 2018).

Thanks to the grounding of the TRF model in linear system theory, several techniques from 

the system identification literature have been utilized for TRF estimation, such as the 

normalized reverse correlation (Theunissen et al., 2001), ridge regression (Machens et al., 

2004), boosting (David et al., 2007), and SPARLS (Akram et al., 2017), some of which are 

available as software packages (Theunissen, 2007, 2010; Crosse et al., 2016; Brodbeck, 

2017). While these methods have facilitated the characterization of the functional roles of 

various TRF components in sensory and cognitive processing of auditory stimuli, they 

predominantly aim at estimating TRFs over the MEG/EEG sensor space. While recent 

studies, using electrophysiology in animal models and ECoG in humans, have provided new 

insights into the cortical origins of auditory processing (see, for example, Mesgarani et al., 

2008; Mesgarani and Chang, 2012; Pasley et al., 2012; Mesgarani et al., 2014), they do not 

account for the whole-brain distribution of the underlying sources due to their limited spatial 

range. As such, the whole-brain cortical origins of the TRF components are not well studied.

To address this issue using neuroimaging, current dipole fitting methods have been utilized 

to map the sensor space distribution of the estimated TRF components onto cortical sources 

(Lalor et al., 2009; Ding and Simon, 2012a). Given that the processing of sophisticated 

stimuli such as speech is known to be facilitated by a widely distributed cortical network, 

single dipole sources are unlikely to capture the underlying cortical dynamics. More recent 

results have used the minimum norm estimate (MNE) source localization technique to first 

map the MEG activity onto the cortical mantle, followed by estimating a TRF for each of the 

resulting cortical sources (Brodbeck et al., 2018b). While these methods have shed new light 

on the cortical origins of the TRF, they have several limitations that need to be addressed. 

First, the ill-posed nature of the MEG/EEG source localization problem under distributed 

source models results in cortical estimates with low spatial resolution (Schoffelen and Gross, 

2009; Baillet et al., 2001). Given the recent and ongoing advances in MEG/EEG source 

localization towards improving the spatial resolution of the inverse solutions (see, for 

example, Gorodnitsky et al., 1995; Sato et al., 2004; Friston et al., 2008; Haufe et al., 2008; 

Wipf et al., 2010; Wipf and Nagarajan, 2009; Fukushima et al., 2012, 2015; Wu et al., 2016; 

Gramfort et al., 2013; Dannhauer et al., 2013; Knösche et al., 2013; Babadi et al., 2014; 

Krishnaswamy et al., 2017; Pirondini et al., 2018; Liu et al., 2019), it is tempting to simply 

use more advanced source localization techniques followed by fitting TRFs to the resulting 

cortical sources. However, these techniques are typically developed for the event-related 

potential (ERP) paradigm (Handy, 2005; Gazzaniga and Ivry, 2009; Luck, 2014) and 

leverage specific prior knowledge on the spatiotemporal orgranization of the underlying 

sources. While these assumptions bias the solution towards source estimates with high 

spatiotemporal resolution under specific repetition-based experimental settings, they do not 

account for the key structural properties of the underlying neural processes that extract 

information from continuous sensory stimuli. These key properties include the smoothness 
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and/or sparsity of the response functions in the lag domain and their spatial correlation over 

the cortex, which may not be captured by merely enforcing spatiotemporal priors over the 

source domain.

Second, the single-trial nature of experiments involving continuous auditory stimuli, does 

not allow to leverage the time-averaging across multiple trials common in source 

localization of evoked responses from MEG/EEG. Third, the two-stage procedures of first 

fitting TRFs over the sensor space followed by localizing the peaks using dipole fitting, or 

first finding source estimates over the cortex followed by fitting TRFs to cortical sources, 

results in so-called bias propagation: the inherent biases arising from the estimation 

procedure in the first stage propagate to the second stage, often destructively so, and limit, 

sometimes severely, the statistical interpretability of the resulting cortical TRFs (see Section 

3.1, for example). Finally, high resolution inverse solutions require precise forward models 

that are constructed based on high resolution MR scans with accurate sensor registration, 

which may not be readily available.

In order to address these limitations, in this paper we provide a methodology for direct 
estimation of cortical TRFs from MEG observations, taking into account their 

spatiotemporal structure. We refer to these cortical TRFs as neuro-current response functions 

(NCRFs). We construct a unified estimation framework by integrating the linear encoding 

and distributed forward source models, in which the NCRFs linearly process different 

features of the continuous stimulus and result in the observed neural responses at the sensor 

level. We cast the inverse problem of estimating the NCRFs as a Bayesian optimization 

problem where the likelihood of the recorded MEG response is directly maximized over the 

NCRFs, thus eliminating the need for the aforementioned two-stage procedures. In addition, 

to address the lack of accurate cortical surface patch statistics in the head model due to 

unavailability of MR scans, the NCRFs are extended to free-orientation dipoles by tripling 

them at each dipole location to account for vector valued current moments in 3D space. To 

guard against over-fitting and ensure robust recovery of such 3D NCRFs, we design a 

regularizer that captures the spatial sparsity and temporal smoothness of the NCRFs (e.g., 

minimizing the number of peaks or troughs) while eliminating any dependency on the 

choice of coordinate system for representing the vector valued dipole currents. While the 

resulting optimization problem turns out to be non-convex, we provide an efficient 

coordinate-descent algorithm that leverages recent advances in evidence maximization to 

obtain the solution in a fast and efficient manner.

We empirically evaluate the performance of the proposed NCRF estimation framework using 

a simulation study mimicking continuous auditory processing, which reveals that the 

proposed method is not only capable of identifying active sources with better spatial 

resolution compared to existing methods, but can also infer the orientation of the dipoles as 

well as the time course of the response functions accurately. Lastly, we demonstrate the 

utility of estimation framework by analyzing experimentally recorded MEG data from young 

adult individuals listening to speech for NCRFs at different hierarchical levels of speech 

processing. A data set, initially recorded by Presacco et al. (2016) and lacking individual 

MR scans, was analyzed previously by Brodbeck et al. (2018b) for source response 

functions using two-stage MNE followed by boosting-based TRF estimation. Our estimated 
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NCRFs not only corroborate existing findings, but they are also readily interpretable in a 

meaningful fashion without any recourse to post-hoc processing (i.e. hierarchal clustering, 

sparse principal component analysis etc.) necessary for the previous study, thanks to 

improved spatial localization. In summary, our method successfully delineates the distinct 

cortical distribution of the underlying neural processes at high spatiotemporal resolution, 

providing new insights into the cortical dynamics of speech processing.

2. Theory and Methods

We develop our theory and methods for a canonical MEG auditory experiment in which the 

subject is listening to a single speech stream. Our goal is to determine how the different 

features of the speech stream are processed at different cortical stages and evoke specific 

neural responses that give rise to the recorded MEG data. For clarity of description and 

algorithm development, we first consider a single-trial experiment, and take the momentary 

acoustic power of the speech stream, i.e., the speech envelope, as the feature of interest. We 

will discuss below the more general scenarios including multiple trials, multiple speech 

stimuli, and multiple, and possibly competing, features reflecting different levels of 

cognitive processing.

2.1. Preliminaries and Notation

Let et, 1 ≤ t ≤ T denote the speech envelope at discrete time index t for a duration of T 
samples taken at a sampling frequency of fs. We consider a distributed cortical source model 

composed of M dipole sources dm = (rm, jm,t), 1 ≤ m ≤ M, where rm ∈ ℝ3 denotes the right-

anterior-superior (RAS) coordinates of the mth dipole and 

jm, t ≔ [jm, t, R, jm, t, A, jm, t, S]T ∈ ℝ3 denotes the dipole current vector at timex t in the same 

coordinate system. The dipole locations can be obtained by standard tessellation of the 3D 

structural MR images of the cortex and assigning dipoles to the corresponding vertices 

(Baillet et al., 2001; Gramfort et al., 2014). Furthermore, the MR images can also be utilized 

to approximate the orientation of the current vector, assuming current flow is orthogonal to 

the cortical surface and replacing the dipole current vector by a scalar value (Kincses et al., 

2003; Dale and Sereno, 1993). However, this approach requires precise knowledge of the 

cortical geometry (Haufe et al., 2008), and still might not result in ideal approximation of 

the cortical current orientations (Bonaiuto et al., 2019). So, it is often desirable to retain the 

vectorial nature of current dipoles, even though the resulting process is more complex.

Next, we assume that these current dipoles are in part stimulus-driven, i.e., each component 

of the current dipole relies on contributions from the preceding stimulus:

jm, t, i = fi(et, et − 1, ⋯, e1) + vm, t, i (1)

where the placeholder i takes the values of one of the coordinate axes, {R, A, S}, fi is a 

generic function, and vm,t := [vm,t,R, vm,t,A, vm,t,S]⊤ accounts for the stimulus-independent 

background activity. Following the common modeling approaches in this context (Ringach 

and Shapley, 2004; Lalor et al., 2006; Lalor and Foxe, 2010; Lalor et al., 2009), we take fi to 

represent a linear finite impulse response (FIR) filter of length L:
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fi(et, et − 1, ⋯, e1) = ∑
l = 0

L − 1
τm, i, let − l = (τm, i)Tet, i ∈ {R, A, S}, (2)

where τm,i := [τm,i,0, τm,i,1 ⋯ , τm,i,L−1]⊤ and et := [et, et−1, ⋯ , et−L+1]⊤. Note that τm,i can 

be thought of as a TRF corresponding to the activity of dipole source m along the coordinate 

axis determined by i. The length of the filter L is typically determined by a priori 

assumptions on the effective integration window of the underlying neural process. When 

stacked together, the 3D linear filters τm ≔ [τm, R, τm, A, τm, S] ∈ ℝL × 3 are vector-valued 

TRFs at each source m, capturing the linear processing of the stimuli at the cortical level. As 

such, we refer to these vector-valued filters as Neuro-Current Response Functions (NCRFs) 

henceforth. Intuitively speaking, the 3D vector (τm,R,l, τm,A,l, τm,S,l)⊤ is the vector-valued 

dipole activity at a lag of l/fs second arising from a putative stimulus impulse at time 0.

Let jt ≔ [j1, t
T , j2, t

T , ⋯, jM, t
T ]T ∈ ℝ3M be a vector containing all the current dipoles at time t, 

and J ≔ [j1, ⋯, jT ] ∈ ℝ3M × T  be the matrix of current dipoles obtained by concatenating the 

instantaneous current dipoles across time t = 1, 2, ⋯ , T. Similarly, let V ∈ ℝ3M × T  denote 

the matrix of stimulus-independent background activity, Φ ≔ [τ1, τ2, ⋯, τM]T ∈ ℝ3M × L

denote the matrix of NCRFs, and S ≔ [e1, e2, ⋯, eT ] ∈ ℝL × T  denote the matrix of features. 

Eqs. (1) and (2) can then be compactly expressed as:

J = ΦS + V . (3)

As for the sensor space, we assume a conventional MEG setting with N sensors placed at 

different positions over the scalp, recording magnetic fields/gradients as a multidimensional 

time series. The MEG observation at the ith sensor at time t is denoted by yi,t, 1 ≤ i ≤ N and t 

∈ [1, ⋯ , T]. Let Y ∈ ℝN × T  be the MEG measurement matrix with the (i,t)th element given 

by yi,t. The MEG measurement matrix is related to the matrix of current dipoles J according 

to the following forward model (Sarvas, 1987; Mosher et al., 1999; Baillet et al., 2001):

Y = LJ + W, (4)

where L ∈ ℝN × dM maps the source space activity to the sensor space and is referred to as 

the lead-field matrix, and W ∈ ℝN × T  is the matrix of additive measurement noise. The lead-

field matrix can be estimated based on structural MRI scans by solving Maxwell’s equations 

under the quasi-static approximation (Hämäläinen et al., 1993).

2.2. Problem Formulation

Given the stimulus-driven and current-driven forward models of Eqs. (3) and (4), our main 

goal is to estimate the matrix Φ, i.e., the NCRFs. To this end, we take a Bayesian approach, 

which demands distributional assumptions on the various uncertainties involved, i.e., the 

stimulus-independent background activity and the measurement noise. For the measurement 

noise, we adopt the common temporally uncorrelated multivariate Gaussian assumption, i.e.,
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p(Y ∣ J) = ∣ (2π)Σw ∣−T ∕ 2 exp − 1
2‖Y − LJ‖Σw−1

2 , (5)

where ‖A‖B
2 ≔ tr ATBA  and Σw ∈ S+

N denotes the unknown noise covariance matrix. The 

covariance matrix Σw can be estimated from either empty-room or pre-stimulus recordings 

(Engemann and Gramfort, 2015). Next, let Vm ∈ ℝ3 × T  denote the matrix of background 

activity at source m, for m = 1, 2, ⋯ , M. We adopt the following distribution for the 

background activity V:

p(V ∣ Γ) = ∏
m = 1

M
∣ (2π)Γm ∣−T ∕ 2 exp − 1

2 ∑
m = 1

M
‖Vm‖Γm−1

2 , (6)

i.e., the portion of the current dipoles reflecting the background activity are modeled as zero-

mean independent Gaussian random vectors with unknown 3D covariance matrix Γm ∈ S+
3 . 

Under this assumption, Eq. (3) can be expressed as:

p(J ∣ Φ, Γ) = ∣ (2π)Γ ∣−T ∕ 2 exp − 1
2‖J − ΦS‖Γ−1

2 , (7)

where Γ ∈ S+
3M is a block-diagonal covariance matrix with its mth diagonal block given by 

Γm, for m = 1, 2, ⋯ , M.

Under these assumptions, the joint distribution of the MEG measurement and current dipole 

matrices is given by:

p(Y, J ∣ Φ, Γ) = ∣ (2π)Σw ∣−T ∕ 2 ∣ (2π)Γ ∣−T ∕ 2

exp − 1
2‖Y − LJ‖Σw−1

2 − 1
2‖J − ΦS‖Γ−1

2 , (8)

By marginalizing over J (see Appendix A for details), we obtain the distribution of the MEG 

measurement matrix parametrized by the NCRF matrix Φ and the source covariance matrix 

Γ:

p(Y ∣ Φ, Γ) = ∣ (2π) (Σw + LΓLT) ∣−T ∕ 2 exp − 1
2‖Y − LΦS‖(Σw + LΓLT)−1

2 . (9)

It is now possible to cast the problem of finding Φ as a Bayesian estimation problem, in 

which a loss function fully determined by the posterior distribution of NCRF matrix Φ given 

the MEG measurement matrix Y is minimized. In other words, if Γ were known, the NCRF 

matrix estimation would amount to the following maximum likelihood problem:

min
Φ

1
2‖Y − LΦS‖(Σw + LΓLT)−1

2 . (10)

Another advantage of this Bayesian framework is the possibility of introducing 

regularization schemes that can mitigate the ill-posed nature of this problem, and instead 
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work with regularized maximum likelihood problems. Note that this optimization problem 

makes a direct connection between the MEG measurement matrix,Y and the NCRF matrix 

Φ and allows us to avoid the aforementioned two-stage procedures in finding TRFs at the 

cortical level (Lalor et al., 2009; Brodbeck et al., 2018b).

2.2.1. Regularization—As is the case in other source imaging methods, there are many 

fewer constraints than the free parameters determining the NCRFs. This makes the problem 

severely ill-posed. As such, proceeding with the maximum likelihood problem in Eq. (10) is 

likely to result in overfitting. In order to ensure robust recovery of a meaningful solution to 

this ill-posed problem, we need to include prior knowledge on the structure of the NCRFs in 

the form of regularization.

To this end, we construct regularizers based on a convex norm of the NCRF matrix Φ, to 

both capture the structural properties of the NCRFs and facilitate algorithm development. 

The structural properties of interest in this case are spatial sparsity over the cortical source 

space, sparsity of the peaks/troughs, smoothness in the lag domain, and rotational invariance 

(Ding and Simon, 2012b; Akram et al., 2017).

In order to promote smoothness in the lag domain and sparsity of the peaks/troughs, we 

adopt a concept from Chen et al. (2001), in which a temporally smooth time series is 

approximated by a small number of Gabor atoms over an over-complete dictionary 

G ∈ ℝL × L, for some L ≥ L (Feichtinger and Strohmer, 2012; Akram et al., 2017). To this 

end, we first perform a change of variables τm := Gθm, Φ = ΘG⊤, and S ≔ GTS, where 

θm ∈ ℝL × 3 are the coefficients of the mth NCRF over the dictionary G and Θ ∈ ℝ3M × L is a 

matrix containing θms across its rows. Then, to enforce sparsity of the peaks/troughs, spatial 

sparsity, and rotational invariance, we use the following mixed-norm penalty over θms, i.e., 

the Gabor coefficients:

P2, 1, 1(Θ) ≔ ∑
m = 1

M
∑
l = 1

L
θm, l, R

2 + θm, l, A
2 + θm, l, S

2 . (11)

Let θm, l ∈ ℝ3 be the lth Gabor coefficient vector for the mth NCRF. Note that the summand is 

∥θm,l∥2, which is a rotational invariant norm with respect to the choice of dipole RAS 

coordinate system. This structural feature allows the estimates to be robust to coordinate 

rotations (see Appendix B). The inner summation of ∥θm,l∥2 (as opposed to ‖θm, l‖2
2) over l = 

1, 2, ⋯ , L enforces group sparsity of the Gabor coefficients (i.e., the number of peaks/

troughs), akin to the effect of ℓ1-norm. Finally, the outer summation over m =1, 2, ⋯ , M 
promotes spatial sparsity of the NCRFs (see Fig. 1, and also Appendix B).

Using this change of variables and regularization scheme, we can reformulate (10) as the 

following regularized maximum likelihood problem:

min
Θ

1
2‖Y − LΘS‖(Σw + LΓLT)−1

2 + ηP2, 1, 1(Θ) . (12)
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The parameter η > 0 controls the trade-off between data fidelity and regularization, i.e., the 

complexity of the resulting model grows inversely with the magnitude of η. This parameter 

can be chosen in a data-driven fashion using cross-validation (see Section 3.2). Fig. 2 

provides a visual illustration of the proposed modeling and estimation paradigm.

2.2.2. Source Covariance Matrix Adaptation—Note that the objective function in 

Eq. (12) is convex in Θ and thus one can proceed to solve for Θ by standard convex 

optimization techniques. However, this requires the knowledge of the source covariance 

matrix Γ, which is unknown in general. From Eq. (7), it is evident that Γ implicitly offers 

adaptive penalization over the source space through spatial filtering. As such, the source 

covariance matrix serves as a surrogate for depth compensation (Lin et al., 2006), by 

reducing the penalization level at locations with low SNR. One data-independent approach 

for estimating Γ is based on the lead-field matrix (Haufe et al., 2008). Here, thanks to the 

Bayesian formulation of our problem, we take a data-driven approach to adapt the source 

covariance matrix to the background activity not captured by the stimulus (Stahlhut et al., 

2013). One principled way to do so is to estimate both Θ and Γ from the observed MEG data 

by solving the following optimization problem:

min
Θ, Γ

T
2 log Σw + LΓLT + 1

2‖Y − LΘS‖(Σw + LΓLT)−1
2 + ηP2, 1, 1(Θ) (13)

Unfortunately, the loss function in Eq. (13) is not convex in Γ. However, given an estimate of 

Θ, solving for the minimizer of (13) in Γ is a well-known problem in Bayesian estimation 

and is referred to as evidence maximization or empirical Bayes (Berger, 1985). Although a 

general solution to this problem is not straightforward to obtain, there exist several 

Expectation-Maximization (EM)-type algorithms, such as ReML (Friston et al., 2008), 

sMAP-EM (Lamus et al., 2012), and the conjugate function-based algorithm called 

Champagne (Wipf et al., 2010), which might be employed to estimate Γ given an estimate of 

Θ. In the next section, we present an efficient recursive coordinate descent-type algorithm 

that leverages recent advances in evidence maximization and proximal gradient methods to 

solve the problem of Eq. (13).

2.3. Inverse Solution: The Champ-Lasso Algorithm

Since simultaneous minimization of (13) with respect to both Θ and Γ is not straightforward, 

we instead aim to optimize the objective function by alternatingly updating Θ and Γ, keeping 

one fixed at a time. Suppose after the rth iteration, the updated variable pair is given by (Θ(r), 

Γ(r)), then the update rules for (r + 1)th iteration are as given as follows:

Updating Γ—With Θ = Θ(r), Eq. (13) reduces to the following optimization problem:

min
Γ

tr Σv
−1Cv + log ∣ Σv ∣ , (14)

with Cv = (Y − LΘ(r)S)(Y − LΘ(r)S)T ∕ T  and Σv = Σw + LΓL⊤. Although the problem is non-

convex in Γ, it can be solved via the Champagne algorithm (Wipf et al., 2010), which solves 

for Γ by updating a set of auxiliary variables iteratively. Though the solution Γ(r+1) is not 
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guaranteed to be a global minimum, the convergence rate is fast (with computation cost per 

iteration being linear in N), and more importantly each iteration is guaranteed not to increase 

the loss function in Eq. (14).

Updating Θ—Fixing Γ = Γ(r+1), results in the following convex optimization problem over 

Θ:

min
Θ

1
2‖LΘS − Y‖Σv

(r + 1)−1
2

+ ηP2, 1, 1(Θ), (15)

where Σv
(r + 1) = Σw + LΓ(r + 1)LT. The first term in Eq. (15) is a smooth differentiable 

function whose gradient is straightforward to compute, and the proximal operator for the 

penalty term P2, 1, 1(Θ) has a closed-form expression and can be computed in an efficient 

manner (Gramfort et al., 2012). Regularized optimization problems of this nature can be 

efficiently solved using an instance of the forward-backward splitting (FBS) method (Beck 

and Teboulle, 2009; Nesterov, 2005). We use an efficient implementation of FBS similar to 

FASTA (Fast Adaptive Shrinkage/Thresholding Algorithm) software package (Goldstein et 

al., 2014) to obtain Θ(r+1) from Eq. (15).

Although the loss function is not jointly-convex in (Θ, Γ), the foregoing update steps ensure 

that the loss in (13) is not increased at any iteration and stops changing when a fixed-point or 

limit-cycle is reached (Wright, 2015). Finally, Γ0 can be initialized according to MNE-

Python recommendations for choosing the source covariance matrix in computing linear 

inverse operators. Also note that due to the efficiency of the overall solver, it is possible to 

start the optimization with several randomized initializations, and choose the best solution 

among several potential alternatives.

2.4. Extension to Multiple Feature Variables

The preceding sections focused on the case of a single stimulus feature variable, i.e., the 

speech envelope. However, complex auditory stimuli such as natural speech, are processed at 

various levels of hierarchy. Upon entering the ears, the auditory signal is decomposed into an 

approximate spectrogram representation at the cochlear level prior to moving further into the 

auditory pathway (Yang et al., 1992). Beyond these low-level acoustic features, higher-level 

phonemic, lexical, and semantic features of the natural speech are also processed in the 

brain. Thus, to obtain a complete picture of complex auditory cortical processing, it is 

desirable to consider response functions corresponding to more than one feature variable.
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Algorithm 1 The Champ-Lasso Algorithm over Multiple Trials

Input: MEG observations Yk, modified stimuli matrix Sk, for k = 1, 2, ⋯, K; Lead‐field matrix L;

Regularization parameter η; initial values of Θ0; Tolerance parameter tol ∈ (0, 10−3), Maximum number

of outer iterations Rmax ∈ ℕ+ .
1: r = 0 .
2: repeat
3: for k = 1, ⋯, K do

4: Cvk
(r)

= 1
T (Yk − LΘ(r)Sk(Yk − LΘ(r)Sk)T

5: Γk(r + 1)
= arg minΓ tr Σv−1Cvk

(r)
+ log ∣ Σv ∣ s.t. Σv = Σw + LTΓL (Champagne iterations)

6: Σvk
(r + 1)

= (Σw + LΓk(r + 1)
LT)−1

7: end for

8: Θ(r + 1) = arg min
Θ

∑
k = 1

K 1
2‖LΘSk − Yk‖

Σv
k(r + 1)−1

2
+ ηP2, 1, 1(Θ) (FASTA iterations)

9: until
‖Θ(r + 1) − Θ(r)‖2

‖Θ(r)‖2
< tol or r = Rmax .

10: Set r r + 1 .

Output: Θ(R) where R is the index of the last outer iteration of the algorithm.

One can proceed to estimate response functions for each feature variable separately. But, 

since many of these features have significant temporal correlations, the resulting response 

functions do not readily provide unique information regarding the different levels of the 

processing hierarchy. To investigate simultaneous processing of these various feature 

variables and allow them to compete in providing independently informative encoding 

models, we consider a multivariate extension of the response functions (Ding and Simon, 

2012b; Di Liberto et al., 2015).

Suppose that there are F ≥ 1 feature variables of interest. We modify Eq. (3) by replacing 

each column of the NCRF matrix Φ by F columns (one for each temporal response function) 

and each row of the stimulus matrix by F rows (one for each feature variable). As we will 

demonstrate below in Section 3, this will enable us to distinguish between different cortical 

regions in terms of their response latency across a hierarchy of features.

2.5. Extension to Multiple Trials with Different Stimuli

Next, we consider extension to K different trials corresponding to possibly different auditory 

stimuli. Let the stimuli, MEG observation, and background activity covariance matrices for 

the kth trial be denoted by Sk
, Yk, and Γk, respectively, for k = 1, ⋯ , K. We can extend the 

optimization problem of Eq. (13) as follows:
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min
Θ, Γ

∑
k = 1

K T
2 log Σw + LΓkLT + 1

2‖Yk − LΘSk‖(Σw + LΓkLT)−1
2

+ ηP2, 1, 1(Θ) .
(16)

In doing so, we have assumed that the background activity is a stationary Gaussian process 

within a trial (with covariance Γk at trial k), and that the NCRFs remain unchanged across 

trials, which promotes integration of complementary information from different trials 

(without direct averaging). Note that this assumption intentionally suppresses the trial-to-

trial variability of the NCRFs by adaptively weighting the contribution of each trial 

according to its noise level (i.e., Γk), in favor of recovering NCRFs that can explain common 

cortical patterns of auditory processing. In contrast, if all the trials were to be concatenated 

or directly averaged to form a unified trial (with a single covariance matrix Γ), the trial-to-

trial variability would not necessarily be suppressed, especially when there are few trials 

available. Furthermore, this formulation allows to incorporate trials with different lengths 

into the same framework.

The optimization problem of Eq. (16) can be solved via a slightly modified version of that 

presented in Section 2.3. The resulting algorithm is summarized in Algorithm 1, which we 

refer to as the Champ-Lasso algorithm. A Python implementation of the Champ-Lasso 

algorithm is archived on the open source repository Github (Das, 2019) to ease 

reproducibility and facilitate usage by the broader systems neuroscience community.

2.6. Subjects, Stimuli, and Procedures

The data used in this work are a subset of recordings presented in (Presacco et al., 2016), 

and is publicly available in the Digital Repository at the University of Maryland (Presacco et 

al., 2018). The auditory experiments were conducted under the participation of 17 young 

adult subjects (aged 18-27 years), recruited from the Maryland, Washington D.C. and 

Virginia area. The participants listened to narrated segments from the audio-book, The 
Legend of Sleepy Hollow by Washington Irving (https://librivox.org/the-legend-of-sleepy-

hollow-by-washington-irving/), while undergoing MEG recording. Although the dataset 

contains recordings under different background noise levels, for the current work we 

considered recordings of two 1 min long segments of the audio-book with no background 

noise presented as single-speaker audio. Each of these segments was repeated three times to 

every individual, yielding a total 6 min of data per subject. To ensure that the participants 

actively engage in the listening task, they were tasked to also silently count the number of 

specific words that they would hear in the story.

2.7. Recording and Preprocessing

The data were acquired using a whole head MEG system (KIT, Nonoichi, Ishikawa, Japan) 

consisting of 157 axial gradiometers, at the University of Maryland Neuroimaging Center, 

with online low-pass filtering (200 Hz) and notch filtering (60 Hz) at a sampling rate of 1 

kHz. Data were pre-processed with MNE-Python 0.18.1 (Gramfort et al., 2013, 2014). After 

excluding flat and noisy channels, temporal signal space separation was applied to remove 
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extraneous artifacts (Taulu and Simola, 2006). Data were then filtered between 1 Hz to 80 

Hz using a zero-phase FIR filter (using the default filter parameter options of MNE-Python 

0.18.1). Independent component analysis (extended infomax, Bell and Sejnowski, 1995) was 

applied to remove ocular and cardiac artifacts. Finally, 60 s long data epochs corresponding 

to the stimuli were extracted and downsampled to 200 Hz.

2.8. Source Space Construction

At the beginning of each recording session, each participant’s head shape was digitized with 

a 3-Space Fastrak system (Polhemus), including 3 fiducial points and 5 marker positions. 

Five marker coils attached to these five marker positions were used to localize the head 

position of the participant relative to the MEG sensors. The head position measurement was 

recorded twice: at the beginning and end of the recording session and the average measured 

head positions were used. Since MR scans of the participants were not performed, the 

‘fsaverage’ brain model (Fischl, 2012) was co-registered (via uniform scaling, translation 

and rotation) to each participant’s head, using the digitized head shapes.

A volumetric source space for the ‘fsaverage’ brain was defined on a regular grid with 

spacing of 7 mm between two neighboring points, and then morphed to individual 

participants. These morphed source spaces were then used to compute lead-field matrices by 

placing 3 orthogonal virtual current dipoles on each of the grid points. The computed lead-

field matrices contained contribution from 3222 virtual current dipoles, after removing those 

within subcortical structures along the midline. No cortical patch statistics were available 

due to the lack of MR scans, so the current dipoles were allowed to have arbitrary 

orientations in 3D.

2.9. Stimulus Feature Variables

We included predictor variables reflecting three different hierarchical levels of speech 

processing, including acoustic, lexical, and semantic features. These feature variables are 

described in detail in (Brodbeck et al., 2018b):

• Envelope: The speech envelope was found by averaging the auditory 

spectrogram representation generated using a model of the auditory periphery 

(Yang et al., 1992) across frequency bands. This continuous univariate feature 

variable reflects the momentary acoustic power of the speech signal.

• Word Frequency: First, logarithmic word frequency measures, log10 wf, were 

extracted from the SUB-TLEX database (Brysbaert and New, 2009) for each 

word. Then, a piecewise-continuous feature variable was constructed by 

representing each word in the speech segment by a rectangular pulse with height 

given by 6.33 – log10 wf. Note that in this coding scheme, infrequent words are 

assigned higher values, while common words get lower values. Windows of 

silence were assigned 0.

• Semantic Composition: Lastly, to probe semantic processing, the semantic 

composition patterns identified by (Westerlund et al., 2015), including adjective-

noun, adverb-verb, adverb-adjective, verb-noun, preposition-noun and 

determiner-noun pairs, were used. To generate the feature variable, the second 
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word in each pair was represented by a rectangular window of height 1, and 0 

elsewhere. This binary-valued feature variable identifies the semantic binding of 

word pairs within the speech stream.

All three variables were constructed from the speech segments at the same sampling 

frequency as the preprocessed MEG data (i.e. 200 Hz). All feature variables were centered 

and scaled by their mean absolute value, to facilitate comparison of NCRF components 

pertaining to different feature variables.

2.10. Estimation Setup, Initialization and Statistical Tests

We estimated 1000 ms-long NCRFs (L = 200) corresponding to each of these three stimulus 

variables (F = 3). This choice leads to a high-dimensional NCRF matrix Φ ∈ ℝ9666 × 600. 

The noise covariance matrix, Σw, was estimated from empty-room data using MNE-Python 

0.18.1 (Gramfort et al., 2013, 2014) following an automatic model selection procedure. The 

regularization parameter was tuned on the basis of generalization error via a 3-fold cross-

validation procedure: from a predefined set of regularization parameters (equally spaced in 

logarithmic scale), the one resulting in the least generalization error was chosen to estimate 

the NCRFs for each subject. To maintain low running time, instead of utilizing a randomized 

initialization scheme for Γ0, we initialized it according to the MNE-Python recommendation 

for source covariances. The NCRF matrix Θ0 was initialized as an all zero matrix. In the 

consecutive iterations of the Champagne and FASTA algorithms, a warm starting strategy 

was followed, i.e., initializing each iteration by the solution of the previous one.

To check whether inclusion of each of the feature variables improves the overall NCRF 

model significantly, the original model fit being tested for significance (i.e., its cost function 

evaluated at the estimated NCRF parameters) was compared against the average of three 

other model fits constructed by deliberately misaligning one feature variable via 4-fold 

cyclic permutations, using one-tailed t-tests.

To evaluate the group-level significance of the estimated NCRF components, the NCRF 

estimates were first smoothed with a Gaussian kernel (with standard deviation of 10 mm) 

over the source locations to compensate for possible head misalignments and anatomical 

differences across subjects. Then, at each dipole location and time index, the magnitudes of 

the vector-valued NCRFs were tested for significance using a permutation test via the 

threshold-free cluster-enhancement (TFCE) algorithm (Smith and Nichols, 2009) (see 

Appendix C for details).

2.11. Simulation Setup

Before applying the Champ-Lasso algorithm to localize NCRFs from experimentally 

recorded data, we assessed its performance using realistic simulation studies with known 

ground truth. In accordance with our experimental settings, we synthesized six 1 min long 

MEG data segments according to the forward model of Eqs. (3) and (4), mimicking the 

neural processing of the speech envelope. To this end, we simulated temporal response 

functions of length 500 ms (with significant M50 and M100 components) associated with 

dipole current sources within the auditory and motor cortices. Fig. 3A shows the simulated 

activity over the cortical surface at specific time lags (top and bottom panels) as well as the 

Das et al. Page 14

Neuroimage. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



temporal profile of the NCRFs (middle panel). The cortical activity was simulated using 

patches defined over a finely-discretized source space (namely, ico-5, with average dipole 

spacing of 3.1 mm) with the dipole directions constrained to be normal to the ‘fsaverage’ 

surface patches. To make the simulation as realistic as possible, we used real MEG 

recordings corresponding to a different speech stream as background noise (i.e., stimulus-

independent background activity), maintaining a −5 dB signal-to-noise ratio.

In order to avoid any favorable bias in the inverse solution, we used a different source space 

for NCRF estimation, i.e., the aforementioned volumetric source space with unconstrained 

dipole orientations (Section 2.8), than the one used for simulating the data, i.e., ico-5. As a 

comparison benchmark, we also applied the two-stage method of Brodbeck et al. (2018b), 

MNE-boosting, and one of its variants, Champagne-boosting, to first localize the cortical 

sources using MNE and Champagne, respectively, followed by boosting with 10-fold cross-

validation and ℓ1-norm error of the standardized source estimates, for independently 

estimating TRFs for all sources. The boosting was initialized with a zero response function, 

and iteratively modified it in small increments (typically 0.001) at a single time-lag in which 

a change led to the largest ℓ1-norm error reduction in the training set. The process stopped 

when the training error no longer decreased, or testing error increased in two successive 

steps.

In order to compare the spatial spread across different methods, we computed the dispersion 
metric as the ratio of total NCRF power outside and inside of spheres of radius r (for r = 10, 

15, 20 mm) around the center of mass of the simulated cortical patches (i.e., lower is better). 

To quantify the response function reconstruction performance, the 3-dimensional NCRFs 

within radius of r = 15 mm around the center of mass of the simulated cortical patches were 

averaged and then separated into principal orientation and principal time course, using 

singular value decomposition. The principal orientations and time courses were compared to 

the ground truths using the Pearson correlation (i.e., higher is better). Finally, we quantified 

the selectivity of the principal orientation and time course in the recovered NCRFs, by the 

ratio of the principal singular value to the sum of all three (i.e., higher is better).

3. Results

3.1. Simulation Studies

The two two-stage localized TRFs and estimated NCRFs are shown in Fig. 3B, 3C and 3D, 

respectively. Since boosting tends to result in temporally sparse response functions (David et 

al., 2007), response functions were smoothed with a 50 ms Hamming window. The 

anatomical plots show the spatial response function profile at the same temporal peaks 

selected in Fig. 3A, with direction of the vectors projected onto the lateral plane. The 

Champ-Lasso algorithm successfully recovers both the smooth temporal profile of the 

NCRFs and the spatial extent and location of the active sources, and provides estimates that 

closely resemble the ground truth. The two-stage localized TRFs, however, fail to recover 

the true extent of the sources due to the destructive propagation of biases: MNE-boosting 

estimates are spatially dispersed while Champagne-boosting estimates are overly sparse. 

Also, the poor signal-to-noise ratio caused the estimates to exhibit spurious peaks in the 

anterior temporal and inferior frontal lobes: the prominence of these spurious peaks in the 
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Champagne-boosting estimates results in fully overshadowing the true sources. In addition, 

the two-stage localized TRFs are rescaled using the standard deviation of the sources before 

plotting. This rescaling, combined with the poor signal-to-noise ratio, leads to the large 

scaling discrepancy between the estimates and the ground truth. It is worth noting that 

despite the fact that the Champ-Lasso algorithm is unaware of the true dipole orientations, 

the resulting NCRF orientations closely match the normal directions of the patches (see Fig. 

4). The Champ-Lasso also successfully suppresses spurious peaks in the anterior temporal 

and inferior frontal lobes, demonstrating its robustness to background activity.

Benchmarking metrics described in Section 2.11 are listed in Table 1 and Table 2. Table 1 

lists the dispersion metric, demonstrating how the different algorithms perform in localizing 

the neural sources correctly. Table 2 contains the correlation measures for the principal 

orientation and time course along with the selectivity of these principal orientations and time 

courses across the different simulated regions. While the principal orientations of Champ-

Lasso and MNE-boosting are similarly correlated with the true orientation, the selectivity of 

this orientation in MNE-boosting is inferior to Champ-Lasso. Champagne-boosting exhibits 

the poorest performance overall. Unlike the other methods, the Champ-Lasso principal time 

courses consistently show high correlation with the ground truth.

3.2. Application to Experimentally Recorded MEG Data

3.2.1. Analysis of the Acoustic Envelope NCRFs—Fig. 5A depicts the group 

average of estimated NCRFs, corresponding to the acoustic envelope, masked by a 

significance level of p = 0.05. The time traces show the magnitude of the average NCRFs 

(gray segments are statistically insignificant) and the anatomical plots show the spatial 

NCRF profile at selected temporal peaks, with direction of the vectors projected onto the 

lateral plane. Fig. 5B shows the temporal profiles (masked at a significance level of p = 0.05) 

of 6 selected NCRFs exhibiting peak spatial activity (collapsed across time). The colored 

dots on the anatomical plots show the locations of these NCRFs, with matching colors to 

those of the traces. The traces are grouped by hemisphere and dorsoventrally ordered. The 

left and right NCRFs in the motor areas are referred to as lMenv and rMenv, respectively. The 

left and right auditory NCRF pairs are labeled as lA1env, lA2env and rA1env, rA2env, 

respectively. The NCRFs corresponding to the acoustic envelope in Fig. 5A exhibit two 

prominent temporal peaks: an early peak at around 30–35 ms, bilaterally centered over the 

auditory cortex (AC), and a later peak at around 100 ms, dorsal to the first peak and stronger 

in the right hemisphere. The latter is evident from comparing the left temporal profiles 

lA1env and lA2env, with their right hemisphere counterparts rA1env and rA2env . Note that 

the orientations of the NCRFs at the second peak (blue arrow, bottom panel of Fig. 5A) are 

nearly the opposite of those at the first peak (red arrow, bottom panel of Fig. 5A), which 

accounts for the negative polarity of the M100 peak with respect to M50 in standard TRF 

analysis. Furthermore, after the appearance of the first peak (~ 35 ms, auditory traces lA1env, 

lA2env, rA1env, and rA2env) at the AC, the activity appears to gradually shift towards the 

primary motor cortex (PMC) in both hemispheres (~ 50 ms, motor traces lMenv and rMenv). 

Additionally, the NCRFs show small bilateral late auditory components at around ~ 250–350 

ms.
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3.2.2. Analysis of the Word Frequency NCRFs—Fig. 6A shows the NCRFs for the 

word frequency feature variable, in the same format as in Fig. 5. Fig. 6B shows the temporal 

profiles (masked at a significance level of p = 0.05) of 4 selected NCRFs exhibiting peak 

spatial activity (collapsed across time) also in the same format as in Fig. 5. These include a 

left auditory (lAwf), a left frontal (lFwf), a left inferior temporal (IT) (lITwf), and a right 

auditory (rAwf) NCRF. The significant NCRF components manifest predominantly in the 

left hemisphere (Fig. 6A). The earliest peak in the left AC occurs at around 50 ms, followed 

by a much stronger peak at around 150 ms, slightly posterior to the former (see lAwf in Fig. 

6B). The earlier peak also has contributions from the inferior temporal gyrus, as indicated by 

lITwf. In addition, the left frontal cortex exhibits weak activity at around 150 ms (see lFwf in 

Fig. 6B). A weak but localized peak centered over the left superior temporal sulcus (STS) is 

visible at around 240 ms. The only significant component in the right hemisphere occurs 

around the same time. Finally, the late NCRF components (at around 500–600 ms) mostly 

originate from the left AC and STS, with weak contributions from the right frontal cortex.

3.2.3. Analysis of the Semantic Composition NCRFs—The estimated NCRFs 

corresponding to the semantic composition feature variable are shown in Fig. 7A, along with 

5 representative NCRFs in Fig. 7B. These include two left auditory (lA1sc and lA2sc), two 

right frontal (rF1sc and rF2sc), and one right middle temporal (rMTsc) NCRF. The main 

NCRF components in the left AC peak at around 155 ms and 475 ms, with the earlier peak 

being ventral to the later one (see lA1sc and lA2sc in Fig. 7B). The significant right 

hemispheric NCRFs are temporally concentrated between 155 to 210 ms, and appear 

superior to those in the left hemisphere, involving inferior frontal gyrus (IFG). Strikingly, 

these NCRFs in the right hemisphere seem to move in the anterosuperior direction until 

around 185 ms, at which point the right hemisphere exhibits strong frontal activity (Fig. 7A). 

The NCRFs return to their initial location afterwards at around 210 ms. This sequence of 

spatiotemporal changes is also evident in the sequence of temporal peaks in Fig. 7B, given 

by rMTsc → rF2sc → rF1sc → rF2sc.

4. Discussion and Concluding Remarks

Characterizing the dynamics of cortical activity from noninvasive neuroimaging data allows 

us to probe the underlying mechanisms of sensory processing at high spatiotemporal 

resolutions. In this work, we demonstrated a framework for direct estimation of such cortical 

dynamics in response to various features of continuous auditory stimuli from the MEG 

response. To this end, we developed a fast inverse solution under a Bayesian estimation 

setting, the Champ-Lasso algorithm, for inferring the Neuro-Current Response Functions (as 

spatiotemporal models of cortical processing) in a robust and scalable fashion.

One of the key features of the Champ-Lasso algorithm is the ability to simultaneously 

estimate cortical source covariances in a data-driven fashion (as opposed to relying on data-

agnostic depth-weighting procedures) and finding the NCRF model parameters. The 

interplay between the two as well as incorporating the structural properties of the NCRFs 

into the model, taking advantage of the Bayesian nature of the estimation framework, 

ultimately leads to spatially focal NCRFs, with smooth temporal profiles. In other words, the 

NCRF and source covariance estimation procedures work in tandem to best explain the 
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observed MEG data while minimizing the spatial leakage and capturing the smoothness of 

the temporal responses. In contrast, previously existing methodologies result in estimates 

that are spatially broad, which then require post-hoc clustering procedures to meaningfully 

summarize the underlying spatiotemporal cortical dynamics. These serialized procedures in 

turn introduce biases to the estimates, and hinder meaningful statistical interpretation of the 

results.

To demonstrate the utility of our proposed framework, we estimated NCRFs corresponding 

to several feature variables of speech, reflecting different levels of cognitive processing and 

comprehension from MEG. The data analyzed in this paper were analyzed by an earlier 

method in (Brodbeck et al., 2018b), where a two-stage procedure was utilized to probe the 

cortical processing of speech: the MEG data was first cortically localized using an MNE 

inverse solver, followed by estimating individual temporal response functions for each 

source. In order to summarize the resulting estimates in a meaningful fashion, yet another 

processing step was necessary to disentangle the different spatially dispersed and highly 

overlapping cortical sources. Our results corroborate those obtained in (Brodbeck et al., 

2018b), while obviating the need for any such post-processing, by providing a one-step 

estimation procedure with the substantial benefit of greatly improved spatial resolution. In 

addition, the three-dimensional nature of the NCRFs in our framework allows the 

segregation of different spatial activation patterns that are temporally overlapping. For 

example, the bilateral activity components in the primary motor cortex in response to the 

acoustic envelope are automatically clearly distinguishable from the early activation in the 

auditory cortex, without the need for any post-hoc processing. To ease the visual 

comparison, Fig. 8 compares the estimated NCRF distributions (transparent cortex) to those 

of Brodbeck et al. (2018b) (inflated cortical surface), at several time points for each of the 

three stimulus features.

Our results also support other neuroimaging evidence for the hierarchical model of speech 

processing, involving not only the temporal lobe, but also the motor and frontal cortices 

(Scott and Johnsrude, 2003; Hickok and Poeppel, 2004; Davis and Johnsrude, 2007; Okada 

et al., 2010; Peelle et al., 2010; de Heer et al., 2017). To probe the functional organization of 

this hierarchy, we estimated NCRFs corresponding to features extracted from speech at the 

acoustic, lexical and semantic levels and found distinct patterns of cortical processing at 

high spatiotemporal resolutions. Our results indeed imply that while the acoustic and lexical 

features are processed primarily within the temporal and motor cortical regions (Fadiga et 

al., 2002; Wilson et al., 2004; Pulvermüller et al., 2006; Crinion et al., 2003; Dewitt and 

Rauschecker, 2012; Mesgarani et al., 2014; Hullett et al., 2016), phrase-level processing, 

assessed here using the semantic composition variable, is carried out through the 

involvement of the frontal cortex (Kaas and Hackett, 1999; Hickok and Poeppel, 2007; 

Rauschecker and Scott, 2009).

Another advantage of our proposed methodology is mitigating the dependence of the 

solution on the precise geometry of the underlying cortical source models. In conventional 

neuromagnetic source imaging, individual structural MR images are utilized in the 

construction of source space models, particularly for retrieving the cortical surface 

segmentation. The normal direction to the so-called cortical patches in these models is key 
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in determining the lead-field matrix, which are often referred to as orientation-constrained 

source models. However, in many available neuroimaging datasets (including the one 

analyzed in this work), MR images are not available, relying only on an average head model, 

instead of one informed by the subject-specific cortical geometry. In order to mitigate the 

need for such information, we utilized a free-orientation volumetric source space in our 

estimation framework. While this makes the underlying optimization problem more involved 

and computationally intensive, it adds more than a compensatory amount of flexibility to the 

underlying models and allows them to recover missing information regarding the cortical 

source space geometry. To this end, we used rotationally invariant sparsity-inducing priors to 

regularize the spatiotemporal distribution of the NCRFs. Together with the aforementioned 

data-driven source covariance adaptation, this regularization scheme results in consistent 

source orientation estimates and provides a degree of immunity to unwanted side-effects of 

error-prone coordinate-frame rotations. To confirm these theoretical expectations, we 

validated this feature of our framework using simulation studies with known ground truth. In 

light of the above, posing NCRF estimation over an orientation-free volumetric source space 

can also be thought of as unifying the virtues of distributed source imaging and single dipole 

fitting: we aim at estimating both the orientations and magnitudes of spatially sparse dipole 

currents within the head volume that can best linearly predict the MEG responses to 

continuous stimuli.

This flexibility encourages applications of Champ-Lasso algorithm beyond MEG, for 

example, to EEG or simultaneous M/EEG recordings. In theory, any source localization 

method is equally applicable to all such scenarios (albeit with varying performance, due to 

the intrinsic differences between MEG and EEG), once the lead-field matrix is computed 

precisely. The main challenge is thus the placement of the current dipoles over the cortical 

mantle and correctly inferring the orientation of the dipoles from the structural MR scans. 

Unfortunately, a large majority of EEG experiments do not contain structural MR scans, 

eliminating the possibility of precise source-space analysis. Our analysis pipeline could be 

particularly useful for these scenarios, as the particular formulation aims to eliminate this 

strict requirement on dipole placements by making the solution robust against the 

unavailability of the precise geometry of the cortical mantle. The favorable performance of 

the Champ-Lasso algorithm in application to MEG data gives promise of its utility in 

application to EEG or simultaneous M/EMEG recordings, which would still need to be 

verified in future studies.

To facilitate such verification as well as usage by the broader systems neuroscience 

community a Python implementation of the Champ-Lasso algorithm is archived on the open 

source repository Github (Das, 2019). The current implementation of our algorithm uses the 

aforementioned regularization scheme to recover temporally smooth and spatially sparse 

NCRFs. Due to the plug-and-play nature of the proposed Bayesian estimation framework, 

one can easily utilize other relevant regularization schemes to promote spatial smoothness or 

incorporate spectro-temporal prior information, by just modifying the penalty term.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix A. Marginalization

To obtain the marginal distribution of Eq. (9) from the joint distribution of Eq. (8), one needs 

to integrate out J from the latter. Alternatively, thanks to the Gaussian assumption in Eq. (5) 

and Eq. (7), the marginalization can be carried out as follows. We start from the probabilistic 

generative model:

Y = LJ + W W ∼ N(0, Σw), (A.1)

J = ΦS + V V ∼ N(0, Γ) . (A.2)

Substituting the expression for J from Eq. (A.2) in Eq. (A.1), we arrive at:

Y = L(ΦS + V) + W = LΦS + LV + W (A.3)

Using the independence of V and W, the distribution of the stimulus independent part can be 

derived as LV + W ∼ N(0, Σw + LΓLT). From here, the marginal distribution of Y can be 

written as given by Eq. (9).

Appendix B. Details of the Regularization Scheme

In this appendix, we provide more details on the regularization scheme used for NCRF 

estimation. Recall that the NCRF matrix estimation amounts to the following maximum 

likelihood problem:

min
Θ

1
2‖Y − LΘS‖(Σw + LΓLT)−1

2 . (B.1)

given a particular choice of Γ. With this choice, one can find the gradient of the objective as:

LT(Σw + LΓLT)−1 Y − LΘS ST
(B.2)

and thus can attempt to solve the maximum likelihood problem using gradient descent 

techniques. The following observations on the gradient, however, show that the problem is 

ill-conditioned:

1. The left multiplier of Θ, i.e., L⊤(Σw + LΓL⊤)−1L is singular.

2. The right multiplier of Θ, i.e, SST
, which is the empirical stimulus correlation 

matrix is likely to be rank-deficient for naturalistic stimuli (Crosse et al., 2016).
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Therefore, a direct attempt at solving the problem via the gradient descent results in 

estimates of Θ with high variability. In estimation theory, such ill-conditioning is handled by 

introducing a bias to the estimator, which contains a priori information about the problem, in 

order to reduce the estimation variance. In addition, the NCRF model typically has many 

more free parameters than the observed data points, and without introducing prior 

information, the estimation problem is prone to over-fitting.

The prior information is often incorporated in the form of regularization. A commonly used 

regularization scheme in this context is the Tikhonov regularization and its variants for 

promoting smoothness (Lalor et al., 2006). Other estimation schemes such as boosting and 

ℓ1-regularization promote sparse solutions (David et al., 2007; Akram et al., 2017). Here, we 

introduce a structured regularization by penalizing a specific mixed-norm of the NCRF 

matrix to recover spatio-temporally sparse solutions over the Gabor coefficients:

P2, 1, 1(Θ) = ∑
m = 1

M
∑
l = 1

L
‖θm, l‖2 = ∑

m = 1

M
∑
l = 1

L
θm, l, R

2 + θm, l, A
2 + θm, l, S

2 . (B.3)

In words, for each current dipole location, we penalize the vector-valued response function 

by sum of the magnitude of its corresponding Gabor coefficients.

Note that the ℓ1-regularization in this case, i.e., ∑m = 1
M ∑l = 1

L ‖θm, l‖1, is not compatible with 

the expected cortical distribution of the NCRFs. Since the ℓ1-norm is separable with respect 

to the three 3 coordinates of θm,l, it tends to select a sparse subset of the 3D coordinates, 

rendering the recovered NCRF components parallel to the coordinate axes. In contrast, the 

proposed penalty aims to select the NCRF components as a single entity by penalizing the 

vector magnitudes at each lag. Indeed, if the current dipoles are constrained to be normal to 

the cortical patches in the NCRF formulation, the proposed penalty coincides with ℓ1-

regularization.

Another advantage of this mixed-norm penalty is its rotational invariance when working 

with 3D vector-valued response functions. Suppose the coordinate system is rotated by an 

orthogonal matrix U ∈ ℝ3 × 3. Then, the lead-field and NCRF matrices are transformed by: 

L LUT ≕ L′, Θ UΘ ≕ Θ′ where U = IM ⊗ U. Then, L′Θ′ = LUTUΘ = LΘ and

P2, 1, 1(Θ′) = η ∑
m = 1

M
∑

l = 1

L
‖θm, l′ ‖2 = η ∑

m = 1

M
∑

l = 1

L
‖Uθm, 1‖2 = η ∑

m = 1

M
∑

l = 1

L
‖θm, l‖2 = P2, 1, 1(Θ),

which implies the aforementioned rotational invariance. As a result, the solutions are not 

dependent on any particular choice of coordinate system. Also, since the penalty does not 

prefer specific source orientations, it makes the solution more resilient to co-registration 

error than other approaches that do not consider the vector-valued nature of the current 

dipoles or constrain the solutions to be normal to the cortical surface.
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Appendix C. Statistical Testing Procedures

To asses the statistical significance of the estimated NCRF components at the group level 

and across the source space, they need to be compared against suitable null hypotheses. The 

fact that the NCRF components are 3D vectors requires technical care in choosing the null 

hypotheses. Here, we provide two possible null hypotheses and testing methodologies: the 

Length Test, that only considers the length or magnitude of the NCRFs, and the Vector Test 

that takes into account both the magnitude and direction of the NCRFs. The corresponding 

source codes that implement these tests can be found at (Brodbeck, 2017).

The Length Test

This test aims to assess the statistical significance of the NCRF components by comparing 

their magnitudes against a baseline ‘null’ NCRF model at the group level. To control for 

false positives arising from over-fitting, instead of using an all-zero null model of the 

NCRFs, we aim to learn the null model from the dataset itself. The time-series of the feature 

variables are split into four equal segments, and these segments are permuted cyclically to 

yield three ‘misaligned’ feature time-series. Then, for each feature variable, three 

‘misaligned’ time-series are constructed by swapping its original time-series with the 

‘misaligned’ ones, while keeping the other two feature variables intact. Then, the average 

NCRF magnitudes estimated from these three ‘misaligned’ time-series are considered as the 

null model for that feature variable. The NCRF magnitude pairs from the original data and 

the null model are tested for significance using mass-univariate tests based on related 

measures t-tests.

To control for multiple comparisons, nonparametric permutation tests (Nichols and Holmes, 

2002; Maris and Oostenveld, 2007) based on the threshold-free cluster-enhancement (TFCE) 

algorithm (Smith and Nichols, 2009) are used. First, at each dipole location and time point, 

the t-statistic is computed from the difference between the NCRF magnitude pairs. The 

resulting statistic-map is then processed by the TFCE algorithm, which boosts contiguous 

regions with high test statistic as compared to isolated ones, based on the assumption that 

spatial extent of the true sources is typically broader than those generated by noise. To find 

the distribution of these TFCE values under the null hypothesis, TFCE values are calculated 

following the same procedure, on 10000 different random permutations of the data. In each 

permutation, the sign of the NCRF magnitude differences is flipped for a randomly selected 

set of subjects, without resampling the same set of subjects. Then, at every permutation, the 

maximum value of the obtained TFCE values is recorded, thereby constructing a non-

parametric distribution of the maximum TFCE values under the null hypothesis. The original 

TFCE values that exceed the (1 – α) percentile of the null distribution are considered 

significant at a level of α corrected for multiple comparisons across the sources.

The Vector Test

This test aims at quantifying the significance of the estimated 3D NCRF components at the 

group level, based on the one-sample Hotellings T2 test. In the one-sample Hotellings T2 

test, the population mean of the sample vectors is tested against the null hypothesis of mean 

zero, i.e. μ0 = 0. To control for multiple comparisons, a similar strategy based on 
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nonparametric permutations as in the case of the Length Test is used. At every time lag, the 

T2 statistic for each dipole is computed as:

T 2 = n(x̄ − μ0)TΣ̄−1(x̄ − μ0) (C.1)

where x̄, Σ̄ are the population mean and covariance matrix of the vector-valued NCRF 

components, respectively. The T2 statistic quantifies the variability of vector-valued samples, 

akin to the role of the t-statistic for 1D samples (Mardia, 1975). The resulting T2-maps are 

then processed by the TFCE algorithm. As before, to construct a non-parametric distribution 

of maximum TFCE values under the null hypothesis, maximum values of the TFCE-

processed T2 maps on 10000 different random permutations of the data are recorded. In each 

permutation, the vector-valued NCRF components of each subject undergo uniform random 

rotations in 3D (Miles, 1965). The original TFCE values that exceed the (1 – α) percentile of 

the null distribution are considered significant at a level of α, corrected for multiple 

comparisons across the sources.

Figure C.9: 
Estimated NCRFs for acoustic envelope (A), word frequency (B), semantic composition (C): 

The anatomical plots show the group-level average NCRFs projected onto the lateral plane 

(top and bottom panels) corresponding to selected visually salient peaks in the temporal 

profiles (middle panels). The top and bottom portions of the subplot pertain to left and right 

hemisphere, respectively. Numerical labels of each anatomical subplot indicates the 

corresponding time lag in ms. The gray portions of the traces indicate statistically 

insignificant NCRFs at the group level (significance level of 5%). The significance levels are 
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computed using the Vector Test, as opposed to the main manuscript where the significance 

levels are based on the Length Test. The main features of the NCRFs discussed in the 

Results section are similarly recovered by the Vector Test.

Traditionally, response functions are estimated as scalar functions of the data, either over the 

sensor space or over the source space by orientation-constrained inverse solvers. 

Considering the directional variability of the NCRF estimates at the group level, however, 

takes into account the group level anatomical variability that may effect the current dipole 

orientations. In addition, the Vector Test is less computationally demanding than the Length 

Test, because it does not require refitting NCRFs for permuted models. In the Results section 

of the manuscript, we presented the NCRFs masked at a significance level of 5%, based on 

the Length Test. To demonstrate the difference between these two tests, here we also present 

the sames results using the Vector Test (Fig C.9).
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Figure 1: 
Mixed-norm penalty term P2, 1, 1(Θ) for regularizing the loss function. The penalty term is 

constructed by first isolating all 3D Gabor coefficient vectors across the dictionary elements 

and space, and then aggregating their ℓ2 norm. As a result, it promotes sparsity in space and 

Gabor coefficients, while being invariant to the orientation of the dipole currents.
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Figure 2: 
Schematic depiction of the proposed modeling and estimation framework. Upper branch: the 

experimental setting in which the subject is listening to speech while MEG neural responses 

are being recorded. Lower branch: the modeling framework in which the speech waveform 

is transformed into a feature variable representation, and is thereby processed via M linear 

filters (i.e., NCRFs) to generate time-varying current dipoles at each of the corresponding M 
source locations. Note that each NCRF in the lower branch corresponds to a 3D vector of 

dipole activity with a specific temporal profile, as shown in the upper branch with matching 

colors. These dipoles give rise to the predicted MEG response via a source-to-sensor 

mapping (i.e., the lead-field matrix). The two branches converge on the right hand side, 

where the NCRFs are estimated by minimizing a regularized loss function.
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Figure 3: 
Results for a simulated auditory experiment. The top and bottom portions of each subplot 

pertain to the left and right hemispheres, respectively. A. The anatomical plots show the 

simulated neural sources normal to cortical surface, and the traces show the overlaid 

temporal profiles. The colorbar encodes directional intensity normal to the cortical surface 

(shown by the green arrows). B & C. The two-stage localized (i.e. MNE-boosting, and one 

of its variants, Champagne-boosting, respectively) TRFs (free-orientation) are shown on the 

anatomical plots, where the 3D dipoles are projected onto the lateral plane. D. NCRF 

estimates from the Champ-Lasso algorithm. The colorbar encodes dipole magnitudes. The 

spatial extent, dipole moment scale, temporal profile, and orientations of the neural sources 

are faithfully recovered by the Champ-Lasso algorithm, whereas the two-stage localized 

TRFs are either spatially dispersed (MNE-boosting) or overly sparse (Champagne-boosting) 

and exhibit spurious peaks in the anterior temporal and inferior frontal lobes.
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Figure 4: 
Results for the simulated auditory experiment (continued): Zoomed in views of the active 

cortical patches (marked as S1, S2 and S2 in Fig. 3A) emphasizing the orientations of the 

simulated current dipoles (green arrows) alongside the estimated current dipole directions.
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Figure 5: 
Estimated NCRFs for the acoustic envelope feature variable. A. The anatomical plots show 

the group-level average NCRFs projected onto the lateral plane (top and bottom panels) 

corresponding to selected visually salient peaks in the temporal profiles (middle panels). The 

top and bottom portions of the subplot pertain to left and right hemisphere, respectively. 

Numerical labels of each anatomical subplot indicates the corresponding time lag in ms. B. 

The time traces show the temporal profile of 6 selected NCRFs exhibiting peak spatial 

activity (collapsed across time), grouped by hemisphere and dorsoventrally ordered. The 

locations of the selected NCRFs are shown on the anatomical plots, with colors matching the 

time traces and linked by dashed lines. The gray portions of the traces in both subplots 

indicate statistically insignificant NCRFs at the group level (significance level of 5%). Note 

that the last 200 ms segments of the temporal profiles are cropped, as they did not 

correspond to any significant components at the group level. The prominent NCRFs consist 

of a bilateral auditory component at ~ 30–35 ms, a bilateral motor component at ~ 50 ms, 

and an auditory component at ~ 110 ms (stronger in right hemisphere and with nearly 

opposing polarity with respect to the earlier auditory component, indicated by the two 

colored arrows pointing to the average direction of the NCRFs in subplot A). See 

Supplementary Movie 01 for a detailed animation showing how the acoustic envelope NCRF 

components change as function of time lags.
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Figure 6: 
Estimated NCRFs for the word frequency feature variable. A. The anatomical plots show the 

group-level average NCRFs projected onto the lateral plane (top and bottom panels) 

corresponding to selected visually salient peaks in the temporal profiles (middle panels). The 

top and bottom portions of the subplot pertain to left and right hemisphere, respectively. 

Numerical labels of each anatomical subplot indicates the corresponding time lag in ms. B. 

The time traces show the temporal profile of 4 selected NCRFs exhibiting peak spatial 

activity (collapsed across time), grouped by hemisphere and and dorsoventrally ordered. The 

locations of the selected NCRFs are shown on the anatomical plots, with colors matching the 

time traces and linked by dashed lines. The anatomical plots show the locations of the 

selected NCRFs with colors matching the time traces. The gray portions of the traces in both 

subplots indicate statistically insignificant NCRFs at the group level (significance level of 

5%). The prominent NCRFs manifest in the left hemisphere, dominated by an auditory 

component at ~ 150 ms. See Supplementary Movie 02 for a detailed animation showing how 

the word frequency NCRF components change as function of time lags.

Das et al. Page 35

Neuroimage. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Estimated NCRFs for the semantic composition feature variable. A. The anatomical plots 

show the group-level average NCRFs projected onto the lateral plane (top and bottom 

panels) corresponding to selected visually salient peaks in the temporal profiles (middle 

panels). The top and bottom portions of the subplot pertain to left and right hemisphere, 

respectively. Numerical labels of each anatomical subplot indicates the corresponding time 

lag in ms. B. The time traces show the temporal profile of 5 selected NCRFs exhibiting peak 

spatial activity (collapsed across time), grouped by hemisphere and dorsoventrally ordered. 

The locations of the selected NCRFs are shown on the anatomical plots, with colors 

matching the time traces and linked by dashed lines. The gray portions of the traces in both 

subplots indicate statistically insignificant NCRFs at the group level (significance level of 

5%). The prominent NCRF components consist of a bilateral auditory component at ~ 155 

ms, a right auditory-frontal component from ~ 180 ms to ~ 210 ms, and a left auditory late 

component at ~ 475 ms. The sequence of peaks given by rMTsc → rF2sc → rF1sc → rF2sc 

show the back and forth movement of the NCRFs from the auditory to frontal cortices. See 

Supplementary Movie 03 for a detailed animation showing how the semantic composition 

NCRF components change as function of time lags.
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Figure 8: 
Comparison of cortical spread of estimated NCRFs against MNE-boosting TRFs. The 

pairwise anatomical plots show the group-level average MNE-boosting TRFs from 

Brodbeck et al. (2018b) (left) alongside the group-level average NCRFs projected onto the 

lateral plane (right) for a few selected visually salient peaks in the temporal profiles, 

corresponding to acoustic envelope (top), word frequency (middle) and semantic 

composition (bottom) feature variables.
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Table 1:

Comparison with respect to the dispersion metric, defined as the ratio of the total NCRF power outside and 

inside of spheres of radius r (for r = 10, 15, 20 mm) around the center of mass of the simulated cortical patches 

(lower is better). The bold numerical values indicate the best performance among the different estimation 

methodologies for each sphere radius.

r (mm) ChamD-Lasso MNE-boosting Champagne-boosting

0.010 1.139 4.005 6.446

0.015 0.630 2.229 3.172

0.020 0.229 1.491 2.963
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Table 2:

Comparison with respect to the reconstruction metrics: Pearson correlation coefficients between the estimated 

principal orientation and principal time course and the ground truth, as well as their selectivity (higher is 

better) for different cortical patches (lA1, rA1, rM and rA2 as in Fig. 4). The bold numerical values indicate 

the best performance among the different estimation methodologies in each category.
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lA1 rA1 rM rA2

Principal Orientation Correlation

Champ-Lasso 0.991 0.992 0.923 0.996

MNE-boosting 0.978 0.989 0.923 0.995

Champagne-boosting 0.124 0.207 −0.395 0.039

Principal Time Course Correlation

Champ-Lasso 0.968 0.953 0.972 0.958

MNE-boosting 0.959 0.856 0.741 0.918

Champagne-boosting 0.994 0.131 0.114 0.015

Selectivity

Champ-Lasso 0.999 0.977 0.932 0.984

MNE-boosting 0.977 0.794 0.469 0.845

Champagne-boosting 0.993 0.891 0.904 1.000
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