CORRECTION

Correction: Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study

The PLOS Medicine Staff

There were transcription errors which resulted in incorrect rendering of some symbols in Table 1. Please see the corrected Table 1. The publisher apologizes for the error.

OPEN ACCESS

Citation: The *PLOS Medicine* Staff (2020)
Correction: Impact of self-imposed prevention
measures and short-term government-imposed
social distancing on mitigating and delaying a
COVID-19 epidemic: A modelling study. PLoS Med
17(12): e1003499. https://doi.org/10.1371/journal.
pmed.1003499

Published: December 4, 2020

Copyright: © 2020 The PLOS Medicine Staff. This is an open access article distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Table 1. Parameter values for the transmission model with and without awareness.

Parameters		Value*	Source
Epidemiological parameters			
Basic reproduction number	R_0	2.5 (2-3)	Li and colleagues [5], Park and colleagues [30], sensitivity analyses
Probability of transmission per contact with I_S	ε	0.048	From $R_0 = \beta [p\sigma/\gamma_M + (1-p)/\nu]$
Transmission rate of infection via contact with I_S	β	0.66 per day	$\beta = c\varepsilon$
Average contact rate (unique persons)	с	13.85 persons per day	Mossong and colleagues [31]
Relative infectivity of infectious with mild disease (I_M)	σ	50% (25%–75%)	Assumed, see, e.g., Liu and colleagues [29] sensitivity analyses
Proportion of infectious with mild disease (I_M)	p	82% (82%–90%)	Wu and colleagues [32], Anderson and colleagues [20], sensitivity analyses
Delay between infection and onset of infectiousness (latent period)	1/α	4 days	Shorter than incubation period [5, 30, 33]
Delay from onset of infectiousness to diagnosis for I_S	1/v	5 (3–7) days	Li and colleagues [5], sensitivity analyses
Recovery period of infectious with mild disease (I_M)	1/ γ _M	7 (5–9) days	Li Xingwang [†] , sensitivity analyses
Delay from diagnosis to recovery for unaware diagnosed (I_D)	$1/\gamma_S$	14 days	WHO [34]
Relative infectivity of isolated (I_D)		0%	Assuming perfect isolation
Case fatality rate of unaware diagnosed (I_D)	f	1.6%	Althaus and colleagues [35] Park and colleagues [30]
Disease-associated death rate of unaware diagnosed (I_D)	η	0.0011 per day	$\eta = \gamma_S f/(1-f)$
Awareness parameters			
Rate of awareness spread (slow, fast and range)	δ	5×10 ⁻⁵ , 1 (10 ⁻⁶ - 1) per year	Assumed, sensitivity analyses
Relative susceptibility to awareness acquisition for S , E , I_M , and R_M	k	50% (0%–100%)	Assumed, sensitivity analyses
Duration of awareness for S^a , E^a , I_M^a , and R_M^a	1/μ	30 (7-365) days	Assumed, sensitivity analyses
Duration of awareness for I_S^a	$1/\mu_S$	60 (7-365) days	Longer than $1/\mu$, sensitivity analyses
Delay from onset of infectiousness to diagnosis for I_S^a	1/v ^a	3 (1-5) days	Shorter than 1/ <i>v</i> , sensitivity analyses
Delay from diagnosis to recovery of aware diagnosed (I_D^a)	$1/\gamma_S^a$	12 days	Shorter than $1/\gamma_S$
Case fatality rate of aware diagnosed (I_D^a)	fa	1%	Smaller than f
Disease-associated death rate of aware diagnosed (I_D^a)	η^a	0.0008 per day	$\eta = \gamma_{\rm S}^a f^a / (1 - f^a)$
Prevention measure parameters			
Efficacy of mask-wearing (reduction in infectivity)		0%-100%	Varied
Efficacy of handwashing (reduction in susceptibility)		0%-100%	Varied
Efficacy of self-imposed contact rate reduction		0%-100%	Varied
Efficacy of government-imposed contact rate reduction		0%-100%	Varied
Duration of government-imposed social distancing		3 (1–13) months	Assumed, sensitivity analyses

(Continued)

Table 1. (Continued)

Parameters	Value*	Source
Threshold for initiation of government-	10 (1-1,000)	Assumed, sensitivity analyses
imposed social distancing	diagnoses	

^{*}Mean or median values were used from literature; range was used in the sensitivity analyses.

https://doi.org/10.1371/journal.pmed.1003499.t001

Reference

 Teslya A, Pham TM, Godijk NG, Kretzschmar ME, Bootsma MCJ, Rozhnova G (2020) Impact of selfimposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study. PLoS Med 17(7): e1003166. https://doi.org/10. 1371/journal.pmed.1003166 PMID: 32692736

[†]Expert at China's National Health Commission.