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ABSTRACT
Objectives: Inflammation is an important predisposing and progressive factor in chronic kidney
disease (CKD). Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is associated with many
fundamental cellular processes, but in chronic inflammatory pathologies remains unclear.
Methods: An in vitro peripheral inflammation model was established using lipopolysaccharide (LPS)-
stimulated mouse RAW264.7 macrophages, followed by inflammasome activation by ATP treatment.
Knockdown of hnRNPK by sihnRNPK and FLICE-like inhibitory protein (FLIP) by siFLIP transfection
were achieved in Raw264.7 macrophages. ELISA was used to determine the expression of IL-1β, IL-
18 and TNF-α. Real time PCR was applied to detect the mRNA levels of hnRNPK, NOD-like
receptors family pyrin domain-containing 3 (NLRP3), FLIP, Caspase-1, IL-1β and IL-18. Western blot
and immunofluorescence were performed to detect relevant protein expressions. Co-
immunoprecipitation (Co-IP) was used to assess the interaction of hnRNPK with FLIP.
Results: Results showed that LPS plus ATP activated NLRP3 inflammasome, which evidenced by the
up-regulation of TNF-α, IL-1β and IL-18. Notably, hnRNPK and FLIP were significantly up-regulated in
activated NLRP3 inflammasome of macrophages. HnRNPK or FLIP knockdown significantly
suppressed the activation of NLRP3 inflammasome, as reflected by down-regulation of Caspase-1,
IL-1β and IL-18. Importantly, hnRNPK could directly bind to FLIP in activated NLRP3 inflammasome.
Discussion: Our findings suggest that hnRNPK could promote the activation of NLRP3 inflammasome
by directly binding FLIP, which might provide potential new therapeutic targets for CKD.
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Introduction

Chronic kidney disease (CKD) is a serious health issue
affecting kidney structure and function with an increasing
prevalence rate worldwide [1]. Most CKD patients share
several risk factors, including hypertension, diabetes,
obesity, and metabolic alterations [2–4]. Unfortunately,
there is no radical cure for CKD, but preserve the residual

kidney as far as possible to delay the progression to end-
stage renal failure.

Accumulating studies have shown that inflammatory
response is an important predisposing and progressive
factor in CKD [5–7]. Inflammasomes, multi-protein cyto-
plasmic complexes, function as pattern recognition receptors
to participate in activation of inflammatory caspases, various
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immune and cellular death pathways [8,9]. By activating
caspase-1, inflammasome cleaves pro-inflammatory cyto-
kines IL-1β and IL-18 to their active and secreted forms [10].
NOD-like receptors family pyrin domain-containing 3
(NLRP3) inflammasome is recently considered to be the
best characterized inflammasome, which could trigger
caspase-1 activation and inflammation factors release in
response to diverse stimuli in CKD patients [5,11]. To date,
several studies have demonstrated that elevated levels of
NLRP3, caspase-8, IL-1β and IL-18 are critical components of
inflammatory process in models of kidney disease [12–15].

Heterogeneous nuclear ribonucleoprotein K (hnRNPK)
contains three K homology (KH) domains responsible for
DNA/RNA binding and take part in the regulation of gene
transcription, RNA splicing and mRNA translation [16] and
one K protein interactive region (KI) domain responsible for
protein-protein interactions [17], which is one of the most
extensively studied hnRNP family members [18]. High
expression of hnRNPK is associated with tumor formation,
development and prognosis, including colorectal adenocarci-
noma [19], oral squamous cell carcinoma [20] and pancreatic
cancer [21]. Interestingly, a previous study indicated that
hnRNPK could mediate insulin inhibition of renal angiotensi-
nogen gene expression and prevention hypertension and
kidney injury in diabetic mice [22]. Another research demon-
strated that hnRNPK could promote the activation of macro-
phages by regulating the lipopolysaccharide (LPS)-induced
TAK1 mRNA translation, and up-regulate the transcription
of TNF-α, IL-1α, IL-1β and IL-10 [23]. FLICE-like inhibitory
protein (FLIP) is found to be critical for protecting rheumatoid
arthritis synovial macrophages from Fas-mediated apoptosis
[24]. A study from Huang et al. [25] showed that reduction
of FLIP in macrophages might be an effective therapeutic
approach to suppress inflammation depending upon the
disease stage. Additionally, it has been reported that
hnRNPK could up-regulate the transcriptional level of cellular
FLIP to negatively regulate the tumor necrosis factor (TNF)-
related apoptosis-inducing ligand (TRAIL) [26]. Our previous
study showed that the protein level of FLIP was positively cor-
related with hnRNPK. These findings imply that hnRNPK may
potentially play a role in chronic inflammatory pathologies by
binding FLIP.

Raw264.7 macrophages are commonly used to explore
kidney disease related to inflammation in vitro [27,28]. As a
main component of the cell wall of gram-negative bacteria,
LPS widely used to cause inflammatory response in vitro
and in vivo, including kidney disease [29,30]. To validate our
hypothesis that hnRNPK binding FLIP in NLRP3 inflamma-
some activation, we first prepared a peripheral inflammation
model with LPS-stimulated Raw264.7 macrophages to inves-
tigate whether hnRNPK participates in activation of inflamma-
tory macrophages by regulating cellular inflammation
reaction. Moreover, whether FLIP was involved in the regu-
lation of hnRNPK in NLRP3 inflammasome activation was
further determined.

Materials and methods

Cell culture and treatment

Raw264.7 macrophages were obtained from the American
Type Culture Collection (ATCC, Rockville, MD, USA) and cul-
tured in RPMI-1640 medium (Gibco) with 10% fetal bovine

serum (FBS, Gibco) in a humidified incubator containing 5%
CO2 at 37°C. For constructing inflammasome, RAW264.7
macrophages were treated with 20 ng/mL LPS (Sigma) for
4 h, followed by 5 nM ATP (Sigma) incubation for 30 min.
RAW264.7 macrophages were divided into four groups:
Control, LPS, ATP and LPS + ATP.

ELISA

ELISA assay was performed to detect the levels of cytokines
released from Raw264.7 macrophages from four groups. In
brief, the supernatants were collected and the expression of
TNF-α, IL-1β and IL-18 were determined with their respective
ELISA kits according to the manufacturer’s instructions
(Elabscience). According to the drawn standard curves, the
concentration of TNF-α, IL-1β and IL-18 were calculated.

Western blot

Raw264.7 macrophages were washed with phosphate buffer
saline (PBS) and lysed with RIPA (Biosharp) for 30 min. A total
of 30 μg protein was separated by 10% SDS-PAGE and
electro-transferred to polyvinylidene fluoride (PVDF) mem-
branes (Millipore). The membranes were blocked in TBS
with 0.2% Tween 20 (TBST) containing 5% (W/V) dried
skimmed milk for 1 h at room temperature. Then, the mem-
branes were incubated with primary antibodies against
hnRNPK, FLIP, NLRP3, pro Caspase-1, Caspase-1, pro IL-1β,
IL-1β, pro IL-18, IL-18 and GAPDH (Abcam) overnight, fol-
lowed by incubation with corresponding HRP-conjugated
secondary antibodies. The membranes were subsequently
exposed to enhanced ECL chemiluminescent substrate (Beyo-
time Biotech). GAPDH was used as an internal control.

Cell immunofluorescence

RAW264.7 macrophages were fixed with 4% paraformalde-
hyde for 15 min and permeated with 0.3% Triton X-100 for
15 min at room temperature. After washed with PBS for 1 h,
the cells were incubated with primary antibodies against
hnRNPK, FLIP and NLRP3 (Abcam) at 4 °C overnight. The cov-
erslips were exposed to Alexa Fluor conjugated-secondary
antibodies (Cell Signaling Technology) for 1 h in the dark.
The nucleus was marked with 4′, 6-Diamidino-2-phenylindole
(DAPI). The stained images were observed using an Inverted/
Fluorescence Microscope (LIONHEART LX, BioTek).

Cell transfection

Three different small interfering RNA sequences targeting
hnRNPK (sihnRNPK-1: 5′-GAGGAAUAAUUGGUGUUAAUU-3′,
sihnRNPK-2: 5′-GGGAGAUCUAAUGGCUUAUUU-3′ and
sihnRNPK-3: 5′-GCCCAUCAGAAUGGCAAAUUU-3′), three
different siRNA targeting FLIP (siFLIP-1: 5′-CCUCCUGGAUAG-
CUUAAGUUU-3′, siFLIP-2: 5′-CACCUGGUUUCUGAUUAUAUU-
3′ and siFLIP-3: 5′-GGCCCAACAUCAAGACUAUUU-3′) and
negative control siRNA (si-NC: 5′-UUCUCCGAACGUGUCAC-
GUTT-3′) were synthesized by RiboBio (Guangzhou, China).
Knockdown of hnRNPK or FLIP was achieved using Lipofecta-
mine 2000 (Invitrogen) according to the manufacturer’s
instructions. Briefly, RAW264.7 macrophages were cultured
in 6-well plates at 37 °C overnight and transfected with
different sihnRNPK or siFLIP at a final concentration of 100
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nM for 48 h, followed by LPS and ATP treatment. Sub-
sequently, the macrophages were collected for the in vitro
experiments.

Real time PCR

Total RNA was extracted from macrophages using Trizol
reagent (TAKARA). After RNA quantification using spectro-
photometry, cDNA was synthesized using a Reverse Aid first
strand cDNA synthesis kit (DBI Bioscience). Quantitative real
time PCR analysis was performed on Stratagene Real-Time
System (AgilentA) using SYBR Green PCR reagent kit (DBI Bio-
science). The specific primer sequences were as follows:
hnRNPK: forward 5′-CAGCTCCCGCTCGAATCTG-3′ and
reverse 5′-ACCCTATCAGGTTTTCCTCCAA-3′; FLIP: forward 5′-
TTACACAGGCAGAGGCAAGA-3′ and reverse 5′-
GCTGGACTGGGTGTACTTCT-3′; NLRP3: forward 5′-
GTGTTGTCAGGATCTCGCAT-3′ and reverse 5′-CTGCAAGTTA-
CACTGTGGGT-3′; Caspase-1: forward 5′-CATCTTTCTCC-
GAGGGTTGG-3′ reverse 5′-TGTGGTCCCACATATTCCCT-3′; IL-
1β: forward 5′-AATGCCACCTTTTGACAGTGATG-3′ and
reverse 5′-TGTGCTGCTGCGAGATTTG-3′; IL-18: forward 5′-
GACTCTTGCGTCAACTTCAAGG-3′ and reverse 5′-
CAGGCTGTCTTTTGTCAACGA-3′; β-actin: forward 5′-CATTGCT-
GACAGGATGCAGA-3′ and reverse 5′-CTGCTGGAAGGTGGA-
CAGTGA-3′. The gene expression was quantified using
2−ΔΔCT method with β-actin as internal control.

Co-immunoprecipitation (Co-IP)

Endogenous Co-IP was performed to validate the interaction
between hnRNPK and FLIP. Briefly, harvested macrophages
from control, LPS + ATP + si-NC or LPS + ATP + si-hnRNPK
groups were dealt with lysis buffer. Total protein was incu-
bated with specific antibodies against FLIP on shaking
tables, followed by incubation with protein G-sepharose
beads (Thermo Fisher Scientific, Waltham, MA, USA). Then,
the immunoprecipitated samples were washed with pre-
cooling PBS for three times (5 min each time), followed by
western blotting as described previously [31].

Statistical analysis

All experiments were repeated three times. Statistical analysis
was performed using SPSS version 20.0 (SPSS Inc., Chicago, IL,
USA). Quantitative data were presented as the means ± stan-
dard deviation (SD). Differences between two groups were
analyzed using an unpaired t test and among groups were
assessed by one-way analysis of variance (ANOVA) with
Shapiro-Wilk test. The results were considered to be statisti-
cally significant when p values less than 0.05.

Results

hnRNPK and FLIP were significantly up-regulated in
LPS + ATP-activated NLRP3 inflammasome of
macrophages

To investigate the role of hnRNPK in NLRP3 inflammasome
activation associated with CDK progression, macrophage
inflammasome was constructed in RAW264.7 macrophages
by LPS with ATP treatment. ELISA assay indicated that LPS
single stimulation raised the TNF-α, IL-1β and IL-18

expressions in supernatant of RAW264.7 macrophages (p <
0.05, p < 0.01). ATP single treatment also enhanced the TNF-
α, IL-1β and IL-18 expressions in supernatant of RAW264.7
macrophages (p < 0.05, p < 0.01). But the effects of ATP treat-
ment on TNF-α, IL-1β and IL-18 in RAW264.7 macrophages
were weaker than LPS stimulation. ATP + LPS treatment
induced a rapid release of TNF-α, IL-1β and IL-18 at
different time points (Figure 1A, p < 0.05, p < 0.01). Moreover,
the results of western blot displayed that the protein levels of
hnRNPK, FLIP and NLRP3 in ATP treatment of LPS-primed
macrophages was obviously up-regulated compared with
LPS or ATP single group (Figure 1B). The protein expressions
of Caspase-1, IL-1β and IL-18 were also remarkably raised in
ATP treatment of LPS-primed macrophages, which were
accompanied with the decreased expressions of pro-
Caspase-1, pro-IL-1β and pro-IL-18. Furthermore, similar
results were found in immunofluorescence, which showed
that the expression levels of hnRNPK, NLRP3 and FLIP were
all elevated after stimulated by LPS+ ATP treatment (Figure
1C–E).

hnRNPK knockdown significantly suppressed NLRP3
inflammasome activation

Since hnRNPK was up-regulated in LPS + ATP-activated
NLRP3 inflammasome, we thus performed loss-of-function
assay in RAW264.7 macrophages. As shown in Figure 2A,
three different siRNA sequences were designed to silence
hnRNPK. The sihnRNPK-1, sihnRNPK-2 and sihnRNPK-3 sig-
nificantly suppressed the expression of hnRNPK in LPS+
ATP induced macrophages. Notably, sihnRNPK-2 transfec-
tion produced the most obvious inhibitory effects, thus
sihnRNPK-2 was selected for the subsequent experiments.
Next, we further detected the effects of hnRNPK on acti-
vation of NLRP3 inflammasome. Real time PCR demon-
strated that the mRNA levels of hnRNPK, FLIP, NLRP3,
Caspase-1, IL-1β and IL-18 were significantly increased in
LPS + ATP-induced macrophages compared with control
group (p < 0.01), but remarkably decreased after hnRNPK
knockdown (p < 0.01) (Figure 2B–C). The western blot
(Figure 3A) and immunofluorescence analysis of hnRNPK
(Figure 3B), FLIP (Figure 3C) and NLRP3 (Figure 3D) also
confirmed a significant decrease of hnRNPK, FLIP and
NLRP3 expressions in the hnRNPK silencing NLRP3 inflam-
masome. Besides, after hnRNPK knockdown, the protein
levels of Caspase-1, IL-1β and IL-18 were also reduced in
LPS + ATP-induced macrophages (Figure 3A).

hnRNPK binds to FLIP in LPS + ATP-activated NLRP3
inflammasome

The above results showed that FLIP was down-regulated
after hnRNPK knockdown, we thus speculated that FLIP
might interact with hnRNPK. To confirm our hypothesis,
hnRNPK-FLIP binding was detected by co-IP in LPS + ATP-
activated NLRP3 inflammasome. As depicted in Figure 3E,
the interaction of FLIP and hnRNPK was weakened after
hnRNPK knockdown in LPS + ATP-activated NLRP3 inflam-
masome. These results suggest that hnRNPK might affect
the activation of NLRP3 inflammasome by directly interact-
ing with FLIP.
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Figure 1. hnRNPK and FLIP were significantly up-regulated in LPS + ATP-activated NLRP3 inflammasome of macrophages. RAW264.7 macrophages were incu-
bated with LPS, followed by ATP incubation (A) Inflammatory factors TNF-α, IL-1β and IL-18 expressions were measured at different time points via ELISA. *p
< 0.05, **p < 0.01 vs. Control; #p < 0.05, ##p < 0.01 vs. LPS; (B) The protein expressions of hnRNPK, FLIP, NLRP3, pro Caspase-1, Caspase-1, pro IL-1β, IL-1β, pro
IL-18 and IL-18 in different groups were evaluated by western blot. The expression and distribution of (C) hnRNPK, (D) FLIP and (E) NLRP3 were determined
in four groups were detected via immunofluorescence.

Figure 2. hnRNPK knockdown decreased the expressions of FLIP, NLRP3, Caspase-1, IL-1β and IL-18 in LPS + ATP-activated NLRP3 inflammasome. (A) RAW264.7
macrophages were transfected with three different siRNAs targeting hnRNPK, followed by incubation with LPS and ATP, the mRNA and protein expressions of
hnRNPK were detected by real-time PCR and western blot. **p < 0.01 vs. si-NC. RAW264.7 macrophages were transfected with sihnRNPK-2, followed by incubation
with LPS and ATP, the mRNA expressions of hnRNPK, FLIP, NLRP3 (B), as well as Caspase-1, IL-1β, IL-18 (C) were detected by real-time PCR. ##p < 0.01 vs. Control,
**p < 0.01 vs. LPS + ATP + si-NC.

REDOX REPORT 107



FLIP knockdown imitated the effects of hnRNPK
silencing on the activation of NLRP3 inflammasome

Our previous study showed that FLIP was positively corre-
lated with hnRNPK (data not shown). Based on the physical
interaction between FLIP and hnRNPK, we further investi-
gated the biological role of FILP in LPS + ATP-activated
NLRP3 inflammasome. First, we designed three siRNA
sequences to specific silence FLIP in RAW264.7 macrophages,
as confirmed by real time PCR and western blot analysis
(Figure 4A, p < 0.01). It was worthy noted that siFLIP-3 gener-
ated the strongest silencing effects on FLIP expression in all
the three siRNA sequences (p < 0.01), which was utilized for
the subsequent analysis. Consistently with hnRNPK knock-
down, silencing FLIP significantly down-regulated the
expression of FLIP, NLRP3 and Caspase-1, as well as the
inflammatory factors (IL-1β and IL-18), as determined by,
real time PCR (Figure 4B–C, p < 0.01), western blot
(Figure 5A) and immunofluorescence (Figure 5B and C),
respectively. These results demonstrated that FLIP might be

involved in the regulatory effect of hnRNPK on NLRP3 inflam-
masome activation.

Discussion

Increasing evidences show that the endotoxin model using
LPS has been widely applied to explore the regulatory mech-
anism of the inflammatory response in several diseases,
including acute lung injury [32] and neurodegenerative dis-
eases [33], as well as CKD [34]. Hwang et al. [35] reported
that LPS-stimulated Raw264.7 macrophages accelerated
pro-inflammatory and pro-fibrotic cytokines, which contribu-
ted to accelerate chronic kidney diseases. Nagase et al. [36]
indicated that LPS-stimulated Raw264.7 could be serving as
an in vitro cell model to simulate renal inflammation and
injury. In the present study, in vitro LPS-stimulated mouse
RAW264.7 macrophages was used to investigate the regulat-
ory mechanism of hnRNPK and FLIP in NLRP3 inflammasome
activation. We found that LPS induced the production of TNF-

Figure 3. hnRNPK knockdown decreased activated NLRP3 inflammasome related protein levels and bound to FLIP. RAW264.7 macrophages were transfected with
si-hnRNPK, followed by incubation with LPS and ATP. (A) The protein expressions of hnRNPK, FLIP, NLRP3, pro Caspase-1, Caspase-1, pro IL-1β, IL-1β, pro IL-18 and
IL-18 were evaluated by western blot. The expression and distribution of (B) hnRNPK, (C) FLIP and (D) NLRP3 were determined via immunofluorescence. (E) The
binding relationship between hnRNPK and FLIP were detected by co-IP.
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α, IL-1β and IL-18 in the culture medium of RAW264.7 macro-
phages. Moreover, LPS plus ATP activated the NLRP3 inflam-
masome, reflected by up-regulation of TNF-α, IL-1β and IL-18.
Consistently, NLRP3 inflammasome consists of NRLP3 and
caspase-1 which is implicated in the pathogenesis of inflam-
matory diseases by elevating the secretion of pro-inflamma-
tory cytokines [37–39]. In addition, loss of NLRP3
significantly reduced inflammation and tubulointerstitial
fibrosis in mice after unilateral ureteral obstruction [40].
Herein, we found that both the NLRP3 and Caspase-1
expressions were increased after LPS plus ATP treatment,
which further confirmed the activation of NLRP3
inflammasome.

Previous studies have demonstrated that hnRNPK directly
related to proliferation, migration and autophagy in several
diseases [41–43]. However, it remains unclear whether

hnRNPK plays an important role in NLRP3 inflammasome in
LPS induced RAW264.7 macrophages. In our study, we found
that hnRNPK was significantly up-regulated in activated
NLRP3 inflammasome. Knockdown of hnRNPK remarkably alle-
viated LPS + ATP-induced increased expressions of NLRP3,
Caspase-1, IL-1β and IL-18. Bomsztyk et al. [18] has demon-
strated that hnRNPK localizes in both the nucleus and cyto-
plasm and preferentially recognizes poly-C sequences of
target RNAs through its three repeats of K homology
domains (KH1-3), which play a central role in many fundamen-
tal cellular processes, such as cell proliferation, apoptosis and
differentiation [44,45]. Similar to our results, Lichtnekert et al.
[23] found that hnRNPK contributed to the activation ofmacro-
phages by up-regulating the transcription of TNF-α, IL-1A, IL-1B
and IL-10. These findings suggested that hnRNPK was closely
related to the activation of NLRP3 inflammasome in LPS +

Figure 4. FLIP knockdown decreased the expressions of FLIP, NLRP3, Caspase-1, IL-1β and IL-18 in LPS + ATP-activated NLRP3 inflammasome. (A) RAW264.7
macrophages were transfected with three different siRNA targeting FLIP, followed by incubation with LPS and ATP. the mRNA and protein expressions of FLIP
were detected by real-time PCR and western blot. **p < 0.01vs. si-NC. RAW264.7 macrophages were transfected with si-FLIP-3, followed by incubation with
LPS and ATP, the mRNA expressions of FLIP, NLRP3 (B), as well as Caspase-1, IL-1β, IL-18 (C) were detected by real-time PCR. ##p < 0.01 vs. Control, **p < 0.01
vs. LPS + ATP + si-NC.

Figure 5. FLIP knockdown decreased activated NLRP3 inflammasome related protein levels. RAW264.7 macrophages were transfected with si-FLIP, followed by
incubation with LPS and ATP. (A) The protein expressions of FLIP, NLRP3, pro Caspase-1, Caspase-1, pro IL-1β, IL-1β, pro IL-18 and IL-18 were measured by western
blot. (B–C) The expression and distribution of FLIP and NLRP3 were detected by immunofluorescence staining assay.
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ATP-stimulated mouse RAW264.7 macrophages and might
play regulatory role in the progression of CKD.

Notably, co-IP assay further showed that hnRNPK directly
interacts with FLIP in LPS + ATP-stimulated mouse
RAW264.7 macrophages. Moreover, FLIP knockdown imitated
the effects of hnRNPK knockdown on the expression of
NLRP3, Caspase-1, IL-1β and IL-18 in LPS + ATP-stimulated
mouse RAW264.7 macrophages. These was consistent with
the previous study, which showed that reduction of FLIP in
macrophages could selectively suppress inflammation in
arthritis [25]. Taken together, these findings suggested that
the connection of hnRNPK-FLIP induced the activation of
NLRP3 inflammasome in LPS + ATP-stimulated mouse
RAW264.7 macrophages via prompting Caspase-1-medicated
IL-1β and IL-18 activation (Graphical abstract).

In conclusion, our study shows that hnRNPK directly binds
FLIP to regulate the NLRP3 inflammasome activation in
response to LPS + ATP stimulation, which might be a
potential regulatory mechanism underlying the progression
to CKD.
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