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Abstract

Purpose of Review—The purpose of this article is to highlight how sex differences in the gut-

brain axis may contribute to the discrepancies in incidence of neurodevelopmental, psychiatric, 

and neurodegenerative disorders between females and males. We focus on autism spectrum 

disorder, psychotic disorders, stress and anxiety disorders, depression, Alzheimer’s disease, and 

Parkinson’s disease and additionally discuss the comorbidity between inflammatory bowel 

disorder and mental health disorders.

Recent Findings—Human and animal studies show that sex may modify the relationship 

between the gut or immune system and brain and behavior. Sex also appears to modify the effect 

of microbial treatments such as probiotics and antibiotics on brain and behavior.

Summary—There is emerging evidence that assessing the role of sex in the gut-brain axis may 

help elucidate the etiology of and identify effective treatments for neurodevelopmental, 

psychiatric, and neurodegenerative disorders.
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Introduction

Sex and gender differences exist in the incidence and prevalence of most psychiatric [1], 

neurodevelopmental [2], and neurodegenerative [3] disorders, as described in this Special 

Issue. There is a growing consensus of the importance of the gut-brain axis, including the 
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gut microbiome, for influencing health. Given the interactions between the gut-brain axis 

and the rest of the body, including the neuroendocrine and immune systems, which also 

differ by sex, and the role these systems play in maintaining health, it makes sense to 

consider how sex differences in the gut-brain axis may partially drive sex differences in 

neuropsychiatric disorders.

The concept of sex differences in the gut-brain axis has very recently been brought to the 

forefront, including in reviews by Jaggar et al. 2020 [4••] and Jašarević et al. 2016 [5], 

which provide a comprehensive overview of sex differences in the gut-brain axis over the 

life course, as well as evidence from animal studies. The purpose of this present review is to 

highlight how sex differences in the gut-brain axis may contribute to the discrepancies in 

incidence of neuropsychiatric disorders between females and males. We first begin with a 

brief overview of the gut-brain axis and then describe evidence by clinical disorders for 

which there is at least a moderate body of evidence regarding sex differences in the gut-brain 

axis: autism spectrum disorder, psychotic disorders, stress and anxiety disorders, depression, 

Alzheimer’s disease, and Parkinson’s disease. Lastly, we touch on the comorbidity between 

inflammatory bowel disease (IBD) and mental health symptomology, highlighting possible 

explanations for the increased mental health burden among women with IBD, relative to 

men.

Of note, in this manuscript, we use the term “sex” to refer primarily to the “assigned” or 

“biological” sex at birth, and we describe the biological processes typically associated with 

each sex. Yet, we acknowledge the heterogeneity that exists within the binary category of 

female versus male sex, in terms of hormones, chromosomes, and genitals, as well as the 

existence of other categories of sex (e.g., individuals with XY chromosomes that physically 

appear to be girls or were assigned to female sex at birth, individuals with ambiguous 

genitalia, etc.) [6]. Of course, there are also important gender differences in the incidence 

and prevalence of brain and behavioral disorders which do not necessarily overlap with 

“assigned” or “biological” sex. As the roles of sex and gender in the gut-brain axis are still 

relatively new areas of research, we have focused this review on the biological pathways 

linking the gut and the brain with sex assigned at birth. Future research needs to consider the 

complexity of sex and gender in this work.

Overview of the Gut-Brain Axis

The gut-brain axis refers to the set of bidirectional communications and interactions between 

the gut and neurological systems, particularly the brain [7]. Included in this concept is the 

interplay between the neurological system and gut microbiota and the collection of 

microorganisms (bacteria, fungi, viruses, protozoa, and archaea) that reside within the 

gastrointestinal (GI) tract. The collective genetic material of these microbes in and on the 

human body is referred to as the microbiome [8].

A number of reviews have described the myriad of ways the gut and brain communicate 

(e.g., Wang & Wang 2016 and Kavvadia et al. 2017) [9, 10], including via the enteric 

nervous system (“second brain”), vagus nerve, and the production by microbes of cytokines 
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and chemokines, neurotransmitters, short-chain fatty acids, hormones, and other molecules 

and metabolites that act on the central nervous system [10].

Although we are in the early stages of understanding the complex ways in which the gut 

microbiome influences health, dysbiosis (microbial imbalance) has been associated with 

many diseases or disorders, including cancer, irritable bowel syndrome, obesity [11•], as 

well as neurodevelopmental disorders, mental illness, and neurodegeneration [12•].

In early life, the gut microbiome is relatively simple, in terms of composition and diversity, 

unstable, and highly susceptible to environmental exposures (e.g., diet, stress, medications) 

[13]. The complexity and stability of the gut microbiome increase into adulthood but remain 

malleable and dynamic across the life course [13]. This plasticity is what makes the 

microbiome an exciting potential therapeutic target. While dysbiosis has been linked to 

suboptimal mental health, numerous studies have found that populating the gut with 

beneficial bacteria (“probiotics” or “psychobiotics”) can create positive changes in the 

composition and diversity of the gut microbiome as well as corresponding improvements in 

the brain and mental health [14•, 15], as well as physical health [16].

Autism Spectrum Disorder

Autism spectrum disorder, or ASD, is characterized by impairments in social 

communication and interaction and repetitive and restricted behaviors [17]. The cumulative 

incidence of ASD in the USA is 10.2 per 1000 children at age 4 and 8.3 per 1000 at age 8. 

The incidence rate for girls appears to plateau around 3 years while it continues to climb 

among boys, resulting in a higher prevalence of ASD in males relative to females [18]; 1 in 

54 school-aged children have ASD, with a male to female ratio of about 4 to 1 [19].

It has been well established that individuals with ASD are more likely to have GI symptoms 

compared to typically developing children [20, 21]. Despite the many studies exploring the 

gut microbiome in ASD, no consistent ASD signature has been identified, and findings have 

been inconsistent, though differences have been identified in Prevotella, Firmicutes at the 

phylum level, and Clostridiales clusters including Clostridium perfringens and 

Bifidobacterium species [22].

A 2019 study by Wang et al. sought to identify differences in gut microbiome-associated 

epitopes (a term which refers to the part of an antigen where an antibody attaches) between 

children with ASD and typical development (TD), as well as other correlates of those 

epitopes. In addition to identifying differences in gut-associated epitopes and stool IgA 

between children with ASD and TD, the authors found that sex was also associated with 

specific epitopes. Further, while diversity of the epitopes differed between males with ASD 

versus TD, the diversity was not different between females in the two groups. This suggests 

that sex may affect the immune function of the gut microbiota and could help explain sex 

differences in autism [23••].

Animal models of ASD have also implicated sex-gut-brain differences. Coretti et al. (2017) 

used BTBR T + tf/J (BTBR) inbred mice, a frequently used animal model of ASD, to 

examine the gut microbiota, behavior, intestinal barrier integrity, and immune profiles of 
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tissues from the colon. The BTBR mouse had increased intestinal dysbiosis, permeability, 

immune abnormalities, and behavioral differences, compared to the control mouse 

(C57BL/6j strain), as expected. The BTBR behavioral phenotype consists of decreased 

social interaction (measured using the three-chamber social interaction test) and increased 

marble burying and spontaneous self-grooming. Though these are crude phenotypes relative 

to the complexity of autism in a person, these are typically considered “autism-like” 

symptoms because they represent social, stereotyped, and repetitive behavior, which are the 

core symptoms of ASD. Coretti et al. also found that sex of the BTBR (i.e., ASD) mouse 

was associated with differential relative abundance of the Bacteroides, Parabacteroides, 

Sutterella, Dehalobacterium, and Oscillospira genera. Among female BTBR mice, increases 

in Parabacteroides and Sutterella and decreases in Dehalobacterium, Oscillospira, and a 

member of TM7 (unclassified) were associated with altered behavior as well as expression 

of TNF-alpha in the colonic tissue. Among male BTBR mice, members of 

Helicobacteraceae were associated with altered behavior and decreased expression of IL-10, 

while lower levels of Dehalobacterium, Ruminococcus, and Desulfovibrio corresponded to 

increased intestinal permeability [24••].

An earlier study by Foley at al. (2014) found sex-specific social behavioral changes in the 

adolescent rat offspring of pregnant dams injected with prenatal propionic acid (PPA) or 

lipopolysaccharide (LPS). PPA is a microbial-produced short-chain fatty acid, while LPS is 

a large molecule found in the outer membrane of Gram-negative bacteria, also produced by 

enteric bacteria, that results in immune activation when administered to mammalian cells 

[25]. Foley et al. based their experiments on the knowledge that PPA and LPS are both 

microbial products, which in previous research have been shown to activate the immune 

system. Specifically, PPA induces activation of microglia and reactive astrogliosis [26, 27] in 

adult rats, while prenatal LPS leads to increases in proinflammatory cytokines and 

subsequent alterations in gene expression [28, 29]. Foley et al. found that both the male and 

female PPA-treated pups demonstrated delayed olfactory-mediated nest-seeking behavior 

but no changes in terms of social interactions. LPS did not influence social behavior in the 

neonatal or adolescent rats, but the adult male and female rates did have a decrease in 

defensive behavior, which the authors hypothesized could reflect decrease responsiveness to 

the social partner. Relative to females, adolescent males born to PPA-treated dams had an 

increased approach to a novel object as well as increased locomotor activity in a novel open-

field activity. This was not accompanied by differences in social interactions, however. 

These findings raise the possibility that brief prenatal exposure to these microbial products 

(PPA and LPS) can subtly influence behavior, in sexually dimorphic ways, at various points 

in the lifespan. While the behavioral outcomes measured in this study are far reflecting 

autism-like symptoms, the authors framed the paper in terms of implications for autism and 

other neurodevelopmental conditions, given the impairments in social communication and 

interaction in autism, as well as the extant literature showing associations between PPA, 

LPS, and other immune-activating exposures on autism and neurodevelopment more broadly 

[27, 30, 31]. This paper suggests that microbial-related exposures during pregnancy can have 

potentially sex-specific effects on development and behavior of the offspring.
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Schizophrenia Spectrum and Other Psychotic Disorders

Disorders of psychosis include schizophrenia, schizotypal, and other psychotic disorders that 

are characterized by delusions, hallucinations, distortions in thinking, perceptions and 

emotions, disorganized or catatonic behavior, and negative symptoms such as lack of 

emotional expression [32]. A recent meta-analysis of all psychotic disorders estimated a 

pooled incidence of 26.6 per 100,000 person years, with incidence rates slightly higher in 

men compared to women prior to age 40 but higher in women after age 40 [33].

Multiple studies have found that patients with schizophrenia differ in the amount of 

Lactobacillus found in their microbiome compared to controls and that abundance of these 

bacteria correlate with severity of schizophrenia symptoms [34–36]. Recent research has 

also found that adults with schizophrenia or schizoaffective disorder have elevated levels of 

antigliadin immunoglobulin G (AGA-IgG), representing a heightened generalized immune 

response to the ingestion of gluten, compared to healthy controls [37, 38]. In a double-blind 

randomized clinical trial of adults with diagnoses of schizophrenia or schizoaffective 

disorder who had elevated AGA-IgG, patients randomized to the gluten-free diet (versus 

those on a diet containing gluten) showed an improvement in negative symptoms, 

particularly avolition and affective blunting and improvements in attention and verbal 

learning. The gluten-free group also showed significant improvements in GI distress [39].

At least some of the sex differences in psychotic disorders may be due to a gut component. 

A case-control study stratified by sex found elevated IgG antibodies to Candida albicans—

an opportunistic pathogen yeast living in the GI, genitourinary, and respiratory tracts—to be 

associated with 2–9.5 times the risk of schizophrenia in males compared to male controls. 

Seropositivity was also associated with lower scores on cognition in females with 

schizophrenia compared to female controls as measured by the Repeatable Battery for the 

Assessment of Neuropsychological Status (RBANS). By also examining a subset of 

medication naïve patients, the authors showed that seropositivity was not affected by 

antipsychotic medications. GI disturbances were associated with elevated C. albicans in 

males with schizophrenia, though not females [40]. This same research group showed that 

male patients with schizophrenia treated with probiotics had reductions in GI discomfort, 

decreased C. albicans antibodies, and improvements in positive symptoms. However, these 

changes were not found in females treated with probiotics versus placebo [41••].

Anxiety and Trauma- and Stressor-Related Disorders

Anxiety disorders are conditions characterized by excessive fear and anxiety that lead to 

behavioral disturbances that may impair performance in school or work and/or negatively 

impact personal relationships. These include generalized anxiety disorder (GAD), panic 

disorder, post-traumatic stress disorder, social phobia, and specific phobia. The lifetime 

morbid risk of anxiety disorders ranges from 2 to 18%, depending on the specific disorder 

[42].

In a comparison of adults with GAD to healthy controls, those with GAD were found to 

have reductions in microbial diversity, short-chain fatty acid producing bacteria, and 
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increases in Escherichia-Shigella, Fusobacterium, and Ruminococcus gnavus [43]. Further, 

in a double-blind randomized control study of healthy college students, those taking a 28-

day daily probiotic, relative to placebo, showed greater improvements in panic anxiety, 

neurophysiological anxiety, negative affect, worry, and negative mood regulation [44].

Sex differences in the microbiome have been associated with childhood temperament in 

toddlers. In both boys and girls, greater degree of surgency or extraversion was associated 

with higher phylogenetic diversity. Among boys only, this phenotype was also associated 

with Shannon Diversity Index (another measure of microbial diversity) as well as 

microbiome composition, specifically differences in the relative abundance of Dialister, 
Rikenellaceae, Ruminococcaceae, and Parabacteroides. Among girls, but not boys, greater 

effortful control was associated with lower alpha diversity, and fear was associated with 

increased relative abundance of Rikenellaceae [45].

Animal studies have provided some of the most pertinent information on sex differences in 

stress and anxiety to date. As Audet et al. describe, some of the increased risk of anxiety 

(and depressive disorders) associated with being female might partially be due to the 

remodeling of the gut microbial community and subsequent immune alterations that 

accompany hormonal changes associated with pregnancy, postpartum, and menopause 

[46••]. For example, ovariectomized mice who were subsequently administered progesterone 

experienced an increase in Lactobacillus species, decreased intestinal expression of IL-6, 

and improvement in depression- and anxiety-like behaviors [47]. Animal studies have also 

shown that rats who lack estrogen, whether due to having ovaries removed or lacking an 

estrogen receptor, had increased permeability in the large intestine, offering a pathway for 

metabolites to cross into the bloodstream [48].

The gut also seems to be involved in sex-specific effects of exposures or treatments on 

depression and anxiety in animal studies. For example, in a study using rats, early life 

maternal separation stress was associated with earlier pubertal onset in females but later 

maturity in males. Probiotic treatment restored pubertal timing in both sexes, however [49•]. 

In a study investigating the effects of docosahexaenoic acid (DHA), an omega-3 fatty acid, 

on the behavior of mice that had been socially isolated for 28 days, male mice who were 

given any supplementation of DHA showed reductions in both anxious and depressive 

behaviors. Further analysis showed levels of Allobaculum and Ruminococcus to be 

correlated with these behavioral changes [50]. Female mice, however, who also underwent 

social isolation and were given DHA did not show any behavioral changes. This suggests 

that behavioral treatments that influence the gut may have differential effects depending on 

sex.

However, we note that these experiments were performed in animals, not humans, and the 

phenomenology of anxiety and depressive symptoms and disorders among humans is likely 

much more complex than the simple behaviors measured in animal experiments. Further, the 

etiology of anxiety and depression is highly complex and multifactorial, and we do not 

expect these microbial changes to be the dominant or only one exposure responsible for this 

sex and gender discrepancy.
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Major Depressive Disorder

Major depressive disorder (MDD) is characterized by depressed mood and anhedonia, in 

combination with marked cognitive and behavioral changes [17]. Globally, the annual 

incidence of MDD in adults is 3.4% in females and 2.7% males [51], though prevalence 

estimates are much higher; the prevalence of MDD in the USA in 2017 was 8.7% among 

females and 5.3% among males [52].

Individuals with MDD have increased bacterial translocation with subsequent immune 

activation, which are associated with and may contribute to the somatic symptoms 

associated with depression (e.g., fatigue, malaise, autonomic and gastrointestinal symptoms) 

[53]. Bacterial translocation refers to the passage of bacteria and bacterial products from 

inside the intestinal tract into extraintestinal sites, such as the bloodstream, liver, spleen, 

kidney, and mesenteric lymph node complex. This process can occur via dysbiosis of the gut 

microbiome and intestinal bacterial overgrowth, increased permeability of the mucosal 

barrier in the intestine (“leaky gut”), or impairments in host immune defenses, or a 

combination of the above [54].

Dysbiosis of the gut microbiome has also been implicated in MDD, including differences in 

relative abundance of Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes, and 

Faecalibacterium, which are implicated in gut dysbiosis and disease outcomes [53, 55, 56]. 

Experimental studies in both rats and humans have shown that probiotics are associated with 

a decrease in depressive-like behaviors [57, 58]. Compelling rodent studies have also 

demonstrated that induced gastric inflammation [59] or irritation [60, 61] can lead to 

symptoms of anxiety and depression.

There is evidence that the association between gut microbiome composition and MDD may 

be differential by sex. One small study found that females with MDD showed increased 

levels of Actinobacteria compared to healthy controls, while males with MDD had decreased 

levels of Bacteroidetes compared to healthy controls [62••].

Although we have focused here on MDD, it is worth noting that sex differences in the gut-

brain axis are also evident in other mood disorders. For example, individuals with bipolar 

disorder (BD) also suffer from chronic GI issues and dysbiosis of the gut microbiome, which 

have been shown to be associated with increased BD symptoms [63, 64]. Limited research 

on sex differences in BD has shown that compared to males, females have increased levels 

of Flavonifractor and Candida albicans, decreased microbial diversity, and increased GI 

symptoms [40, 65–67].

Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegeneration disorder characterized by 

cognitive decline as well as changes in personality and behavior [68]. The hallmark 

pathologies of AD are accumulation of beta-amyloid protein (plaques) outside neurons in 

the brain and twisted strands of tau protein (tangles) inside the neurons, concomitant with 

damage to and death of neurons [68]. At age 45, the estimated overall lifetime risk for AD is 

about 20% for woman and 10% for men [69].
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AD has been associated with decreased diversity of the microbiome [70]. An analysis of the 

microbiome composition of AD patients found decreased abundance of 13 genera in patients 

compared with controls. Notably, the Bifidobacterium genus was diminished in AD patients. 

Bifidobacterium are protective against intestinal permeability and inflammation, suggesting 

that when depreciated, a patient’s risk of disease increases. It is still unclear what triggers 

the decline of these bacteria, though it has been hypothesized to precede neurodegeneration 

[70, 71].

The sex differences in AD presentation for men and women may stem in part from sex 

steroids, which protect from the development and symptomology of AD [72, 73]. A recent 

study collected imaging data from cognitively healthy older adults and discovered that while 

women had increased AD pathology, they did not exhibit increased AD symptomology 

compared to men [74•]. This suggests that although women have increased risk of AD 

pathology, sex-specific factors may protect women from experiencing early symptomology 

[75••]. Although estrogens have been implicated as one of the potential explicatory factors in 

sex-related differences in AD prevalence and clinical presentation, research is still underway 

to elaborate on this relationship [76]. A small post-mortem study assessing the hippocampus 

of AD patients and controls identified that estrogen receptor α (ERα) co-localizes with 

neurofibrillary tangles and therefore increases interaction between ERα and tau proteins. 

Increased tau-ERα interactions are hypothesized to inhibit ERα signaling and hinder the 

neuroprotective effect of estrogen [77]. The gut is relevant to this body of work because it 

plays a critical role in influencing the level of estrogen throughout the body. In brief, the gut 

secretes β-glucuronidase, an enzyme responsible for de-conjugating estrogen, making it 

biologically active and able to bind to receptors and carry out downstream functional 

changes in the body [78, 79].

The role of the gut microbiome in influencing sex differences in AD pathology has more 

directly been probed by Minter and colleagues. Minter et al. (2016) demonstrated that in the 

APPSWE/PS1ΔE9 mouse model of AD, long-term treatment with a broad-spectrum antibiotic 

leads to lasting shifts in the composition and diversity of the gut microbiome in both female 

and male mice. In males, but not females, these microbial changes were accompanied by 

increasing levels of soluble Aβ, altered levels of circulating cytokines and chemokines, 

decreased in Aβ plaque deposition, reduced plaque-localized glial reactivity, and altered 

morphology of microglia [80], suggesting a sex-specific immune and accompanying 

neuropathological response to an antibiotic-induced microbial change. Subsequent work by 

this group carried out only among male mice also found microbial and immune changes 

following early post-natal antibiotic treatment and accompanying reductions in Aβ plaque 

deposition and plaque-localized microglia and astrocytes [81••]. To our knowledge, there 

have been no human studies looking at the gut-brain axis in AD by sex.

Parkinson’s Disease

One of the most common movement disorders, Parkinson’s disease (PD) is characterized by 

tremors, dementia, and bradykinesia [82]. The overall incidence rate of PD among females 

age 40 and older is 37.55 per 100,000 person years (95% CI 26.20–53.83) and 61.21 (95% 

CI 43.57–85.99) among males 40 years and older [83]. PD pathology is associated with 
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striatal uptake, dopaminergic neuronal loss in the substantia nigra, and Lewy body 

pathogens spreading to cortical and neocortical brain areas [84].

GI symptomology frequently precedes the development of motor and cognitive dysfunction 

in patients with PD [85]. Although the exact role of the GI system in PD remains to be 

elucidated, a meta-analysis of 13 human studies found that gut permeability and colonic 

inflammation, instigated by changes in the gut-brain axis, contributed to PD symptomology 

[86]. Braak’s seminal theory regarding PD development also implicates the gut-brain axis. 

Braak suggested that an unknown neurotropic pathogen enters the gut and gives rise to Lewy 

pathology. He asserted that after the entrance of the Lewy Pathogens into the brain through 

the vagus nerve, it is only upon reaching the substantia nigra that classic PD symptoms arise 

[87]. While Braak’s hypothesis is unproven, a growing number of animal and human models 

support the assertion that PD initiates in the gut (see Lionett et al. 2018 [88]). Despite the 

continued debate on the potential role of the gut in PD pathogenesis, it has been repeatedly 

demonstrated that patients with PD do have altered microbiome compositions compared to 

controls [89–91].

Similar to Alzheimer’s disease, many sex differences in PD are thought to stem from the 

protective nature of estrogens [75••]. Estrogens are thought to protect healthy cells against 

oxidative stress [92•] and support dopaminergic function [93]. Although estrogens are 

known to be strongly impacted by the gut-brain axis and are explicitly driven by sex, no 

studies among humans have directly investigated whether sex moderates the associations 

between the gut-brain axis and PD pathology. Murine studies are beginning to examine the 

specific influences of estrogen in PD models. Siani and colleagues (2017) investigated the 

impact of an ovariectomy (and therefore decreased estrogen) on dopaminergic cell bodies in 

mice [94•]. After an ovariectomy, female mice exhibited greater dopaminergic loss in the 

substantia nigra pars compacta compared to controls. However, upon receiving estrogen 

treatments, the dopaminergic loss was reversed. This suggests that not only is estrogen 

protective against nigrostriatal deterioration but that it may also be a future treatment option 

to modulate PD degeneration [94•]. Researchers hypothesize that the protective nature of 

estrogens, combined with the role of the gut-brain axis in controlling the availability of 

levodopa [95] (a primary PD treatment), drives sex differences in PD presentation and 

suggests that PD treatments may require sex-specific targets that leverage the gut-brain axis.

GI Disorders

Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis 

(UC), are chronic diseases of the GI tract that follow a cyclic pattern of relapse and 

remittance over the life course. The pathogenesis of these complex diseases is still largely 

unknown, yet multiple factors have been implicated, including an inappropriate immune 

response, genetic predisposition, and environmental influences [96, 97]. Global incidence 

rates for CD range from 5.0 to 20.2 cases per 100,000 person years, with an estimated 

annual incidence of 10.7 cases per 100,000 person years in the USA [98, 99]. Global 

incidence rates for UC range from 6.3 to 24.3 cases per 100,000 person years, with an 

estimated 12.2 cases per 100,000 person years in the USA [99]. There are sex-specific 

differences in CD incidence, with females having lower rates of CD in childhood but 
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increased rates of up to 1.2 times that of males after age 20. In contrast, there are no sex-

specific differences of UC until age 45 when males begin to have a higher incidence 

compared to females [100].

IBD has a serious impact on overall quality of life and often co-occurs with mental health 

conditions, especially depression and anxiety. Pooled prevalence estimates of anxiety and 

IBD are around 20%, with an increase to 75% when individuals are in an active episode of 

IBD. Similarly, pooled prevalence estimates for depression are around 15%, with a jump to 

21% during active disease [101, 102]. The incidence of MDD in people with IBD is 15 per 

100 person years [103].

A bidirectional relationship exists between IBD and depression/anxiety [104]. First, IBD 

may be a risk factor for poor mental health. Intuitively, the abdominal pain, sleep dys-

function, and negative illness perceptions associated with IBD can lead to psychological 

morbidity [105], though there are biological explanations for this link as well. Rodent 

studies have found that induced gastric inflammation [59] or gastric irritation (a model of 

functional dyspepsia) can lead to symptoms of anxiety and depression [60, 61]. The 

biological pathways that raise the risk of IBD in individuals with depression or anxiety are 

not fully elucidated, though psychological distress has certainly been implicated as a risk 

factor for the exacerbation of IBD symptoms (increased smoking and poorer diet, sleep 

hygiene, and treatment maintenance are examples) [106].

Women with IBD tend to experience higher levels of depression, anxiety, and worse quality 

of life compared to men [102, 103, 107–109]. Given the interacting roles that genetics and 

the environment play in the pathogenesis of both IBD and mental illness, it is highly likely 

that sex-specific or sex-modified effects of genetics and environment influence the skewed 

mental health burden among females with IBD. In addition, factors associated with gender 

may be at play. Recent research has explored the role of gender-specific factors, including 

the influence of symptoms on body image, self-confidence, and social functioning, as 

potential mechanisms for the increase in psychological distress among women [107], i.e., 

the perceived and societal burden of GI symptoms may be more impairing for women [110].

Conclusions

In this paper, we have highlighted recent literature showing how sex interacts with the gut-

brain axis to influence brain and mental health. While this is a relatively new area of study, 

both human and animal studies demonstrate the bidirectional influence of sex-specific 

factors on the gut-brain axis, which may help to explain observed sex-differences in the 

incidence of psychopathology.

The mechanisms described in this paper fall broadly into two categories, as depicted in Fig. 

1. First, sex may modify the relationship between the gut microbiome or immune system 

and brain, mental health, or behavior (Fig. 1a). This was observed in studies such as 

Christian et al. (2015) which showed that surgency/extroversion was associated with 

particular gut microbes among boys but not girls [45]. Importantly, sex may also influence 

the gut microbiome/immune system and brain/mental health, aside from modifying the 
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relationship between those domains. Second, sex may modify the effect that an experimental 

microbial treatment or product has on the brain, mental health, or behavior (Fig. 1b). This 

was observed by Minter and colleagues, where the effect of a broad-spectrum antibiotic on 

neuropathology (as well as circulating cytokines and chemokines) was observed in males but 

not females [80, 81••].

Because this field is in its nascency, we highlight some areas for future research: First, we 

note that human studies exploring sex differences in the gut-brain axis are relatively limited 

but can draw inspiration from the growing body of animal studies that are beginning to show 

the compelling connection between sex and the gut-brain axis. Clinical studies need to 

include representative samples of participants across different sexes and across the gender 

spectrum to be able to understand how biological, social, and environmental factors interact 

with the gut-brain axis. Epidemiologic studies that sample biospecimens are becoming 

increasingly valuable, as our ability to derive meaning from stored samples increases. 

Longitudinal designs and studies across the life course will be critical in helping us 

understand the temporal relationship between sex-related factors, such as hormones, and 

subsequent changes to the gut microbiome, immune system, brain, and behavior. In 

conclusion, it is increasingly apparent that the gut-brain axis plays a critical role in brain and 

mental health. Interrogating the role of sex may lead to better understanding of the etiology 

and treatment of brain and mental disorders.
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Fig. 1. 
Conceptual diagrams highlighting key pathways by which sex influences the gut-brain axis. 

a Sex modifies relationship between gut microbiome/immune system and brain, mental 

health, or behavior. b Sex modifies effect of microbial treatment on brain, mental health, or 

behavior
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