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Abstract

97% of drug-indication pairs that are tested in clinical trials in oncology never advance to receive 

FDA approval. While lack of efficacy and dose-limiting toxicities are the most common causes of 

trial failure, the reason(s) why so many new drugs encounter these problems is not well-

understood. Using CRISPR/Cas9 mutagenesis, we investigated a set of cancer drugs and drug 

targets in various stages of clinical testing. We show that – contrary to previous reports obtained 

predominantly with RNAi and small-molecule inhibitors – the proteins ostensibly targeted by 

these drugs are non-essential for cancer cell proliferation. Moreover, the efficacy of each drug that 

we tested was unaffected by the loss of its putative target, indicating that these compounds kill 

cells via off-target effects. By applying a genetic target-deconvolution strategy, we discovered that 

the mischaracterized anti-cancer agent OTS964 is actually a potent inhibitor of the cyclin-

dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We 

suggest that stringent genetic validation of the mechanism of action of cancer drugs in the 

preclinical setting may decrease the number of therapies tested in human patients that fail to 

provide any clinical benefit.

One-sentence summary:

CRISPR reveals that many cancer drug targets are dispensable for cell proliferation and identifies 

CDK11 as the target of one mischaracterized agent.
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Introduction

Substantial progress has been made in the treatment of certain malignancies by targeting 

cancer ‘addictions’, or genetic dependencies that encode proteins required for the survival 

and/or proliferation of cancer cells (1). Therapeutic agents that block the function of a 

cancer dependency – like the kinase inhibitor lapatinib in HER2+ breast cancer – can trigger 

apoptosis and durable tumor regression (2). Discovering and characterizing druggable cancer 

dependencies is a key goal of preclinical research.

While screening cancer drug targets, we discovered that Maternal Embryonic Leucine 

Zipper Kinase (MELK), a protein previously reported to be essential in multiple cancer 

types, could be eliminated using CRISPR-mediated gene editing without any detectable loss 

in cancer cell fitness (3, 4). Additionally, we demonstrated that OTS167, a small-molecule 

inhibitor of MELK undergoing phase II clinical trials, continued to kill MELK-knockout 

(KO) cancer cells with no decrease in potency. These findings suggested that a drug tested in 

human cancer patients had been designed to target a non-essential cellular protein and that 

its putative inhibitor killed cells by interacting with proteins other than its reported target. 

We hypothesized that problems in drug development and inhibitor validation, as exemplified 

by MELK and OTS167, could potentially contribute to the high failure rate of new cancer 

therapies. In particular, drugs that target superfluous proteins may display limited efficacy in 

human patients, and if these drugs are active only via off-target effects, then this could 

potentially contribute to patient toxicity. Moreover, clinical trials that use a biomarker to 

select patients for trial inclusion are approximately twice as likely to succeed as those 

without one (5). Misidentifying a drug’s mechanism of action (MOA) could hamper efforts 

to uncover a biomarker capable of predicting therapeutic responses, further decreasing the 

success rate of clinical trials. To test whether other cancer drugs had similarly been designed 

against non-essential targets or had been assigned an incorrect MOA, we set out to 

systematically analyze multiple cancer drugs and drug targets that are undergoing clinical 

trials or in late-stage preclinical development.

Results

CRISPR competition assays to investigate several putative cancer dependencies

Based on an analysis of the literature, we chose drug targets that met several criteria 

(described in detail in the Materials and Methods). Notably, we selected drug targets that had 

been reported to play a cell-autonomous role in cancer growth, such that their loss or 

inhibition was reportedly sufficient to block cancer cell proliferation. Additionally, we 

selected drug targets that lacked a known mutation capable of conferring resistance to their 

targeted inhibitors, which we hypothesized represents the gold standard for proving a drug’s 

MOA. We identified 10 cancer drugs targeting six proteins that met these criteria (Table 1). 

Five of these proteins are reported to represent cancer dependencies (HDAC6, MAPK14/

p38α, PAK4, PBK, and PIM1)(6–15). One protein (CASP3/caspase-3) is reported to induce 

apoptosis when activated by a small molecule (16, 17), and is discussed separately. Among 

the putative dependencies, over 180 different publications indicate that they are required for 

cancer cell proliferation or fitness (listed in data file S1). For each of these genes, the 

majority of evidence supporting their designation as cancer dependencies comes from RNAi 
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studies, in which siRNA or shRNA-mediated knockdown was reported to impair cancer cell 

fitness. Additionally, each protein is targeted by one or more small-molecule drugs, which 

have been described to exhibit potent cell killing in vitro and in vivo. On the basis of these 

pre-clinical results, the drugs listed in Table 1 have been used in at least 29 different clinical 

trials, with an estimated enrollment of more than 1,000 patients.

We first set out to validate the role of the putative dependencies targeted by these drugs in 

cancer cell fitness. To accomplish this, we applied a CRISPR/Cas9-based cell competition 

assay, in which cancer cells are infected at a low multiplicity of infection with GFP-

expressing guide RNA (gRNA) vectors targeting a gene of interest (Fig. 1A)(18). If a 

CRISPR-induced mutation reduces cell fitness, then the untransduced cells within a 

population should outcompete the guide RNA-expressing cells, and the fraction of GFP+ 

cells should decrease over time. To verify this approach, we designed guide RNAs against 

pan-essential genes and against several confirmed cancer drug targets. In breast cancer, 

colorectal cancer, lung cancer, and melanoma cell lines, guides targeting the essential 

replication proteins RPA3 and PCNA dropped out up to 100-fold, and guides targeting the 

validated pan-cancer dependencies Aurora A, Aurora B, and ERCC3 exhibited similar levels 

of depletion (Fig. 1B). Mutations in Aurora A (19), Aurora B (20), and ERCC3 (21) confer 

resistance to the cytotoxic agents MLN8054, ZM447439, and triptolide, respectively, 

thereby providing genetic evidence that they are required for cancer cell growth. In contrast, 

guide RNAs targeting the non-essential Rosa26 and AAVS1 loci exhibited minimal drop-out 

over five passages in culture. These GFP competition assays were also capable of identifying 

cell type-specific dependencies: guides targeting the oncogenic kinase BRAF dropped out in 

a BRAF-mutant melanoma cell line but not a BRAF-WT colorectal cancer line, whereas 

guides targeting the gene encoding the estrogen receptor (ESR1) dropped out in an ER-

positive breast cancer line but not in a triple-negative breast cancer line (Fig. 1C). We 

concluded that our CRISPR dropout assay can robustly identify both pan-essential and 

cancer-specific genetic dependencies.

We next designed guide RNAs against the reported cancer dependencies HDAC6, MAPK14 

(p38α), PAK4, PBK, and PIM1. To maximize the likelihood that a CRISPR-induced 

mutation results in a non-functional allele, guides were designed to target exons that encode 

key functional domains within a protein (fig. S1A)(18). We used western blotting to verify 

that each guide resulted in strong protein depletion in four separate cell lines (Fig. 1D and 

fig. S1B), and we then further confirmed target ablation by performing a second set of 

western blots with a different antibody that recognizes a distinct protein epitope (fig. S1C). 

Next, we conducted GFP competition assays in 32 cell lines from 12 different cancer types, 

which included multiple cell lines in which each gene had previously been reported to be 

essential (data file S1). In each experiment, four guide RNAs targeting Rosa26 and AAVS1 
were used as negative controls, while four guide RNAs targeting PCNA and RPA3 were 

used as positive controls. These positive control guides dropped out between ~10-fold and 

~200-fold over five passages in culture, whereas the negative control guides consistently 

exhibited <2.5-fold dropout. The variation in positive-control dropout rates likely reflects 

cellular differences in Cas9 expression, proliferation, and the spectrum of indel mutations 

produced by the guide RNA. Notably, all guides targeting HDAC6, MAPK14, PAK4, PBK, 

and PIM1 failed to drop out in every cell line that we tested (Fig. 1E, fig. S2, and data file 
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S2). For instance, HDAC6 has been reported to be a genetic dependency in ARID1A-mutant 

ovarian cancer (6). However, in ARID1A-mutant ovarian cancer cell lines A2780, OVK18, 

OVTOKO, and TOV-21G, HDAC6-targeting guides failed to deplete above background 

levels. Similarly, PIM1 has been reported to be a genetic dependency in triple-negative 

breast cancer (14, 15), but PIM1-targeting guides were not depleted in any of the seven 

triple-negative breast cancer cell lines that we tested (data file S2). These results called into 

question whether these putative drug targets are indeed required for cancer cell growth.

Generation and analysis of CRISPR-derived knockout clones

To further test the essentiality of these genes in cancer, we derived clones harboring 

CRISPR-induced knockouts in each gene in multiple cancer types. All five genes were 

knocked out in the triple-negative breast cancer cell line MDA-MB-231 and the melanoma 

cell line A375. HDAC6, MAPK14, PBK, and PIM1 were knocked out in the colorectal 

cancer cell line DLD1, whereas PAK4 was knocked out in the colorectal cancer cell line 

HCT116, because it has previously been reported that PAK4 is not a dependency in DLD1 

(11). To minimize the possibility that downstream translational initiation or alternative 

splicing bypass the effect of a single CRISPR-induced mutation, clones were made by co-

transducing cancer cells with guides that targeted two different exons in a gene of interest 

(Fig. 2A and fig. S1A). Complete target ablation was then verified by western blotting using 

two antibodies that recognized distinct protein epitopes (Fig. 2B, fig. S3, fig. S4, and fig. 

S5A). We next compared these knockout clones to control clones transduced with guides 

targeting Rosa26 or AAVS1. As a positive control, we confirmed that knocking out the 

verified drug target MEK1 decreased proliferative capacity in A375 clones (fig. S4). 

However, we found that clones lacking each putative genetic dependency listed in Table 1 

proliferated at levels that were indistinguishable from control A375, DLD1, and HCT116 

cancer cells (Fig. 2C). For instance, PAK4-KO melanoma cells underwent an average of 

20.3 population doublings over the course of 15 days in culture, compared to 19.9 doublings 

for the Rosa26 guide RNA-transduced clones. To test whether these genes were dispensable 

for cell division but required for growth in other environments, we also seeded the knockout 

clones in soft agar and assessed their ability to grow in anchorage-independent conditions. 

While MEK1-KO clones formed fewer colonies in soft agar (fig. S4E), every HDAC6, 

MAPK14, PAK4, PBK, and PIM1 knockout exhibited wild-type rates of colony formation, 

further verifying that these genes are not required for cancer cell fitness (Fig. 2D–E).

Consistent with previously reported results, Rosa26 and AAVS1 control clones derived from 

MDA-MB-231 cell populations exhibited some variability in proliferative capacity (3, 4, 

22). By analyzing a total of 12 single cell-derived control clones, we established a range of 

doubling times in which wild-type MDA-MB-231 cells can divide (fig. S5B). Every 

HDAC6, MAPK14, PAK4, PBK, and PIM1 knockout clone proliferated at a comparable rate 

to these control clones (fig. S5C). All KO clones were also capable of forming colonies in 

soft agar at rates comparable to the control clones, further verifying that these putative 

dependencies are non-essential in breast cancer (fig. S5D).
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Lack of homolog upregulation in knockout clones

Null mutations caused by CRISPR may trigger a different cellular response than RNAi-

induced gene repression, potentially contributing to the discrepancies between our results 

and those that had previously been reported. In particular, a recent study suggested that 

CRISPR-induced nonsense mutations can trigger the up-regulation of the homologs of a 

targeted gene, potentially compensating for the effects of the lesion (23). We assessed the 

expression of the closest homologs of HDAC6, MAPK14, PAK4, PBK, and PIM1 in 33 

different knockout clones that we generated, but we observed no consistent up-regulation of 

any target homolog (fig. S6). Additionally, we analyzed RNA-Seq data from 10 published 

experiments in gene-edited cancer cells from other laboratories, and similarly failed to detect 

consistent evidence for the up-regulation of target gene homologs (fig. S7). Indeed, in 

several experiments, we found that the homologs of the targeted gene were down-regulated. 

These results suggest that homolog up-regulation is not a common consequence of CRISPR 

mutagenesis in human cancer cells and that compensatory homolog over-expression is 

unlikely to explain the lack of a detectable growth defect in the CRISPR clones that we have 

analyzed.

Assessing putative cancer dependencies in whole-genome CRISPR and RNAi screens

Cell lines can exhibit inter-laboratory variability that affects their response to different 

genetic and chemical perturbations (24). Additionally, although we chose cancer types to 

study based on the dependency patterns reportedly exhibited by each gene (data file S1), it 

remained possible that these genes represent dependencies in a cancer lineage not included 

among the 32 cell lines that we studied. To test this possibility, and to assess whether unique 

or non-representative features of the cell lines used in our laboratory contributed to our 

discrepant results, we re-analyzed genetic dependency data from whole-genome CRISPR 

screens conducted in 485 cancer cell lines (fig. S8A). These screens consistently identified 

both pan-cancer and cell type-specific genetic dependencies (for example, Aurora B, BRAF, 

PIK3CA; fig. S8B–C). However, in accordance with our earlier results, these experiments 

also indicated that our chosen dependencies were fully dispensable for cancer cell fitness 

(fig. S8A–C). For instance, MAPK14/p38α has previously been reported to be essential in 

breast cancer (9), but CRISPR screens conducted in 26 different breast cancer cell lines 

corroborate that its loss is tolerated without a substantial fitness defect (fig. S8D). Strikingly, 

we also re-analyzed 712 genome-wide shRNA screens, and these knockdown experiments 

similarly failed to identify HDAC6, MAPK14, PAK4, PBK, or PIM1 as cancer-essential 

genes (fig. S8E–G). In total, these results indicate that our findings are unlikely to be 

explained by non-representative features of the cell lines studied in our laboratory, by 

differences between partial and complete loss-of-function perturbations, or by these genes 

functioning as genetic dependencies only in certain cancer types. Instead, our data suggest 

that multiple genes targeted in cancer clinical trials are in fact fully dispensable for cancer 

cell growth.

Knocking down putative cancer dependencies with CRISPRi

To further investigate whether differences between partial and complete loss-of-function 

perturbations could explain our discrepant results, we next performed competition 

Lin et al. Page 5

Sci Transl Med. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiments using the CRISPRi system. In this approach, catalytically-inactive Cas9 is fused 

to a transcriptional repressor and targeted to a gene’s promoter, resulting in down-regulation 

of gene expression without the generation a complete loss-of-function-inducing frameshift 

mutation (25). We designed three guide RNAs that recognized HDAC6, MAPK14, PAK4, 

PBK, and PIM1, and verified that these constructs blocked the expression of their targets 

(fig. S9A). We then conducted competition experiments in four different cell lines, and we 

found that gRNAs targeting the essential replication protein MCM2 exhibited ~10-fold to 

~20-fold dropout, while gRNAs targeting HDAC6, MAPK14, PAK4, PBK, and PIM1 failed 

to deplete (fig. S9B). These assays further verify that our results cannot be explained by the 

existence of different cellular responses to partial and complete loss-of-function alterations.

Assessing the sensitivity of target-knockout clones to chemotherapy agents undergoing 
combination clinical trials

Several of the proteins listed in Table 1 are currently undergoing combination clinical trials 

using their targeted inhibitors together with other chemotherapy agents. It is conceivable that 

a protein could be non-essential under normal conditions but that its loss sensitizes cells to 

specific chemotherapies. For instance, HDAC6 is capable of deacetylating microtubules 

(26), and HDAC6 inhibition has been reported to render cells vulnerable to drugs that 

interfere with microtubule dynamics (27). As a result of this preclinical work, two clinical 

trials are combining HDAC6 inhibitors with the microtubule stabilizer paclitaxel 

(NCT02632071 and NCT02661815). We therefore tested whether the knockout clones that 

we had generated were sensitive to various chemotherapy agents (fig. S10A–C). In contrast 

to previous results, loss of HDAC6 failed to sensitize cells to paclitaxel or to four other anti-

cancer drugs (fig. S10A). Similarly, p38α inhibitors have been clinically applied in 

combination with bortezomib, gemcitabine, carboplatin, and temozolomide (NCT00087867, 

NCT00095680, NCT01663857, and NCT02364206), but MAPK14/p38α knockout clones in 

multiple cell lines were as sensitive to these agents as Rosa26 control clones (fig. S10B). 

These results suggest that, in addition to being non-essential, these putative drug targets do 

not affect sensitivity to several chemotherapy agents that have been tested in combination 

trials.

Assessing RNAi promiscuity as a cause of the misidentification of cancer dependencies

If these genes do not drive cancer growth or chemotherapy resistance, then why have 

inhibitors targeting the proteins that they encode been tested in human cancer patients? A 

review of the literature indicates that each of these genes has been described to be essential 

on the basis of RNAi-induced knockdown phenotypes (data file S1). Off-target toxicity has 

been reported to be a common problem in the design and interpretation of RNAi-based 

experiments (28–30), though the impact of these issues on the therapeutic development 

pipeline is not known. We acquired four different RNAi constructs that were used in these 

prior studies and then tested their effects on the clones that we had generated. While we 

were able to confirm that each construct decreased the expression of its putative target, we 

also discovered that these constructs impaired proliferation in both WT clones and clones in 

which the construct’s target had been knocked out (fig. S11A–C). For example, a recent 

report found that PAK4-targeting siRNAs blocked cell division in HCT116 colon cancer 

cells and concluded that PAK4 was a genetic dependency in this cell line (31). However, we 
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found that these same siRNAs induced an equivalent decrease in proliferation in both 

HCT116 PAK4-KO and HCT116 Rosa26 clones, suggesting that their effects on growth are 

a consequence of off-target toxicity (fig. S11A). Similarly, while knocking down PIM1 has 

been reported to block proliferation in the MDA-MB-231 breast cancer cell line (15), this 

construct had the same effect in MDA-MB-231 PIM1-KO cells (fig. S11B). Our results 

therefore suggest that these drug targets have advanced to clinical testing due at least in part 

to promiscuous RNAi constructs.

Assessing the specificity of cancer drugs undergoing clinical trials

Off-target toxicity from small-molecule drugs can cause dangerous side effects and is a 

major cause of clinical trial failure (32, 33). Our results suggested that the drugs listed in 

Table 1 were designed to target non-essential cellular proteins, raising the possibility that the 

anti-cancer effects of these drugs could be due to off-target interactions. We therefore sought 

to apply CRISPR to differentiate between the on-target and off-target effects of each clinical 

cancer drug. First, we confirmed that CRISPR could be used to verify the MOA for several 

genetically-validated therapies. The natural product rapamycin is reported to bind to the 

prolyl-isomerase FKBP12, and this complex inhibits the essential mTOR kinase (fig. S12A)

(34, 35). We knocked out FKBP12 using CRISPR, and we verified that these KO clones 

exhibited increased resistance to rapamycin treatment (fig. S12B–C). Similarly, knocking 

out p53 conferred resistance to the experimental p53-activating drug nutlin-3a (fig. S12D–

F). Finally, we sought to test whether CRISPR could be used to validate a published 

resistance-granting point mutation. We used CRISPR-mediated homology-directed repair 

(HDR) to introduce a missense mutation into the kinase domain of the essential mitotic 

kinase MPS1, and we verified that this substitution was capable of granting resistance to the 

small-molecule MPS1 inhibitor AZ3146 (fig. S12G–I)(36). Thus, CRISPR-derived knockout 

and knock-in cell lines can be used to validate on-target drug activity.

Next, we applied CRISPR to interrogate the MOA of two caspase-3 activating compounds, 

PAC-1 and 1541B. These drugs are reported to function by catalyzing the conversion of 

caspase-3 from its inactive, procaspase state to its active, cleaved form, thereby causing 

cellular apoptosis (fig. S13A)(16, 17). Currently, PAC-1 is undergoing three different 

clinical trials in cancer patients (NCT02355535, NCT03332355, and NCT03927248). We 

knocked out the CASP3 gene in four different cell lines and then verified protein ablation 

using two different antibodies (Fig. 3A and fig. S13). However, these CASP3-KO lines 

exhibited identical sensitivity to PAC-1 and 1541B compared to Rosa26 controls (Fig. 3B, 

fig. S13D and S13F). These results suggest that a putative caspase-3 activator undergoing 

clinical trials actually kills cancer cells in a caspase-3-independent manner.

We next tested each putative HDAC6, MAPK14, PAK4, PBK, and PIM1 inhibitor in control 

and knockout clones. If these drugs act by specifically inhibiting their reported targets, then 

cancer cells that totally lack the expression of their targets would be expected to be resistant 

to these drugs’ effects. In contrast, if a drug kills cells in which its reported target has been 

knocked out, then this drug necessarily kills cells by affecting another protein or proteins. In 

every instance that we tested, cancer cells in which HDAC6, MAPK14, PAK4, PBK, or 

PIM1 had been knocked out exhibited wild-type sensitivity to their putative targeted 
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inhibitors (Fig. 3 and fig. S14A–B). For example, we found that the PAK4 inhibitor 

PF-3758309 blocked the growth of both Rosa26 and PAK4-KO melanoma cells with a GI50 

value of ~9 nM (Fig. 3G). Given that this drug is fully capable of killing cells in which its 

putative target has been deleted, the ability of PF-3758309 to block cancer cell growth must 

be through an off-target effect. To further interrogate whether the drugs studied in this 

manuscript could exhibit an on-target MOA in an additional genetic background, we 

knocked out HDAC6 in TOV-21G cells, an ARID1A-mutant ovarian cancer cell line in 

which this gene has been reported to be a dependency (fig. S15A)(6). However, TOV-21G 

HDAC6-KO cells exhibited wild-type fitness in vitro and in soft agar (fig. S15B–C), and 

these cells remained sensitive to citarinostat and ricolinostat, two putative HDAC6 inhibitors 

in clinical trials (fig. S15D). In total, all 10 different anti-cancer agents targeting CASP3, 

HDAC6, MAPK14, PAK4, PBK, or PIM1 exhibited clear evidence of target-independent 

cell killing in every knockout cell line that we examined.

Finally, we applied these putative inhibitors to investigate several combination chemotherapy 

trials. As described above, HDAC6 inhibitors are currently undergoing testing in cancer 

patients along with paclitaxel, and p38α inhibitors have also been combined with several 

different therapeutic agents. We verified that co-treatment with a targeted inhibitor and a 

second agent generally caused a greater decrease in cancer cell viability than either agent 

alone (fig. S14B). However, this synthetic enhancement was observed in both Rosa26 and 

target-knockout clones, suggesting that these additive effects are also due to an off-target 

interaction.

Discovering the true target of OTS964

If these clinical anti-cancer therapies do not kill cells by inhibiting their reported targets, 

then how do they block cancer growth? We note that, although the MOA of each drug has 

previously been characterized using biochemical and biophysical approaches, there is little 

genetic evidence linking each drug to its reported target. We hypothesized that an alternative, 

genetic methodology could shed light on the true target of a therapeutic agent whose MOA 

was in question.

For this work, we chose to focus on the putative PBK inhibitor OTS964, because it exhibited 

nanomolar potency in multiple cancer types and our CRISPR experiments had provided 

clear evidence that PBK was not required for cell proliferation. Moreover, OTS964 has been 

reported to affect mitotic progression (13), and anti-mitotic drugs have historically proven to 

be highly successful anti-cancer agents (37). To identify mutations that conferred resistance 

to OTS964, we used HCT116 colorectal cancer cells, which harbor an increased mutation 

rate caused by a defect in mismatch repair (38). We cultured HCT116 cells in the presence 

of a lethal concentration of OTS964 and successfully isolated 12 clones that were capable of 

growing under these conditions (Fig. 4A). We found that these clones exhibited stable 

resistance to OTS964, as they failed to revert to OTS964 sensitivity after prolonged growth 

in normal medium (fig. S16A). Cancer cells commonly acquire chemotherapy resistance by 

amplifying the P-glycoprotein drug efflux pump (39). However, the OTS964-resistant clones 

remained sensitive to paclitaxel, a verified P-glycoprotein substrate, suggesting that they had 

not acquired a multi-drug resistance phenotype (fig. S16B)(40). These experiments indicated 
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that our drug-resistant clones could harbor a mutation or mutations that specifically altered 

OTS964 sensitivity.

To identify genetic alterations capable of conferring OTS964 resistance, we subjected 10 

OTS964-resistant clones, one Rosa26 control clone, and the parental cell population to 

whole-exome sequencing (WES). Notably, all 10 resistant clones were found to harbor 

heterozygous missense mutations in the poorly-characterized cyclin-dependent kinase 

CDK11B (fig. S16C). Eight clones harbored two mutations in this gene, H572Y and G579S, 

in trans, while two clones harbored only the G579S substitution. No CDK11B mutations 

were observed in the parental population or in the Rosa26 control clone. Sanger sequencing 

verified the presence of the CDK11B mutations in two independent drug-resistant clones 

that were not subjected to WES (Fig. 4B and fig. S16C). These mutations were also absent 

from additional control clones that were analyzed (fig. S16C) and have not been previously 

observed in the Catalog of Somatic Mutations in Cancer database (41).

The human genome encodes two CDK11 proteins, CDK11A and CDK11B, that are 97% 

identical and that arose from an evolutionarily-recent gene duplication event (42). The 

CDK11 family has been reported to support various cellular processes, including 

transcription, splicing, and chromosome segregation (43), but its role in cancer is unknown. 

No drugs have previously been reported to target CDK11, and inhibitors that are specific for 

single cyclin-dependent kinases (CDKs) are difficult to discover due to the sequence 

similarity among these kinases (44). We aligned the sequences of the human CDKs, and we 

noted that 19 out of 20 of these proteins harbored an alanine residue immediately upstream 

of the magnesium-coordinating DFG motif (fig. S16D). Only CDK11 contained a glycine at 

this location, and this glycine was mutated to serine in every OTS964-resistant clone that we 

sequenced (fig. S16C–D). This amino acid position (called “xDFG”) has previously been 

identified as a key residue that affects kinase inhibitor binding (45), suggesting a potential 

basis for CDK11-selective inhibition. To test whether the xDFG Gly→Ser mutation was 

sufficient to confer resistance to OTS964, we designed a strategy to use CRISPR-mediated 

homology-directed repair to introduce this substitution into the endogenous CDK11B gene 

(Fig. 4C). These experiments revealed that this point mutation was sufficient to restore 

viability in A375, A2780, DLD1, and MDA-MB-231 cancer cells grown in a lethal 

concentration of OTS964 (Fig. 4D–E). To verify that our results were not an off-target effect 

of CRISPR, we generated a retrovirus to stably express CDK11BG579S cDNA, and we 

confirmed that this construct was also sufficient to confer OTS964 resistance (fig. S16E). In 

an HCT116 clone that had spontaneously evolved resistance to OTS964, eliminating mutant 

CDK11B with CRISPR restored OTS964 sensitivity, demonstrating that this alteration is 

both necessary and sufficient for drug resistance (fig. S16F). Introducing an alanine 

substitution into residue 579, so that the CDK11B xDFG motif was identical to the other 

human CDKs, was also sufficient to decrease the efficacy of OTS964 (fig. S16G–H). Finally, 

to confirm a direct interaction between OTS964 and CDK11B, we assessed the binding of 

OTS964 to different CDKs. OTS964 bound to CDK11B with a KD of 40 nM, and it 

displayed greater than 10-fold selectivity for this kinase compared to several other CDKs 

(Fig. 4F and fig. S16I). In total, these results indicate that the putative PBK inhibitor 

OTS964 actually functions by targeting CDK11, and its specificity for this kinase is 

conferred by CDK11’s distinct xDFG motif.
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Discovering the consequences of CDK11 inhibition in cancer

We next determined the cellular effects of OTS964 treatment and CDK11 ablation with 

CRISPR. In cell competition assays, cancer cells transduced with guide RNAs specific for 

either CDK11A or CDK11B exhibited minimal dropout. However, guides designed to 

recognize both isoforms exhibited substantial dropout in every cell line that we tested, 

including pancreatic cancer and triple-negative breast cancer (Fig. 4G and fig. S17A). Flow 

cytometry revealed that cells transduced with pan-CDK11 guides accumulated in G2/M with 

4C DNA content, suggesting that CDK11 function is required for mitotic progression (fig. 

S17B). To test whether OTS964 phenocopied the CDK11 guide RNAs, we arrested A375 

cells expressing the chromosomal marker H2B-mCherry at G1/S with a double-thymidine 

block, and then released them into normal medium or medium containing OTS964. Cells 

treated with a low concentration of OTS964 exhibited delayed nuclear envelope breakdown 

and progressed slowly through mitosis (Fig. 4H, fig. S17C, and movies S1–2). Cells treated 

with a lethal concentration of OTS964 arrested in G2, before mitotic entry (movie S3). 

OTS964 treatment did not perturb DNA replication, as the arrested cells displayed 4C DNA 

content and did not accumulate 53BP1-foci, a marker of DNA damage (fig. S17D–E). 

Introducing the G579S substitution into A375 cells rescued normal mitotic entry and 

progression in the presence of a lethal concentration of OTS964 (fig. 4H–I, fig. S17C, and 

movie S4). These results establish CDK11 activity as necessary for mitosis in human cancer 

and suggest that CDK11 is the key in cellulo target of OTS964.

Discussion

It is generally known that small molecules can exhibit off-target effects that may confound 

the design of specific chemical inhibitors (46). Our data suggest that, rather than simply 

being the side effect of a drug, these off-target interactions are frequently the mechanism by 

which small molecules block cancer growth. Every inhibitor tested in this manuscript that 

lacked a previously-described resistance mutation was found to kill through an off-target 

effect; these results therefore identify this phenomenon as a common problem that affects 

cancer clinical trials. As 97% of drug-indication pairs tested in clinical trials fail to receive 

FDA approval (5), the mis-identification of essential genes in cancer and the mis-

characterization of reportedly target-specific inhibitors likely contributes to their 

exceedingly high failure rate. The adoption of more stringent, genetic target and activity 

validation studies may alleviate this problem and decrease the failure rate of new cancer 

drugs.

Each gene that we studied has been reported to be required in a cell-autonomous manner for 

cancer proliferation by more than 180 publications, and it is this specific claim that our work 

sought to test (data file S1). Toward this end, we generated knockout clones in at least three 

cancer cell lines, we performed CRISPR competition assays in 32 cell lines, and we 

performed CRISPRi-knockdown competition assays in an additional four cell lines, which 

all consistently demonstrated that HDAC6, MAPK14, PAK4, PBK, and PIM1 are 

dispensable for cancer cell fitness. While cancer cells harbor the ability to evolve in response 

to various perturbations, we do not believe that this adaptability is sufficient to explain the 

robust growth of the CRISPR-modified cells that we have generated. First, in the 
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competition assays that we conducted, cells are analyzed immediately after guide RNA 

transduction, allowing them no time to adapt to the loss of the targeted gene. For instance, 

while BRAF-addicted melanoma cells are capable of evolving BRAF-independence over 

time by acquiring secondary mutations in MEK or NRAS (47), we still observed a strong 

depletion of BRAF-targeting guides in these dropout assays. Secondly, we knocked out the 

verified drug target MEK1 and we confirmed that MEK1-KO clones grow substantially 

more slowly than Rosa26 control clones, demonstrating our ability to validate genetic 

dependencies in CRISPR-modified clones. Thirdly, while each of the genes that we studied 

has previously been reported to be essential, our experiments provide a mechanism to 

explain these discrepant results. In particular, we demonstrate that several RNAi constructs 

previously used to inhibit these genes exhibit identical anti-proliferative effects in target-WT 

and target-knockout cancer cells, suggesting that RNAi promiscuity contributed to the mis-

identification of these genes as drug targets. Fourthly, while it has been proposed that cells 

can compensate for CRISPR-induced mutations by up-regulating homologs of the targeted 

gene (17), we failed to detect any evidence of this in our knockout clones or in genetically-

modified cell lines from several independent laboratories. Lastly, high-throughput screens 

conducted in hundreds of cancer cell lines using both RNAi and CRISPR technologies have 

also failed to identify these genes as cancer dependencies. We therefore believe that cellular 

evolution after CRISPR mutagenesis is unlikely to explain the robust growth of the cancer 

cells lacking the drug targets that we have studied.

The cell lines studied in this paper were chosen based on the literature on each target, but we 

have not attempted to recapitulate every individual published result with each drug or drug 

target. Thus, it remains possible these drug targets exhibit a cell type-specific dependency 

pattern not uncovered in this work. To partially address this concern, we analyzed published 

whole-genome CRISPR and RNAi screening data from >700 cell lines, which consistently 

revealed that the genes studied in this work could be eliminated without substantially 

affecting cell fitness. Due to the breadth of cell lines tested both within our lab and through 

high-throughput screening, it is unlikely that these genes are genetic dependencies across 

cancer types or in a common cancer lineage. Nonetheless, we do not rule out the possibility 

that these genes are essential in a rare cancer type not included among those studied here. 

Additionally, it remains possible that these genes play a non-cell-autonomous role during 

tumorigenesis. For instance, while MAPK14/p38α has been reported to be essential for 

proliferation in breast cancer (9, 48), colon cancer (8), ovarian cancer (49), and several other 

cancer types, it has also been proposed to mediate inflammatory signaling (50). Thus, while 

our work provides strong evidence that these proteins are dispensable for cancer 

proliferation, we do not rule out the possibility that these proteins have some function in 

other, non-cell-autonomous processes related to tumor development in vivo.

Our results indicate that many cancer drugs in clinical trials kill cells independently of their 

reported targets. As the application of a predictive biomarker doubles the likelihood that a 

clinical trial will succeed (5), the inability to decipher a drug’s true target may prevent 

successful biomarker identification and contribute to trial failure. Moreover, our findings 

may provide evidence that cancer drug polypharmacology is a common MOA for reportedly 

target-specific compounds. For example, while ricolinostat has been reported to be a 

selective HDAC6 inhibitor (51), our work shows that HDAC6 expression is fully dispensable 
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for ricolinostat sensitivity. These results are similar to those reported in (52), which found 

that ricolinostat continued to kill HDAC6-KO HAP1 cells. The human genome harbors 18 

different histone deacetylases (53), and it is possible that this drug kills cells by inhibiting 

HDAC6 and several synthetically-redundant HDAC family members. Additionally, the 

invalidation of a drug’s putative target does not necessarily mean that a drug will be 

ineffective in the clinic, as some broadly non-specific inhibitors have proven efficacious in 

certain circumstances. In many cases, these successes derive from a thorough understanding 

of a drug’s MOA. For instance, the multi-targeted kinase inhibitor midostaurin has received 

FDA approval for use in FLT3+ leukemias because of its demonstrated activity against FLT3 

(54). Thus, strong validation of on-target drug activity remains essential.

Alternately, these mis-characterized drugs may kill cells by inhibiting single, specific 

proteins that are not closely related to their reported targets. For instance, our results 

demonstrate that the putative PBK inhibitor OTS964 functions by blocking CDK11 activity. 

Several CDK inhibitors have received FDA approval or are in late-stage trials for various 

malignancies, underscoring the clinical potential for targeting members of the cyclin-

dependent kinase family (55). However, no CDK11-specific inhibitors have been previously 

described (56). OTS964 and its derivatives could therefore allow us to block cancer growth 

by inhibiting a previously-undruggable mitotic CDK. Furthermore, our work identifies 

CDK11’s distinct xDFG motif as a key determinant of drug sensitivity, suggesting a 

potential structural basis for CDK11-specific inhibition. Although CDK11 has previously 

been reported to function in chromosome segregation (57), our results demonstrate that its 

activity is required for entry into mitosis. It will therefore be crucial to investigate whether 

CDK11 inhibitors are capable of synergizing with PLK1 inhibitors, Aurora A inhibitors, or 

any other drugs that similarly target mitotic entry (58). Finally, the CDK11 locus on 

Chromosome 1p has been reported to be deleted or translocated in several cancer types, 

including melanoma and neuroblastoma (43), raising the exciting possibility that alterations 

in this gene family could serve as predictive biomarkers for CDK11-inhibitor sensitivity.

More broadly, our results underscore the power of genetic approaches to improve the 

preclinical characterization of cancer drugs and drug targets. In particular, CRISPR-

mediated gene editing is a powerful methodology for interrogating the effects of loss-of-

function alterations in disease-relevant genes, and head-to-head comparisons have verified 

that CRISPR is less susceptible to off-target effects than RNA interference (59, 60). 

Although biochemical and biophysical approaches can demonstrate target engagement by a 

potential therapeutic molecule, these assays alone are insufficient to demonstrate the 

relevance of this interaction in cellulo. Mutagenesis experiments, using either spontaneous 

or CRISPR-directed approaches, can complement these assays to verify or discover a drug’s 

true MOA and indicate potential biomarkers for sensitivity and resistance. We suggest that 

the adoption of stringent genetic characterization assays in the preclinical setting will 

decrease the number of drugs used in human cancer patients that fail to provide any clinical 

benefit.
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Materials and methods

Study design

In this work, we sought to determine whether several drug targets were truly essential for 

cancer cell fitness. After discovering that many of these drug targets were non-essential, we 

investigated whether the drugs used to target them killed cells through an off-target effect. 

The cell lines used in this study were selected based on an analysis of the literature on these 

drug targets (summarized in data file S1). No predetermined sample sizes were used for this 

analysis. No randomization or blinding was performed. Cell competition experiments 

represent single biological replicates. Proliferation assays represent two to three biological 

replicates. Drug-sensitivity curves were generated with three to six technical replicates. Soft 

agar experiments represent three technical replicates with at least 15 independent fields 

counted for each experiment. Raw data for the cell competition experiments are included in 

data file S2.

Selecting drug targets to study

Our lab previously investigated the role of MELK in cancer (3, 4). We found that, contrary 

to previous results obtained with RNAi, cancer cells tolerated CRISPR-induced ablation of 

MELK with no loss in cell fitness. Additionally, we discovered that OTS167, a small-

molecule inhibitor of MELK in clinical trials, killed cells in a MELK-independent manner. 

These findings led us to investigate whether MELK and OTS167 were aberrations, or 

whether other drugs and drug targets had been similarly mischaracterized.

To begin this project, we generated a list of drugs and drug targets to study. We constructed 

this list using a few criteria, informed in part by our experience studying MELK. First, we 

sought to identify cancer genes that reportedly played a cell-autonomous role in cancer 

growth, so that we could study the most relevant phenotypes that resulted from their ablation 

in cell culture. Thus, we did not consider drugs that primarily target angiogenesis, the 

immune checkpoints, or related in vivo processes. (Importantly, our work does not rule out 

in vivo roles for the genes studied in this paper). Secondly, we only considered drugs that 

were reported to act by targeting single, specific proteins. If a drug was believed to act by 

inhibiting multiple proteins, then this would confound our CRISPR experiments, as the 

genetic ablation of a single gene would not be expected to phenocopy the effects of the 

inhibitor. Thirdly, we focused on genes that were reported to have broad dependency 

patterns, allowing us to study the consequences of their inhibition in a wide range of cell 

lines. Fourthly, we focused on genes that had been largely characterized using RNA 

interference, though we did not exclude genes that had been previously studied using 

CRISPR, transgenic mice, dominant-negative alleles, or other approaches. Fifthly, we chose 

drugs that were in advanced preclinical or clinical testing. Sixthly, we posited that the gold 

standard for showing on-target drug activity was the identification of a mutation that confers 

resistance to a targeted inhibitor, and we sought to study drugs that lacked known resistance-

granting mutations.

Using these criteria, we searched PubMed, the database of American clinical trials (https://

clinicaltrials.gov/), and other related resources (61) for drugs and drug targets that fit these 
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criteria. We did not aim to comprehensively identify every drug that met the above criteria, 

but instead chose to limit ourselves to a small number of targets such that we could deeply 

characterize each one. Using these approaches, we chose to study CASP3, HDAC6, 

MAPK14, PAK4, PBK, and PIM1. We first became aware of the putative PBK inhibitor 

OTS964 because it was developed by the same company that created the MELK inhibitor 

that we previously studied. A press release on this drug reported that clinical trials would 

soon be initiated, though to our knowledge these clinical trials have not yet begun (62). 

Additionally, our list of drugs initially included the putative PAK4 inhibitor KPT-9274. 

However, while performing the research described in this paper, a report was published that 

identified mutations in NAMPT that granted resistance to KPT-9274, and we therefore did 

not further pursue this compound (63). After the initial submission of this manuscript, a 

second group independently demonstrated that the putative HDAC6 inhibitor ricolinostat 

kills HDAC6-KO HAP1 cancer cells, in accordance with our results (52).

We also chose to study two drugs, PAC-1 and 1541B, that reportedly function by activating 

the apoptosis protein caspase-3. While caspase-3 is not considered to be a “cancer 

dependency”, its activation by small molecules has been reported to trigger cancer cell 

apoptosis (64, 65). The first activator, PAC-1, was introduced in a publication that used in 

vitro methods to demonstrate the ability of PAC-1 to induce pro-caspase 3 cleavage and 

activation. Furthermore, the group implied specificity of PAC-1 for caspase-3 by showing 

that it exhibited a higher IC50 value in MCF7 cells, a caspase 3-deficient breast cancer cell 

line, compared to caspase 3-expressing cell lines (64). After this study, however, concerns 

were raised over whether caspase-3 activation was the true MOA of PAC-1. In a letter to 

Nature Chemical Biology, another laboratory reportedly failed to see significant activation 

of pro-caspase 3 in in vitro studies of PAC-1 (66). Additionally, the group stated that the 

caspase 3-deficient cell line, MCF7, displayed similar sensitivities to the drug as two caspase 

3-expressing cell lines. Although this letter raised questions as to the true MOA of PAC-1, 

the original developers of this compound disputed these concerns, arguing that the different 

in vitro results were a consequence of different pro-caspase concentrations and buffer 

conditions used in the assays (67). In support of this claim, in later publications the group 

detailed the in vitro MOA of PAC-1 as a zinc chelator, describing a mechanism wherein zinc 

prevents procaspase-3 activation; therefore, the in vitro efficacy of PAC-1 is highly 

dependent on the concentration of zinc in the buffer (68). This group also argued that the 

activity of PAC-1 against the MCF7 cell line only occurs under conditions of low cell 

density and high drug concentration, and that the mechanism of death seems to resemble 

necrosis more than caspase-mediated apoptosis (67). Indeed, a number of other publications 

using PAC-1 and second-generation caspase-3 activators reported a similar resistance of 

MCF7 cells to caspase-3-activating compounds (65, 69). On the basis of this evidence, many 

in the field have continued to use PAC-1, not only in biological investigations but also in a 

number of clinical trials, under its listing as a caspase-3 activator (Table 1 and data file S1). 

In contrast to PAC-1, later caspase-3 activators, namely 1541, were reported to have direct 

interactions with caspase-3. 1541, the parental compound to the 1541B inhibitor used in our 

study, was not only able to induce caspase-3 activation in in vitro conditions where PAC-1 

exhibited no effect, but 1541-resistance mutations in the CASP3 gene were also described 

(65). Because caspase-3 deficiencies have been linked with decreased sensitivity to a wide 
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range of chemotherapeutic agents, we considered it possible that this putative resistance 

could be caused by an indirect effect on apoptosis (70, 71). Thus, due to the controversy and 

conflicting data concerning the MOA of different caspase 3-activators, we decided to include 

these compounds in our study.

Cell culture

The sources of each cell line are listed in data file S3. The identities of all human cell lines 

used in this study were confirmed using STR profiling (University of Arizona Genetics 

Core). A375, A549, A673, Cal51, Cama1, DLD1, HCT116, HEK293T, MDA-MB-231, 

PC3, SK-MEL-28, and U87 cell lines were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) (Thermo Fisher Scientific; Cat. No. 11995–073) supplemented with 10% Fetal 

Bovine Serum (FBS) (Sigma-Aldrich; Cat. No. F2442), 2 mM glutamine (Lonza; Cat. No. 

17–605F), and 100 U/ml penicillin and streptomycin (Life Technologies; Cat. No. 

15140122). A2780, DU-145, HCC1143, HCC38, HT29, K562, LNCaP, MDA-MB-453, 

MDA-MB-468, NCI-H82, OVK18, OVTOKO, SUIT2, SW480, and TOV-21G cell lines 

were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium (Lonza; Cat. No. 

12–115F/12) supplemented with 10% FBS, 2 mM glutamine, and 100 U/ml penicillin and 

streptomycin. MiaPaCa-2 cells were cultured in DMEM medium supplemented 10% FBS, 

2.5% horse serum (Thermo Fisher Scientific; Cat. No. 26050088), 2 mM glutamine, and 100 

U/ml penicillin and streptomycin. MCF7 cells were cultured in DMEM supplemented with 

10% FBS, 0.01 mg/ml insulin (Thermo Fisher Scientific; Cat. No. 12585–014), 2 mM 

glutamine, and 100 U/ml penicillin and streptomycin. T24 cells were cultured in McCoy’s 

5A medium (Life Technologies; Cat. No. 16600–108) supplemented with 10% FBS, 2 mM 

glutamine, and 100 U/ml penicillin and streptomycin. HepG2 cells were cultured in Eagle’s 

Minimum Essential medium (ATCC; Cat. No. 30–2003) supplemented with 10% FBS, 2 

mM glutamine, and 100 U/ml penicillin and streptomycin. RPE1 cells were cultured in 

DMEM/F12 (Thermo Fisher Scientific; Cat. No. 11320–033) supplemented with 10% FBS, 

2 mM glutamine, and 100 U/ml penicillin and streptomycin. Sum149 cells were cultured in 

Ham’s F12 medium (Lonza; Cat. No. 12–615F) supplemented with 5% FBS, 0.01 mg/ml 

insulin, 500 ng/ml hydrocortisone (STEMCELL Technologies; Cat. No. 07926), 2 mM 

glutamine, and 100 U/ml penicillin and streptomycin.

Additional details on the conduct of these studies are included in the Supplementary 

Materials and Methods section.

Statistical analysis

For box plots, the boxes represent the 25th, 50th, and 75th percentiles of the colonies per 

field, while the whiskers represent the 10th and 90th percentiles. In fig. S4, a Student’s t test 

(two-sided) was used to compare control and MEK1-KO colony formation efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cell competition assays to test the essentiality of putative cancer dependencies.
(A) Schematic of the CRISPR-based cell competition assays used in this paper (18).

(B) Cell competition assays comparing guides targeting AAVS1 and ROSA26 (non-

essential, negative control genes), RPA3 and PCNA (pan-essential positive control proteins), 

and Aurora A, Aurora B, and ERCC3 (inhibitor-validated cancer dependencies). Full results 

from these competition experiments are included in data file S2.

(C) Cell competition assays for the cell type-specific cancer dependencies BRAF and ESR1.

(D) Western blot analysis of A375 populations transduced with the indicated guide RNAs.

(E) Cell competition assays with guide RNAs targeting HDAC6, MAPK14, PAK4, PBK, or 

PIM1 in four different cancer cell lines.
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Figure 2. Generating and analyzing single cell-derived knockout clones of putative cancer 
dependencies.
(A) Schematic of the two-guide strategy used to generate clonal knockout cell lines.

(B) Western blot analysis of single-cell derived A375 knockout clones.

(C) Proliferation assays for HDAC6, MAPK14, PAK4, PBK, and PIM1 knockout clones.

(D) Representative images of A375 and DLD1 Rosa26 or MAPK14-KO clones grown in 

soft agar. Scale bar, 2 mm.

(E) Quantification of colony formation in control or knockout A375, DLD1, and HCT116 

clones. Boxes represent the 25th, 50th, and 75th percentiles of colonies per field, and the 

whiskers represent the 10th and 90th percentiles. For each assay, colonies were counted in at 

least 15 fields under a 10x objective.

Lin et al. Page 34

Sci Transl Med. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Target-independent cell killing by multiple anti-cancer drugs.
(A) Western blot analysis for caspase-3 in A375 and HCT116 cells.

(B) 7-point dose-response curves of Rosa26 and CASP3-KO A375 and HCT116 cells in the 

presence of two putative caspase-3 activators, 1541B and PAC-1.

(C) 7-point dose-response curves of Rosa26 and HDAC6-KO A375 and DLD1 cells in the 

presence of two putative HDAC6 inhibitors, ricolinostat and citarinostat.

(D) 7-point dose-response curves of Rosa26 and MAPK14-KO A375 and DLD1 cells in the 

presence of two putative MAPK14 inhibitors, ralimetinib and SCIO-469.

(E) 7-point dose-response curves of Rosa26 and PBK-KO A375 and DLD1 cells in the 

presence of two putative PBK inhibitors, OTS514 and OTS964.

(F) 7-point dose-response curves of Rosa26 and PIM1-KO A375 and DLD1 cells in the 

presence of a putative PIM1 inhibitor, SGI-1776.

(G) 7-point dose-response curves of Rosa26 and PAK4-KO A375 and HCT116 cells in the 

presence of a putative PAK4 inhibitor, PF-3758309.
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Figure 4. Discovery of CDK11 as the in cellulo target of the mis-characterized anti-cancer drug 
OTS964.
(A) A schematic of the strategy to use the highly mutagenic HCT116 cell line to isolate 

mutations that confer OTS964 resistance.

(B) Sanger sequencing validation of two heterozygous mutations in the CDK11B kinase 

domain.

(C) Constructs used to introduce the G579S mutation into CDK11B via CRISPR-mediated 

HDR. The yellow arrowhead indicates the site of Cas9 cleavage, the red bar indicates the 

G579S substitution, and the blue bars indicate silent mutations introduced to prevent re-

cutting after HDR.

(D) Crystal violet staining of cancer cells transfected with the indicated constructs and then 

cultured in a lethal concentration of OTS964.

(E) 7-point dose-response curves of Rosa26, PBK-KO, and CDK11BG579S clones grown in 

varying concentration of OTS964.

(F) Titration experiments reveal that OTS964 binds to CDK11B with a KD of 40 nM.

(G) Pancreatic cancer cell line MiaPaca-2 was transduced with guides specific CDK11A, 

guides specific for CDK11B, or guides that harbored cut sites in both genes.

(H) A375 H2B-mCherry cells (left) or A375 H2B-mCherry cells that express CDK11BG579S 

(right) were arrested at G1/S with a double-thymidine block and then were released into 
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normal medium or medium containing OTS964. The percentage of mitotic cells in each 

population was scored every hour.

(I) Representative images of the experiments in (H), 9 hours after release from thymidine. 

Scale bar, 50 μm.
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Table 1.

Anti-cancer drugs and drug targets

Target Drug # of Cancer Clinical Trials

CASP3
1541B Pre-clinical

PAC-1 3

HDAC6
Citarinostat 5

Ricolinostat 10

MAPK14 (p38α)
Ralimetinib 5

SCIO-469 3

PAK4 PF-03758309 1

PBK (TOPK)
OTS514 Pre-clinical

OTS964 Pre-clinical

PIM1 SGI-1776 2
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