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Abstract

Joint models for longitudinal biomarkers and time-to-event data are widely used in longitudinal 

studies. Many joint modeling approaches have been proposed to handle different types of 

longitudinal biomarkers and survival outcomes. However, most existing joint modeling methods 

cannot deal with a large number of longitudinal biomarkers simultaneously, such as the 

longitudinally collected gene expression profiles. In this article, we propose a new joint modeling 

method under the Bayesian framework, which is able to analyze longitudinal biomarkers of high 

dimension. Specifically, we assume that only a few unobserved latent variables are related to the 

survival outcome and the latent variables are inferred using a factor analysis model, which greatly 

reduces the dimensionality of the biomarkers and also accounts for the high correlations among 

the biomarkers. Through extensive simulation studies, we show that our proposed method has 

improved prediction accuracy over other joint modeling methods. We illustrate the usefulness of 

our method on a dataset of idiopathic pulmonary fibrosis patients in which we are interested in 

predicting the patients’ time-to-death using their gene expression profiles.
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1 Introduction

In longitudinal studies, it is often of great interest to study the association between a 

biomarker repeatedly measured over time and the survival outcome. Many methods have 

been proposed to assess this association, such as the landmarking methods (Anderson et al., 

1983; van Houwelingen and Putter, 2011) and the joint modeling methods (Faucett and 

Thomas, 1996; Tsiatis and Davidian, 2004; Rizopoulos et al., 2014). Among these 

approaches, joint modeling methods of longitudinal and time-to-event data have been widely 

used, because they are able to model the longitudinal biomarker as well as the survival time 

flexibly and appropriately and they can provide individualized dynamic predictions based on 

all past values of the longitudinal biomarker (Rizopoulos et al., 2014).

In our motivating study, a cohort of patients with idiopathic pulmonary fibrosis (IPF) were 

followed longitudinally (Herazo-Maya et al., 2013). IPF is a highly lethal lung disease with 

median survival time being three to five years after diagnosis. At each visit, gene expression 

profiles in the peripheral blood mononuclear cells were measured for the patients. The time-

to-event and important clinical variables were recorded for these patients as well. Here, we 

are interested in predicting the patients’ survival time using relevant clinical variables and 

the repeatedly measured gene expression profiles, where the joint modeling approach serves 

as a promising tool.

During the last two decades, many joint modeling methods have been proposed to deal with 

different types of longitudinal biomarkers and survival outcomes. (Tsiatis and Davidian, 

2004) provided a comprehensive overview of some early work on joint models and (Proust-

Lima et al., 2014) discussed some recent advances on this topic. For instance, (Brown et al., 

2005) proposed a joint modelling method in which cubic B-splines were introduced to 

model the longitudinal markers flexibly and their approach can deal with multivariate 

biomarkers, but is limited to only a few of them. In order to further increase the flexibility of 

the longitudinal submodel, (Rizopoulos and Ghosh, 2011) developed a spline-based 

approach for longitudinal outcomes with unusual time-dependent shapes. To improve the 

computation efficiency, (Rizopoulos, 2012) proposed to use a pseudo-adaptive Gauss-

Hermite quadrature rule to achieve a fast computation for integrations in joint models, which 

are usually computationally intensive to calculate, especially when the number of random 

effects is large. (Rizopoulos et al., 2014) used the Bayesian model averaging idea in the joint 

modeling framework to obtain individualized prediction by aggregating results from 

different types of submodels. (He et al., 2015) developed a penalized likelihood method with 

LASSO penalty for simultaneous selection of fixed and random effects in joint models. 

However, all aforementioned methods cannot deal with a large number of biomarkers 

simultaneously, such as the gene expression profiles in our study. The number of subject-

specific random effects and the dimension of the covariance matrix of the random effects for 

Liu et al. Page 2

Stat Biosci. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all biomarkers grow rapidly as the number of biomarkers increases, which makes those 

methods computationally intractable.

In this article, we propose a new joint modeling method under the Bayesian framework to 

deal with longitudinal biomarkers of high dimension. Specifically, we assume that only a 

few unobserved latent variables are related to the survival outcome. We adopt a factor 

analysis model (West, 2003; Carvalho et al., 2008) to infer the latent variables, which greatly 

reduces the dimensionality of the biomarkers. In addition, the factor analysis model can also 

account for the high correlations among the biomarkers, as often observed in the gene 

expression data. The factor analysis model is integrated into the joint modeling framework 

so that the uncertainties in the inference of the latent variables can be appropriately 

accounted for when making predictions.

The remainder of the article is organized as follows. Section 2 describes our proposed 

model. Section 3 presents our estimation procedure and survival prediction method. Section 

4 shows the performance of our proposed method in simulation studies. Section 5 illustrates 

the application of our proposed model on the IPF dataset. Section 6 concludes the article 

with some remarks.

2 Model specification

2.1 Longitudinal submodel

Let y(i)(t) = (y1
(i)(t), y2

(i)(t), ⋯, yG
(i)(t))T  denote the gene expression profiles for subject i at time 

point t, where G is the total number of genes. Then a standard factor analysis model can be 

written as:

y(i)(t) = Λη(i)(t) + ε(i)(t), ε(i)(t) ∼iid N(0, diag{σ1
2, σ2

2, ⋯, σG
2 }) (1)

where η(i)(t) = (η1
(i)(t), η2

(i)(t), ⋯, ηK
(i)(t))T  is a K-dimensional latent factor score vector for the 

ith subject at time point t with K being some pre-specified number of factors (see Section 3 

for details in choosing K), Λ is a G × K factor loading matrix, ε(i)(t) are measurement errors 

of the gene expression profile for subject i at time point t, and (σ1
2, σ2

2, ⋯, σG
2 ) are the gene-

specific variances for the measurement errors.

As in most joint modeling methods, we adopt linear mixed-effects models for the factor 

scores η(i)(t) as follows. For k = 1,2, ⋯, K,

ηk
(i)(t) = xk

(i)(t)Tβk + zk
(i)(t)Tbk

(i), (2)

where βk are the fixed effects, bk
(i) ∼iid N(0, Dk) are the centered random effects specific for 

subject i with Dk being the covariance matrix for the random effects in the kth factor scores, 

xk
(i)(t) and zk

(i)(t) denote the time-dependent design vectors for subject i. In general, any 

covariates of interest and any functions of t can be specified in xk
(i)(t) and zk

(i)(t).
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Constraints have to be placed on the factor loading matrix Λ to ensure identifiability. As 

commonly done, we constrain Λ to be a lower-triangular matrix with all diagonal elements 

being one so that we can model the factor scores flexibly (Erosheva and Curtis, 2011). In the 

Bayesian framework, we can easily integrate the factor analysis model into the joint 

modeling framework and fit them simultaneously. Specifically, only the η(i)(t) enter into the 

survival submodel and hence the dimension of the biomarkers can be largely reduced, since 

the number of factors K ≪ G in practice.

2.2 Survival submodel

Denote the observed event time for subject i by Ti, the minimum of the censoring time Ci 

and the true event time Ti
∗. Let δi = I(Ti

∗ ≤ Ci) denote the event indicator for subject i, where 

I(·) is the indicator function taking value 1 if Ti
∗ ≤ Ci and 0 otherwise.

We assume that the association between the gene expression profiles and the survival 

outcome is induced by the latent variables and hence only the factor scores η(i)(t) enter into 

the survival submodel. To be specific, we take the form of hazard function as

ℎi(t |E(i)(t), ωi) = ℎ0(t)exp{γTωi + αTη(i)(t)}, (3)

where E(i)(t) = {η(i)(s), 0 ≤ s < t} denotes the history of the unobserved longitudinal latent 

process up to time t for subject i, ωi denotes the baseline covariates for subject i with 

corresponding regression coefficients γ, the parameters in α quantify the associations 

between the latent factor scores and the survival outcome, and h0(·) is the baseline hazard 

function. To specify the survival process, h0(·) is assumed to be a piecewise constant 

function to allow for flexibility, as done in (Taylor et al., 2013), that is

ℎ0(t) = ∑
q = 1

Q
ρq ⋅ I(Bq < t ≤ Bq + 1), (4)

where {Bq: q = 1, ⋯, Q+1} are the pre-specified knots with corresponding function values 

{ρq: q = 1, ⋯, Q} on each interval. Selection of knots in h0(·) is crucial because too many 

knots may lead to overfitting while too few knots make the model less flexible. In our work, 

we fix B1 = 0 and BQ+1 = ∞ and choose the positions of other knots as the Q-quantiles of 

the observed event times to ensure similar numbers of events in each interval, as commonly 

done (Taylor et al., 2013; Rizopoulos et al., 2014).

3 Estimation and prediction

3.1 Simultaneous estimation of submodels

We perform Markov chain Monte Carlo algorithm (MCMC) to estimate parameters in the 

submodels jointly. Following previous work (Taylor et al., 2013; Rizopoulos et al., 2014), 

we assume that longitudinal outcomes and the survival process are independent conditional 

on the random effects. Meanwhile, latent factors of each subject are assumed to be 

independent. Let b(i) = (b1
(i), b2

(i), ⋯, bK
(i))

T
 and we have
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p(y(i), T i, δi |θ, b(i)) = p(y(i) |θ, b(i))p(T i, δi |θ, b(i)),

p(y(i) |θ, b(i)) = ∏
t = ti1

tini
p(y(i)(t) |θ, b(i)),

(5)

where ni is the number of repeated measures for subject i and θT = (θt
T , θb

T , θe
T , θy

T ) denotes 

all parameters with θt denoting the parameters in the survival process, θe the parameters in 

the factor scores, θy the parameters in the factor analysis model, and θb the covariance 

matrices of the random effects. The posterior distribution of the random effects b(i) and 

parameters θ conditional on the observed data can be written out as

p(θ, b(i) | y(i), T i, δi) ∝ p(y(i) |θy, θe, b(i))p(T i, δi |θt, η(i))p(b(i) |θb)p(θ) . (6)

Under the assumption that censoring mechanism and the visiting time are independent of the 

true event time given the observed history, we can derive the likelihood contribution for 

subject i conditional on θ and b(i) by substituting the latent factor η(i)(t), that is

p(y(i)(t), T i, δi |θ, b(i)) = ∏
t = t1

tni
p(y(i)(t) |θy, θe, b(i))p(T i, δi |θℎ, η(i))

∝ ∏
g = 1

G
∏

t = ti1

tini
exp − 1

2σg2
yg(i)(t) − λg

T(βx(i)(t) + b(i)z(i)(t)) 2

× ℎ0(T i) ⋅ exp{γTωi + αT(βx(i)(T i) + b(i)z(i)(T i))}
δi

× exp −
0

Ti
ℎ0(s)exp{γTωi αT(βx(i)(s) b(i)z(i)(s))}ds

(7)

where β = (β1, β2, ⋯, βK)T and λg
T  denotes the gth row of the loading matrix Λ.

The number of factors K is usually unknown in practice. Here, we adopt the deviance 

information criterion (DIC) (Gelman et al., 2014) to select the number of factors based on 

the full likelihood derived from Equation (7) (See Section 4 for the performance). DIC is a 

criterion for model comparison based on the balance between model fit and model 

complexity, both of which depend on the number of factors selected in the model. Also, it is 

worth noting that both the number of factors and the loading matrix depend on the 

longitudinal and survival submodels. In fact, the survival submodel tends to make the factor 

scores as predictive as possible while the longitudinal submodel favors the factor scores that 

explain a large proportion of the variations in the biomarkers. In this sense, our proposed 

model has similar flavor to the partial least squares regression (Geladi and Kowalski, 1986).

When nonlinear functions of t exist in x(i)(t) or z(i)(t), the integral in (7) does not have a 

closed-form solution, in which case a numerical method must be employed for its 

evaluation. A favorable choice for this calculation is a 15-point Gauss-Kronrod quadrature 

rule (Press, 2007). In this paper, x(i)(t) and z(i)(t) are both set to include only linear functions 

of t for two reasons. One reason is that most of the longitudinal biomarkers in our IPF 
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dataset seem to have a linear trend over time (See Figure 1). The other reason is that extra 

non-linear terms will probably cause overfitting because the number of time points per 

patient is about three or four in our dataset. In fact, extension to nonlinear functions is easy 

to implement in practice using the Gauss-Kronrod quadrature rule.

We choose conjugate prior distributions for most parameters in our model to facilitate 

computation. In particular, for the fixed effects β in the longitudinal submodel and 

coefficients α and γ in the survival submodel, we pick independent diffuse normal priors. 

The standard normal prior distribution is specified for each free element in the factor loading 

matrix Λ. We choose independent Gamma distributions for (1/σ1
2, 1/σ2

2, ⋯, 1/σG
2 ), the 

reciprocal of the gene-specific variances, and the parameters (ρ1, ρ2, ⋯, ρQ) in the baseline 

hazard function h0(·). Finally, independent InverseWishart distributions are specified to be 

the prior distributions for (D1, D2, ⋯, DK), the covariance matrices for the random effects. 

More details on the MCMC implementation are given in Appendix A of the Supplementary 

Materials.

3.2 Dynamic prediction

The primary goal of the joint modeling methods is to predict the event time for each subject 

based on his/her past observations and update the prediction dynamically when new 

observations are available. In our proposed method, it is straightforward to predict the 

subject-specific event time for a new subject j given this subject’s longitudinal biomarkers 

recorded up to any time point t. Let ℛj(t) denote the longitudinal biomarkers from subject j 

recorded up to time point t, which also implies that this subject’s true event time Tj
∗ > t . For 

any u > t, the probability that subject j will survive at least up to u can be written as

ζj(u | t) = Pr(T j
∗ ≥ u|T j

∗ > t, ℛj(t), ωj, ℳn) (8)

Where ℳn = {Ti, δi, y(i): i = 1, 2, …, n} are the observed longitudinal biomarkers and survival 

outcomes in training data and ωj are the baseline covariates of subject j. Let b(j) denote the 

random effects for subject j. According to (Taylor et al., 2013) and (Rizopoulos et al., 2014), 

we have

ζj(u | t) = Pr(T j u |T j t θ b(j))p(b(j) |T j t θ ℛj(t))p(θ |ℳn)dθdb(j)

= S(u |θ b(j))
S(t |θ b(j))

p(b(j) |T j t θ ℛj(t))p(θ |ℳn)dθdb(j) (9)

where S(·|θ,b(j)) is the survival function defined as:

S(t |θ, b(j)) = exp −
0

t
ℎ0(s)exp{γTωj + αT(βx(j)(s) + b(j)z(j)(s))}ds . (10)

With the posterior samples of the parameters θ obtained using the training data ℳn, a 

straightforward MCMC procedure can be implemented to sample b(j) from its posterior 

distribution given ℛj(t). Based on the posterior samples of θ and b(j), we can obtain the 
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prediction of ζj(u|t) via Monte Carlo simulation. Detailed prediction algorithm for ζj(u|t) is 

provided in Appendix B of the Supplementary Materials.

4 Simulation studies

4.1 Simulation setting

In this section, we study the prediction performance of our proposed method through 

simulation studies. We also assess the performance of using DIC to choose the number of 

factors.

To mimic our IPF dataset, the number of subjects is 50, the number of genes is 50, the 

number of visits per subject is randomly drawn from {2,3,4,5} with equal probability, and 

the time points for each subject are randomly drawn from Uniform(0,1) in addition to the 

baseline visit. There are two baseline covariates (ωi) in our simulation, which are generated 

using N(0, 1). Also, there are three factors (K = 3) in our simulation and the corresponding 

factor scores η(i)(t) for subject i are generated as ηk
(i)(t) = bk0

(i) + bk1
(i)t, where bk0

(i) Uniform(0.1, 2)

and bk1
(i) Uniform(0.1, 1).

The survival time for each subject is generated based on the hazard function in Equation (3) 

with all parameters of the covariate effects (γ and α) being 1 and the baseline hazard 

function h0(t) being the hazard function of the Weibull(15,3) distribution. The censoring 

time Ci is independently drawn from Weibull(3,3) distribution so that the censoring rate is 

about 35%. The gene expression profiles are generated using Equation (1), where both the 

nonzero free elements in loading matrix Λ and the errors are independently generated from 

N(0, 1). In particular, a sparse loading matrix Λ is used, where the 4th to 20th, 21st to 35th, 

and 36th to 50th free elements of the first, second, and third factors are nonzero, 

respectively. We think this data generating process is comprehensive enough to mimic a 

gene correlation structure that is complicated enough as one would usually observe in real 

applications. First, the correlation matrix of the genes varies with time point t and the 

individual level random effect b(i). Second, since the loading matrix Λ is set to be sparse, the 

genes are naturally divided into three distinctive groups that correlation across different 

groups are 0. Finally, within each group, correlation between each pair of genes usually 

locates on (−0.5, 0.5), representing either strong or weak and positive or negative 

correlations of the genes.

In total, we simulate 200 datasets. In each dataset, we generate a set of testing data having 

30 subjects, which is used to assess the predictive performance. In the training process, we 

choose (nearly) non-informative priors for our parameters to make the posterior nearly not 

affected by hyperparameters of the prior. More specifically, we choose the standard normal 

distribution N(0, 1) for the prior distribution for each of the free elements in the factor 

loading matrix Λ (Ghosh and Dunson, 2009), Q = 4 for the number of knots in the baseline 

hazard funciton, Gamma(0.1, 0.1) for the distribution of (ρ1, ρ2, ρ3, ρ4) in the baseline 

hazard function, N(0, 25) for the covariate effects of parameters (β, α, γ), and 

InverseWishart(I2×2, 3) for the distribution of the covariance matrices of the random effects 

(D1, D2, ⋯, DK), and Gamma(0.01,0.01) distribution for the reciprocal of the gene-specific 
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variances (1/σ1
2, 1/σ2

2, ⋯, 1/σG
2 ). We run our model with a given number of factors on each 

dataset for 150,000 iterations with the first 70,000 samples discarded as burn-ins. By 

visually inspecting the trace plots of all parameters and examining their Geweke score 

(Geweke et al., 1991), there is no significant evidence of convergence issues. Examples of 

the convergence diagnostic for MCMC are provided in Appendix C of the supplement 

material.

4.2 Estimation in the Factor Analysis Model

The number of factors and the estimation of the loading matrix in the factor analysis are two 

important aspects of the factor analysis model, since the former one is related to the 

prediction performance while the latter one allows us to identify the driving biomarkers in 

each factor and gain insights on the biological mechanisms involved in the disease.

To evaluate how well DIC performs in selecting the number of factors K, we calculate the 

DICs for all models with the number of factors varying from 1 to 5. For each simulation 

dataset, the proportion of factors with the smallest DIC value is recorded. The true number 

of factors in the simulation datasets is 3 and the distribution of the number of factors being 

selected is shown in Figure 2. In 72% of the 200 experiments, the model with 3 factors has 

the smallest DIC. Also, in 95% of the 200 experiments, the number of factors being selected 

is among 2, 3 and 4, which is close to the true value. Therefore, our simulation results 

suggest that DIC performs well in selecting the number of factors. In addition, it is 

interesting to see if the nonzero free elements (i.e. the driving biomarker) in each factor can 

be correctly selected. Since we do not add sparsity on the loading matrix in our model, we 

calculate the Spearman’s rank correlation coefficients between the estimated loading matrix 

and the true loading matrix. The mean and standard deviation for the averages of the 

absolute values of the rank correlation coefficients over three factors is 0.72 and 0.06 based 

on the 200 datasets, respectively, suggesting that our model performs reasonably well in 

selecting the driving biomarkers in each factor.

4.3 Assessment of Predictive Performance

To evaluate the predictive performance of our proposed model, we design two other models 

for comparison. For the first model, we pick the biomarker with the largest factor in the kth 

column of the true factor loading matrix Λ for k = 1, 2, 3 respectively. Since the true Λ has a 

group structure, we can exactly pick three biomarkers in this way and use them as the 

longitudinal covariates to fit a standard joint model. With our knowledge about the true 

model, this procedure is actually biased to favor of this benchmark method and selecting the 

most three informative biomarkers to construct the benchmark model. This model is denoted 

as JMsig and will be the first choice of the researchers when the dimension of longitudinal 

covariates is high and the standard joint models fail. For the second model, we first select 

three biomarkers at random and then a standard joint model is fitted with these randomly 

selected genes as in the first model. We refer to this model as JMran. Note that the number 

of biomarkers selected for these two benchmark models is equal to the true number of 

factors. And we refer to our proposed model as FAJM (Factor Analysis Joint Model) in 

comparisons with the two benchmarks.
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To measure the predictive performance, we adopt the AUC approach for joint models 

proposed in (Rizopoulos et al., 2014). Suppose that there is a randomly chosen pair of 

patients {i, j} and both of them are event-free up to time t. Using their longitudinal 

measurements up to t, we can estimate ζi(u|t) and ζj(u|t) for any given u > t via our 

prediction procedure. Then, the area under curve (AUC) is defined as

AUC(u, t) = Pr ζi(u | t) > ζj(u | t) |{T i
∗ > u} {t < T j

∗ ≤ u} (11)

where Ti
∗ and Tj

∗ are true event time of i and j. If subject j experiences event within (t, u] 

while subject i is event-free during this period, joint models with good prediction 

performance are expected to assign to subject i the higher probability for surviving longer 

than u, which is equivalent to ζi(u|t) > ζj(u|t). In practice, selection of a relevant time point u 
is crucial for clinical decision.

We calculate the AUCs for the three models for each of the 200 simulated datasets. 

Specifically, for each pair {i, j} considered in the testing data with Ti
∗ > Tj

∗, we take proper 

values of t and u to ensure Ti
∗ > u and t < Tj

∗ ≤ u. Then, we can estimate the AUC by 

counting the percentage of such {i, j} that satisfies ζi(u|t) > ζj(u|t). Figure 3 shows the 

boxplots of the estimated AUCs for FAJM, JMsig, and JMran on the 200 simulated datasets, 

suggesting that FAJM has improved prediction compared to the other two models and that 

including only the most significant biomarkers in the model might not be the optimal choice 

in terms of prediction.

4.4 Sensitivity of the Results

It is of our interests to investigate the influence of our choice of some hyperparameters for 

the model on statistical inference. In this section, we present our sensitivity analysis through 

simulation studies. First, we study the impact of the choice of Q(= 4), i.e. the number of 

distinctive intervals in the baseline hazard function h0 (·). Although one would expect the 

choice of Q is important to the joint model’s performance in risk prediction, it was 

suggested in the literature (Taylor et al., 2013) that the model is usually not sensitive to the 

numbers and positions of these knots when they are chosen within a proper scale. To study 

this issue, we conduct simulation studies with Q chosen as 2 and 6. Again, the knots are 

selected as the empirical Q-quantiles of the event time and other simulation settings remain 

the same. The resulting AUC values are compared across Q = 2, 4, 6 in Figure 4. It can be 

seen that the resulting AUCs are very close for different choices of Q so the performance of 

our method is not sensitive to the choice of Q when it varies within a certain range.

Second, we note that the amount of the survival information carried by the high dimensional 

biomarkers is determined by the signal-to-noise ratio (SNR) of the factor analysis model. 

When the variance of the noise for each biomarker increases, the SNR will decrease and the 

biomarkers will become less informative to the survival outcome. To study the impact of 

SNR, we conduct simulation studies where the variance of εk
(i)(t) is increased from 1 to 4 and 

9. We compare the estimation performance in the factor analysis model and the predictive 

performance for the survival outcome of our methods across different settings for the 
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magnitude of the noise. The number of factors being selected for each setting is shown in 

Figure 5 and the resulting AUCs are presented in Figure 6. As the noise variance grows, both 

the predictive accuracy and the factorization performance of the FAJM decreases 

moderately.

5 Application to the IPF dataset

In this section, we apply our proposed method to the IPF dataset that was briefly described 

in Section 1. IPF is a highly lethal lung disease with the only effective intervention being 

lung transplantation. However, due to the limited availability of lung donors, it is important 

to prioritize the patients based on their risks to receive transplantation. In the current clinical 

setting, the GAP score is widely used as an indicator of disease stage for IPF patients, which 

is calculated based on the patient’s clinical information, including gender (G), age (A) and 

two lung physiology variables (P) (Ley et al., 2012). A higher GAP score indicates higher 

risk of death. In the IPF dataset, there are a total of 26 patients with the median number of 

visits being 3 (see Figure 1), the number of deaths being 17 and the number of censoring 

being 9. We include 55 genes in this analysis, which are related to the survival outcomes for 

IPF patients in an independent dataset. The Kaplan-Meier estimate of the survival function is 

shown in Figure 7, where we can see that the median survival time is about four years. Our 

goal is to build a risk prediction model using the baseline GAP scores and the longitudinal 

biomarkers to assess whether the longitudinal biomarkers are significantly associated with 

the survival outcome and hence could potentially be used to improve prediction in the 

clinical setting.

The survival submodel in the IPF dataset is specified as

ℎi(t |E(i)(t), ωi) = ℎ0(t)exp γ1GAPi + ∑
k = 1

K
αk[(βk0 + bk0

(i)) + (βk1 + bk1
(i))t] (12)

where h0(t) is assumed to be constant over four intervals whose knots are chosen to be (B1, 

B2, B3, B4, B5) = (0, 2, 3.6, 5.6, ∞) years. The hyperparameters in the prior distributions are 

chosen to be the same as our simulation studies, which was described in Section 4. We run 

our model with the number of factors K varying from 1 to 5 and we run a single chain of 

200,000 MCMC iterations for each K. The first 100,000 iterations are discarded as burn-in 

and we find no evidence for poor convergence based on their trace plots and Geweke score 

(Geweke et al., 1991) of all parameters. Again, the diagnostics for MCMC convergence are 

presented in the supplement materials. In addition, we include sensitivity analysis to 

demonstrate that our prior is non-informative, e.g., having negligible effect on the results and 

present it in Figure S3 of the supplement material. The DIC values for the models with the 

number of factors being K = 1, 2, 3, 4, 5 are 2516.30, 2379.90, 2292.32, 2367.09, and 

2767.81, respectively, which suggests the model with K = 3 fits the data best and hence we 

focus this model in the following discussion. The estimates (with 95% credible intervals) for 

γ1, α1, α2 and α3 are 2.35 (0.83, 4.50), 0.77 (0.03,1.66), 3.38 (0.56, 7.63), and −3.15(−7.22, 

1.24), respectively. From the estimates, we can see that a higher GAP score indicates higher 

risk of death, as expected. The estimates for the effects of the three factor scores on the 
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hazard are significant or marginally significant, suggesting the inclusion of the longitudinal 

gene expression profiles in the risk prediction model might improve prediction accuracy.

Based on the absolute values of the load matrix, we could determine which genes are driving 

the first three factors, which might provide some hints on the biological mechanisms of the 

death in IPF patients. Specifically, we take a close look at the top five genes driving the first 

three factors, which are (LAT, SLC11A1, S100A12, PRKCQ, UBASH3A), (BTN3A2, 
IL7R, S100A12, CCIN, TCF7) and (BTN3A2, BTN3A1, GPRASP1, SALL2, CD28), 

respectively. In fact, these genes are highly related to the T-cell antigen receptor signal 

transduction pathway and immune systems, which might suggest that the immune related 

pathways play an important role in survival for IPF patients.

To compare the prediction performance of FAJM, JMsig, and JMran as in our simulation 

studies, we calculate the AUCs for the three models using cross-validation. Specifically, we 

treat each pair of patients whose time-to-event outcomes are comparable as testing data and 

fit all three models on the remaining patients. As suggested in the analysis above, we only 

run our proposed model with three factors, that is we do not use DIC to select the number of 

factors for each training data for the sake of computation time. For the benchmark JMsig, 

unable to know the true values in the loading matrix Λ, we instead pick genes LAT, 
BTN3A2, BTN3A1 and IL7R to construct JMsig because they are the leading genes for the 

three factors in our fitted model. Since BTN3A2 is leading two factors, we also pick the 

genes with the second largest loading factor from these two factors and we actually include 

four biomarkers in JMsig. While in JMran, three randomly selected genes are used to 

construct the joint model. Based on the results of all 263 comparable pairs, the AUCs are 

0.73, 0.69 and 0.67 for FAJM, JMsig and JMran, respectively, suggesting that the prediction 

accuracy of FAJM is better than the other two models. In addition, we change the number of 

distinctive intervals in the baseline hazard function Q to 2 and 6, to study the sensitivity of 

our method to the choice of the number of knots in the baseline hazard function. We find 

that the AUCs are not sensitive to the choice on Q: when Q = 2, the resulting AUC is 0.72 

and when Q = 6, the resulting AUC is still 0.73.

To visualize the prediction and the estimated factor scores of our proposed method, we plot 

survival probabilities for one comparable pair (patient 3 and patient 7) based on their 

observations up to 0.8 years, together with their estimated factor scores. Specifically, we 

estimate ζj(u|t) for some u > t = 0.8 and plot their median survival probabilities, as shown in 

Figure 8. The GAP scores for patient 3 and patient 7 are 5 and 4, respectively, which 

suggests that patient 3 has higher risk than patient 7 based on the clinical variable alone. In 

fact, patient 3 and patient 7 died at 5.2 years and 1.2 years, which contradicts with the 

prediction using GAP scores. According to the prediction of our model, patient 3 has higher 

survival probability than patient 7, which is mainly driven by the latent factors as shown in 

Figure 8. These results suggest that the inclusion of gene expression profiles in the risk 

prediction model might improve the prediction accuracy and these biomarkers might be 

more informative than clinical variables.

Liu et al. Page 11

Stat Biosci. Author manuscript; available in PMC 2020 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6 Discussion

In this paper, we have proposed a new joint modeling method that incorporates the factor 

analysis model to deal with the longitudinal biomarkers of high dimension and the high 

correlations among the biomarkers. Our proposed model is similar to the partial least 

squares regression in that the latent variables are learned in a supervised way, which might 

lead to increased interpretability of the factors. In the simulation study, we show that our 

proposed method has improved prediction accuracy compared to the model including only 

the most informative biomarkers, which might be the first choice of many researchers when 

a large number of longitudinal biomarkers are presented. The application of our proposed 

method to the IPF dataset suggests that our method could be very useful, especially in 

longitudinal genomics studies where there are a large number of longitudinal biomarkers.

We last discuss the limitations of our work and some potential extensions. First, our 

proposed method only considers the case where the factor scores only include the linear 

function of time t. However, our method can be easily extended to include nonlinear 

functions and to include clinical variables in the factor scores, whenever necessary. Second, 

we have focused on risk prediction and the fitted latent variables η(i)(t) can be interpreted as 

individual specific scores characterizing both the pattern of gene expression and survival 

outcome. However, our way to identify informative genes from the factor analysis model is 

heuristic and may lose information from the loading factor. Consequently, the 

interpretability of our method could be improved through imposing certain sparsity or group 

constrain on the loading matrix when certain structure is believed to appear among the 

biomarkers. This will provide a more systematic way to identity important genes or gene’s 

group structure. Finally, we have assumed that at all the given time points, we can observe 

complete longitudinal data. Although this assumption is satisfied for our real data example, 

it is still possible that biomarkers may be missing when the scale of the study becomes larger 

and the data quality becomes worse. To the best of our knowledge, there is no existing work 

dealing with missing values in the joint model. We leave this problem as a potential direction 

for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Subject-specific gene expression trends over time for two selected genes TMEM170 and 

DMRTA1 in the IPF dataset.
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Fig. 2. 
The distribution of the numbers of factors selected by DIC on the 200 simulated datasets.
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Fig. 3. 
Boxplots of the estimated AUCs for FAJM, JMsig, and JMran on the 200 simulated datasets.
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Fig. 4. 
Boxplots of the estimated AUCs for FAJM with Q, the number of intervals in the baseline 

hazard set to be 2, 4 and 6, respectively on the 200 simulated datasets.
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Fig. 5. 
Boxplots of the estimated AUCs for FAJM with the standard deviation (sd) of the gene’s 

noise εk
(i)(t) set to be 1, 2 and 3, respectively on the 200 simulated datasets.
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Fig. 6. 
The distribution of the numbers of factors selected by DIC on the 200 simulated datasets, 

with the sd of εk
(i)(t) set to be 1, 2 and 3
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Fig. 7. 
Kaplan-Meier plot (with 95% CI) of the time-to-event for the 26 patients in the IPF dataset.
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Fig. 8. 
Estimates of the three longitudinal latent factors and the estimated survival probabilities for 

two patients (patient 3 and patient 7) in the testing data. Plots in the left panel show the 

estimated factor scores with calculation up to 0.8 years while plot in the right panel shows 

the estimated survival probabilities for the two patients from 0.8 years to 2.5 years.
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