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Abstract

Although multiple lifestyle exposures simultaneously impact blood pressure (BP) and 

cardiovascular health, most analysis so far has considered each single lifestyle exposure (e.g., 

smoking) at a time. Here, we exploit gene-multiple lifestyle exposure interactions to find novel BP 

loci. For each of 6,254 Framingham Heart Study participants, we computed lifestyle risk score 

(LRS) value by aggregating the risk of four lifestyle exposures (smoking, alcohol, education, and 

physical activity) on BP. Using the LRS, we performed genome-wide gene-environment 

interaction analysis in systolic and diastolic BP using the joint 2 degree of freedom (DF) and 1 DF 

interaction tests. We identified one genome-wide significant (P-value < 5 × 10−8) and 11 

suggestive (P-value < 1 × 10−6) loci. Gene-environment analysis using single lifestyle exposures 

identified only one of the 12 loci. Nine of the 12 BP loci detected were novel. Loci detected by the 

LRS were located within or nearby genes with biologically plausible roles in the pathophysiology 

of hypertension, including KALRN, VIPR2, SNX1, and DAPK2. Our results suggest that 

simultaneous consideration of multiple lifestyle exposures in gene-environment interaction 

analysis can identify additional loci missed by single lifestyle approaches.
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Introduction

Blood pressure (BP) is a heritable (Ehret, 2010) but modifiable risk factor for cardiovascular 

diseases (CVD) with major global health and economic burden (Forouzanfar et al., 2017). 

Characterizing the genetic architecture of BP is critical to advancing our understanding of 

underlying biological mechanisms, enhancing risk prediction, and developing targeted 

lifestyle interventions and drugs (Timpson, Greenwood, Soranzo, Lawson, & Richards, 

2018). Genome-wide association studies (GWAS) have identified at least 901 loci associated 

with BP, which are estimated to account for 11.2% of the genetic variance in BP (Evangelou 

et al., 2017); a large proportion of heritability in BP remains unexplained. This leaves room 

for enhanced locus discovery by exploring alternative approaches.

One such approach is to consider gene-lifestyle interactions in BP, given that several lifestyle 

exposures (e.g., smoking status) have been shown to modulate genetic effects on complex 

traits such as BP (Parnell et al., 2014; Rao et al., 2017). By accounting for gene-lifestyle 

interactions in BP, one can find genetic loci whose effects vary by lifestyle exposure. Such 

genetic loci may otherwise be undetected in traditional genetic main effect GWAS (Rao et 

al., 2017). For example, recent genome-wide interaction analyses performed by the 

CHARGE Gene-Lifestyle Interactions Working Group identified several novel loci with 

biologic plausibility for their involvement in BP and lipid homeostasis (Bentley et al., 2019; 

de Vries et al., 2019; Feitosa et al., 2018; Kilpeläinen et al., 2019; Sung et al., 2019, 2018). 

Finding such loci is of value for gaining insight to the complex biological underpinnings of 

BP (Laville et al., 2019).

To date, most genome-wide gene-lifestyle interaction analyses have primarily considered 

gene interactions with a single lifestyle exposure, such as alcohol (de Vries et al., 2019; 

Feitosa et al., 2018; Simino, Sung, Kume, Schwander, & Rao, 2013), smoking (Bentley et 

al., 2019; Sung, de las Fuentes, Schwander, Simino, & Rao, 2015; Sung et al., 2018), and 

education (Basson et al., 2014). Yet, the genetic effects of some loci may be simultaneously 

influenced by multiple lifestyle exposures given that cardiovascular health (including BP) is 

concurrently impacted by multiple lifestyle exposures (Folsom et al., 2011; van Dam, Li, 

Spiegelman, Franco, & Hu, 2008). In fact, the current strategy for improving cardiovascular 

health in the general population promotes multiple healthy lifestyle behaviors 

simultaneously (Lloyd-Jones et al., 2010). We may be able to further enhance discovery of 

novel BP loci whose effects are modulated by multiple lifestyle exposures by using genome-

wide approaches that account for interactions with more than one lifestyle exposure.

To identify loci that interact with multiple environmental factors, a Bayesian approach has 

been developed, but its implementation is burdened by high computational requirements and 

an inability to account for family relatedness (Moore et al., 2018). An alternative approach 

would be to aggregate multiple lifestyle exposures into a composite score that captures 

overall risk for unfavorable cardiovascular outcomes due to unhealthy lifestyles. This 

approach has been applied in epidemiological studies (Nayor, Enserro, Vasan, & Xanthakis, 

2016; Ogunmoroti et al., 2017), used to examine how genetic risk for CVD and BP is 

modified by a composite score derived from multiple lifestyle exposures (Pazoki et al., 

2018), and recently compared to other approaches for jointly testing multiple interactions 
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involving several candidate genetic variants and exposures (Kim et al., 2019). However, it is 

yet to be used in genome-wide gene-lifestyle interaction analysis for finding BP loci.

In this study, we report on our findings using a risk score aggregating multiple lifestyle 

exposures, hereafter ‘Lifestyle risk score’ (LRS), when identifying BP loci. We selected four 

lifestyle exposures with well-documented effects on BP and cardiovascular health 

(Chobanian et al., 2003): smoking status, alcohol intake, level of educational attainment (a 

proxy for socio-economic status), and physical activity. We performed genome-wide 

interaction studies on BP using both quantitative and discretized LRS. Additionally, we 

examined whether our analysis using the LRS can identify additional loci not detected 

through analysis using each of single lifestyle exposures separately.

Methods

Study Population

In this study, we used the Framingham Heart Study (FHS) data, obtained from the database 

of genotypes and phenotypes (dbGaP). FHS study participants are made up of three cohorts; 

the Original Cohort recruited in 1948, the Offspring Cohort recruited in 1971, and the Third 

Generation Cohort recruited in 2002. Across these three cohorts, we selected 

contemporaneous visits, namely, the 26th visit for the Original Cohort, the 7th visit for the 

Offspring Cohort, and the 1st visit for the Third Generation Cohort.

In this study, we considered FHS participants of European ancestry that were between 18 

and 80 years (to avoid growth or age related changes to BP) (Shankar, Eckert, Saha, Tu, & 

Pratt, 2005; Wei, 1992), and had non-missing genotype data and phenotype data, including 

age, sex, SBP and/or DBP, anti-hypertensive medication status, and the four component 

lifestyle exposures (smoking status, alcohol intake, education, and physical activity). After 

applying these study inclusion criteria, there were 6,254 and 6,253 participants for SBP and 

DBP, respectively, and participants belonged to either the Offspring or Third Generation 

Cohort.

Genotype data

We removed genotyped single nucleotide polymorphisms (SNPs) from FHS data with 

Hardy-Weinberg equilibrium P-values < 10−6 or call rates < 90%, and imputed SNPs with 

imputation quality measures < 0.3. We further removed SNPs with minor allele frequency ≤ 

1% or, if the product of minor allele count and imputation quality was ≤ 20. Appendix Table 

S1 shows a summary of the resulting analysis SNP sets, composed of ∼2.4 million SNPs.

Phenotype data

SBP and DBP were measured with a consistent protocol. For each individual, BP values 

represent an average of three measurements, one taken by a nurse/technician and two taken 

by a physician. For individuals on anti-hypertensive medications, BP values were adjusted 

by adding 15 mmHg to SBP and 10 mmHg to DBP (Tobin, Sheehan, Scurrah, & Burton, 

2005).

Osazuwa-Peters et al. Page 3

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lifestyle exposures and LRS

We selected the following four lifestyle exposures: smoking status, alcohol intake, level of 

educational attainment (a proxy for socio-economic status), and physical activity.

We considered two dichotomous variables of each of the first three lifestyle exposures and 

one variable for physical activity. Table 1 shows the derivation and coding for each of the 

dichotomous variables representing the four lifestyle exposures. For example, for smoking 

status, the variable “Smoke now” (Smk_now), reflects whether the individual was a smoker 

at the time of the clinic visit, while “Smoke ever” (Smk_ever), reflects whether an individual 

has ever smoked (in the past or at the time of the clinic visit).

For analyses involving a composite of multiple lifestyle exposures, the LRS was computed 

in two main steps:

First, risk was assigned to each value of a lifestyle exposure based on its well-established 

effect on BP or cardiovascular health (Chobanian et al., 2003; Loucks, Abrahamowicz, Xiao, 

& Lynch, 2011; WHO, 2013). As presented in Table 2, three risk scores were used, no risk 

(0), low risk (1), and high risk (2). High risk scores are associated with unfavorable 

cardiovascular health outcomes. For alcohol intake, risk assignment reflects reported J-

shaped associations indicating the cardio-protective effect of moderate alcohol consumption 

compared to abstinence, based on extensive data including healthy individuals and CVD 

patients (Costanzo et al., 2019; O’Keefe, Bybee, & Lavie, 2007). Unlike the other lifestyle 

exposures, physical activity has only two risk levels (no risk and low risk) because the effect 

of any level of activity on BP (as compared to sedentariness) is much more pronounced than 

amount of activity among active individuals (Diaz & Shimbo, 2013). Moreover, there is no 

consensus on a cutoff to distinguish between active and very active individuals (with 

discernible differences in the effects on BP); this problem is compounded by the known 

overestimation (or underestimation) of self-reported physical activity values (Prince et al., 

2008).

Subsequently, the quantitative LRS (QLRS) was computed by summing across risk scores of 

all four lifestyle exposures. We also dichotomized the LRS, as is common practice to 

harmonize heterogeneous quantitative exposure variables in multi-cohort collaborations 

(Palla, Higgins, Wareham, & Sharp, 2010). The dichotomous LRS (DLRS), was derived by 

splitting QLRS by the median threshold of 2; individuals with QLRS values < 2 were 

assigned to the unexposed (favorable lifestyle) group, while individuals with QLRS values ≥ 

2 were assigned to the exposed (unfavorable lifestyle) group. The favorable lifestyle group 

includes individuals who were at no risk for any of the four exposures or at low risk for only 

one of the exposures. Individuals with all other combinations of risk levels for the four 

exposures would fall into the unfavorable lifestyle group.

Statistical analysis

Genome-wide gene-LRS interaction scan: we fit a linear mixed effect model that jointly 

models the genetic, lifestyle, and interaction effects (Kraft, Yen, Stram, Morrison, & 

Gauderman, 2007), while adjusting for covariates and potential confounders (e.g., lifestyle-

covariate interactions) (Keller, 2014). The model is
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y = β0 + βEE + βGG + βGEG * E + βcovXcov + ε (1)

where y is the BP trait (SBP or DBP), E is the lifestyle exposure (QLRS or DLRS), G is the 

dosage of the genetic variant, and Xcov is the vector of covariates including age, sex, 

lifestyle exposure interactions with age (age*E) and sex (sex*E). β0 is the intercept, βE is the 

environmental main effect, βG is the genetic main effect, βGE is the gene-environment 

interaction effect, βcov are the covariate effects, and ε is the error term. From the model 

output, we calculated two test statistics which follow a χ2 distribution under the null; a 2 

degree of freedom (DF) joint test of βG and βGE (H0: βG = βGE = 0) and a 1 DF test of βGE
(H0: βGE = 0).

Genome-wide genetic effect scans: to further assess the extent to which signals detected 

using Model (1) above would be missed in the absence of the interaction term, we performed 

two additional genome-wide scans using main effects models that adjust for the effect of 

exposures but do not include a gene-environment interaction term, namely, Models (2) and 

(3) as defined below:

y = β0 + βEE + βGG + βcovXcov + ε (2)

y = β0 + βE1smoking status + βE2alcoℎol intake + βE3education +
βE4pℎysical activity + βGG + βcovXcov + ε (3)

where model terms are as defined for Model (1), with the exception that there is no gene-

environment interaction term in Models (2) and (3). Moreover, in Model (3), in lieu of the 

aggregate LRS, each exposure variable (i.e., smoking status, alcohol intake, education, and 

physical activity) is separately adjusted (i.e., βE1, βE2, βE3, βE4). Also, in Model (3), 

covariates adjusted for include age, sex, as well as age interactions with each lifestyle 

exposure (i.e., age*smoking status, age*alcohol intake, age*education, and age*physical 

activity) and sex interactions with each lifestyle exposure (i.e., sex*smoking status, 

sex*alcohol intake, sex*education, and sex*physical activity). Here, based on the output 

from the models, we calculated a 1 DF test of the genetic main effect βG (H0: βG = 0).

Genome-wide gene-single lifestyle exposures scan: we performed genome-wide scans fitting 

Model (1) as defined above, using each of seven single lifestyle exposure variables (defined 

in Table 1) as E in Model (1). This genome-wide scan was performed to determine whether 

the LRS identifies additional loci not detected through analysis using each of single lifestyle 

exposures separately. As described above in the genome-wide gene-LRS scan, we calculated 

a 2 DF joint test and 1 DF interaction test.

We accounted for family relatedness in the FHS dataset by applying the genome-wide rapid 

association using mixed model and regression (GRAMMAR) approach (Aulchenko, de 

Koning, & Haley, 2007). This approach involves obtaining pedigree-adjusted residuals by 

fitting a polygenic model on the phenotype (BP traits) using the kinship matrix as a random 

component. The GRAMMAR approach was applied using the GenABEL package in R 
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(Aulchenko et al., 2007). The resulting pedigree-adjusted residuals were used as the 

phenotype in the models described above. We obtained effect estimates using the ProbABEL 

package from the GenABEL suite of programs (Aulchenko, Struchalin, & van Duijn, 2010).

In all, we performed 18 genome-wide analyses using Model (1) to determine whether using 

an aggregate of multiple lifestyle exposures can identify additional BP loci relative to using 

individual lifestyle exposures: 2 phenotypes (SBP and DBP) x 9 lifestyle exposure variables 

(7 individual components of the LRS + QLRS + DLRS). Further, we performed six more 

genome-wide scans, using Models (2) and (3) to assess the extent to which the interaction 

term contributed to discovering signals.

We identified SNPs as significant using the threshold of P-value < 5 × 10−8, and as 

suggestive using the threshold of P-value < 1 × 10-6. For each suggestive/significant 

association, a locus was defined as a cluster of SNPs within 500 kb of the index SNP (i.e., 

the SNP with the lowest P-value in the region). We considered loci as novel if component 

SNPs were not within 500 kb of previously known BP loci in published literature between 

2011 and 2019 (reference list in Supporting information S1), and were not detected in the 

CHARGE Gene-Lifestyle Interactions Working Group’s large-scale studies on gene-

smoking (Sung et al., 2018) and gene-alcohol (Feitosa et al., 2018) interactions for BP. 

Further, we annotated suggestive or significant SNPs using FUMA GWAS (Functional 

Mapping and Annotation of Genome-Wide Association Studies) (Watanabe, Taskesen, 

Bochoven, & Posthuma, 2017). Annotation was focused on RegulomeDB categorical scores 

(Boyle et al., 2012), which indicate evidence for the presence of regulatory elements (e.g., 

enhancers, promoters, insulators or transcription binding factors), and CADD (Combined 

Annotation Dependent Depletion) scores (Kircher et al., 2014), which predict whether the 

functional consequence of a variant is likely to be deleterious. Lastly, using the GWAS atlas 

tool (https://atlas.ctglab.nl/; Watanebe et al. 2019), we explored whether suggestive or 

significant SNPs detected by the gene-LRS genome-wide scan have been previously 

reported in the literature as associated with a BP or other cardiovascular trait at nominal 

significance (i.e., P-value < 0.05 for the marginal genetic effect).

Results

Descriptive summary statistics for the study sample are presented in Table 3. For QLRS that 

ranged from 0 – 7, most individuals had intermediate values of the score and with fewer 

individuals in the tails (Figure 1). Less than a third of the 6,254 eligible participants in the 

study sample fell into the favorable lifestyle (unexposed) group of the DLRS and were on 

average younger, more likely female, and had lower BP than those in the exposed group.

QQ plots are presented in appendix Figures S1 and S2. For SBP, genomic control values (λ) 

ranged from 0.962 – 1.027 for the joint 2 DF test and from 0.952 – 1.036 for the interaction 

1 DF test. For DBP, λ ranged from 0.882 – 0.923 for the joint 2 DF test and from 0.966 – 

1.022 for the interaction 1 DF test. There was no indication of genomic inflation in any of 

the 18 analysis sets.
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Figure 2 shows a Venn diagram summarizing the numbers of detected loci that were unique 

to the QLRS, the DLRS, and the single lifestyle exposures. While single lifestyle exposures 

detected substantially more loci (26 loci in total compared to seven by the QLRS and five by 

the DLRS), the QLRS and DLRS detected non-overlapping loci that would have been 

missed in the absence of an aggregate LRS analysis. Association results from the LRS 

analysis are summarized in Table 4 (Manhattan plots in appendix Figure S3). Also, for 

associations detected using the LRS analysis, Table 5 presents P-values for the genetic effect 

when the marginal effect of exposures are adjusted for but interaction terms are absent (i.e., 

based on Models (2) and (3)). The LRS analysis identified three genome-wide significant 

and 18 suggestive SNPs, representing 12 loci in all. Eleven of these 12 loci detected by the 

QLRS and DLRS analyses were not captured by analyses using single lifestyle exposures. 

With the exception of the one locus that was found in common by QLRS and Smk_ever 

analysis for SBP, there was generally no overlap in loci found by analysis using each LRS 

and the seven single lifestyle exposures.

Regional association plots for loci detected and their corresponding significant/suggestive 

SNPs are shown in appendix Figures S4 – S15. Specifically, QLRS found four loci 

associated with SBP and three loci associated with DBP. Similarly, DLRS found three loci 

associated with SBP and two loci associated with DBP.

The genome-wide significant locus, intergenic on chromosome 4, was represented by five 

low-frequency variants, three of which reached genome-wide significance based on the Joint 

2 DF test. Three other loci with suggestive associations were also represented by low-

frequency variants (rs17636599, rs2012485, and rs7124497). While rs17636599 showed no 

supporting evidence from surrounding SNPs, rs2012485 and rs7124497 are located within 

500 kb of two known BP loci identified through a main effect GWAS (Hoffmann et al., 

2017): EBF2 and OR4A47-TRIM51GP, respectively. Similarly, a common variant on 

chromosome 11, rs10047474, is located within the boundaries of locus GALNT18, which 

was detected in the CHARGE Gene-Lifestyle Interactions Working Group’s study on gene-

alcohol interactions as being associated with SBP in African ancestry (Feitosa et al., 

2018).The remaining suggestive associations are novel and were observed for common 

variants located on chromosomes 2 (NCKAP5 locus), chromosome 3 (SLC9A9 and KALRN 
loci), chromosome 7 (VIPR2 locus), chromosome 8 (near the OPRK1 locus), chromosome 

11 (near the GAREM loci), chromosome 12 (CHFR locus), and chromosome 15 (DAPK2 
locus).

All of the suggestive/significant associations identified using LRS (Table 4) were strongly 

driven by qualitative interactions (opposite signs on βG and βGE) between the SNP and the 

LRS with the exception of SNPs rs7001769 and rs7465458, which have non-significant PGE
> 0.05. Consistent with this result, the addition of the interaction term made significant 

contributions to the signal for 19 out of 21 suggestive/significant SNPs; only associations for 

SNPs rs7001769 and rs7465458 attained nearly suggestive P-values for the genetic effect in 

the absence of the interaction term (Table 5). For the QLRS, five SNPs showed a BP 

decrease while three SNPs showed a BP increase for each unit increase in the QLRS. For the 

Osazuwa-Peters et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DLRS, eight SNPs showed a BP decrease in individuals with a favorable lifestyle and a BP 

increase in those with an unfavorable lifestyle, while five SNPs showed the reverse pattern.

Six of the detected variants (rs880000, rs12442060, rs7465458, rs2012485, rs7124497, 

rs11081767) showed regulatory functional evidence. SNP rs880000 in the KALRN locus on 

chromosome 3 is likely to affect binding (RegulomeDB categorical score of 2b), with the 

histone modification evidence suggesting that it is located in a region of enhancers in diverse 

tissues including heart and brain. Intergenic SNP rs7465458, mapped near OPRK1 on 

chromosome 8, had a CADD score of 22.1, greater than the recommended threshold for 

deleteriousness (>12.37). All six SNPs were in strong LD with at least one other SNP that 

had a CADD score greater than the threshold for deleteriousness and/or a RegulomeDB 

categorical score of 2b or 2c (Table S2). Moreover, our interrogation of the GWAS atlas 

showed that 16 of 21 variants detected by the gene-LRS analysis had nominal associations 

with BP traits (including SBP, DBP, and pulse pressure) and/or cardiovascular traits (e.g., 

coronary artery disease, heart rate recovery, angina pectoris, etc.), while four genetic variants 

had nominal associations with other cardiovascular traits (e.g., non-ischemic 

cardiomyopathy). Only one genetic variant had no record of an at least nominal association 

with a BP or cardiovascular trait (Table S3).

Discussion

In this study, we performed gene-lifestyle interactions in BP traits using a lifestyle risk score 

(LRS) aggregating four lifestyle exposures (smoking status, alcohol intake, education, and 

physical activity) in 6,254 FHS participants. Through our gene-LRS interaction approach, 

we identified one genome-wide significant locus and 11 suggestive loci in this moderate 

sample size. Among these 12 loci, only one was detected by analyses that used single 

lifestyle exposures. Considering the LRS as both quantitative and dichotomous variables was 

complementary, identifying distinct panels of loci. Strikingly, association between BP traits 

and all but one of the detected loci was driven by qualitative interactions (showing genetic 

and interaction effects in opposite signs). Also, nine of the 12 loci detected by the LRS are 

novel, not previously known to be associated with BP. These results point to a valuable, and 

complementary, role for the multiple lifestyle exposure approach for the discovery of BP 

loci.

Our results suggest that the nature of some genetic effects on BP, whether harmful or 

protective, depends on an individual’s overall lifestyle exposure profile as represented by the 

LRS. Despite a modest sample size, we found evidence of cumulative interaction effects on 

BP, at suggestive or significant levels, for 21 SNPs in 12 loci. The fact that 19 of the 21 

SNPs (in 11 loci) were not detected in the gene-single lifestyle exposure interaction analysis 

highlights the potential for increased yield of association when cumulative interaction effects 

are modeled. This potential for finding additional BP loci is noteworthy because, despite its 

much smaller sample size and statistical power, the LRS analysis found loci that was distinct 

from loci detected by well powered gene-single lifestyle exposure interaction studies with 

sample sizes > 500,000. A classic illustration of this potential is for the locus in the KALRN 
genomic region that we found to be associated with SBP when accounting for interactions 

with the DLRS. The effect of the KALRN locus on SBP is typified by the index SNP 
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rs880000 for which one copy of the G allele in individuals with a favorable lifestyle 

decreased SBP by 1.6 mmHg, yet increased SBP by 0.8 mmHg in those with unfavorable 

lifestyles. In previous GWAS, this region was reported to be associated with cardiovascular 

diseases such as coronary artery disease and ischemic stroke (Boroumand et al., 2014; Li et 

al., 2017), but not with BP even when gene-single lifestyle interactions are accounted for. It 

is known that combined effects of multiple healthy lifestyle exposures on cardiovascular 

health yield additional benefits not obtained from individual lifestyle exposures, lending 

credence to the idea that ‘the whole is greater than the sum of the parts’ (Egan, 2018; Lloyd-

Jones, 2014). Moreover, a high genetic risk for BP and cardiovascular diseases can be offset 

by a favorable lifestyle defined by multiple lifestyle exposures (Pazoki et al., 2018). Along 

with loci identified through the current practice of using the single lifestyle exposure in 

genome-wide gene-environment interaction scans, the use of the LRS approach may identify 

additional loci not detected by single lifestyle exposures. Therefore, an effective strategy for 

maximizing BP loci discovery would be to apply the two approaches in concert, using the 

LRS as a complement to the single lifestyle exposure approach.

Whether qualitative interactions, characterized by opposite signs for the genetic main and 

interaction effects, are prevalent but not detected due to inadequate power of existing 

approaches remains a relevant unanswered question (Winkler et al., 2017). Remarkably, the 

gene-LRS interaction analysis consistently detected only qualitative interactions, whereas 

gene-single lifestyle exposure interaction analysis detected both qualitative and quantitative 

interactions. Given the relevance of finding qualitative interactions to inform personalized 

medicine and identify high-risk groups, it may be useful to further investigate whether using 

a measure of overall lifestyle exposure such as the LRS in gene-environment interaction 

GWAS provides an advantage for detecting opposite-effect loci.

All of the suggestive/significant SNPs that gene-LRS interaction analysis detected are 

intronic or intergenic, with some showing evidence of regulatory function. This suggests that 

the resulting influence on BP may be through regulatory activities on nearby protein coding 

genes, many with effects on neurohormonal regulation, which may play important roles in 

the pathophysiology of hypertension (Beevers, Lip, & O’Brien, 2001). For example, there 

were four SNPs that were intronic to the KALRN gene on chromosome 3. KALRN encodes 

a guanine nucleotide exchange factor that inhibits vascular inducible nitric oxide, an 

important regulator of vascular hypertrophy and tone (Zhang et al., 2003), and pituitary 

secretion of adrenocorticotropic hormone (ACTH) (Ratovitski et al., 1999). Associations 

between variants in the KALRN genomic region and cardiovascular diseases, including 

early-onset coronary artery disease and ischemic stroke, have been reported (Boroumand et 

al., 2014; Li et al., 2017). KALRN protein has also been identified as a biomarker of 

endothelial dysfunction in hypertensive patients with albuminaria (de la Cuesta et al., 2017).

Similarly, there were two SNPs intronic within DAPK2, a gene that plays a primary role in 

apoptosis. DAPK2 has been shown to reduce blood pressure in rat models by mediating the 

mTOR signaling pathway, which prevents oxidative stress and apoptosis in hypertensive 

disorder complicated pregnancy (Wang et al., 2019). Approximately 100 kb upstream of this 

region is the sorting nexin 1 gene (SNX1). Sorting nexins play a major role in the regulation 

of trafficking and signal transduction of G-protein coupled receptors (including the renal 
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dopamine receptor, D5R), a key determinant of water, electrolyte, and BP homeostasis (Yang 

et al., 2014). An intronic SNP, rs3793217 identifies the gene VIPR2, which encodes a 

receptor for vasoactive intestinal peptide (VIP), a neurotransmitter and neuromodulator 

expressed in nearly all tissues (Asnicar et al., 2002), and with known cardiovascular effects 

including coronary vasodilation, lowering of arterial BP, and regulation of circadian 

rhythmicity in the heart (Henning & Sawmiller, 2001). Based on evidence from studies of 

VIPR2 knockout mice, VIPR2 increases insulin sensitivity and regulates circadian rhythm 

and immune functions (Harmar et al., 2002).

The only locus that had a genome-wide significant association with BP in this study, 

represented by the index SNP rs11131920, appears to be located in a genomic wilderness, 

being ∼2 MB away from the nearest mapped gene AGA. Interestingly, this locus has been 

reported to be associated with the use of several treatment medications (appendix Figures 

S16), particularly, for hypertension (eprosartan, an angiotensin II receptor blocker; P-value = 

4.7 × 10−8) and for pulmonary arterial hypertension and erectile dysfunction (adalafil, a 

vasodilator; P-value = 1.5 × 10−4) (Churchhouse & Neale, 2017). Nevertheless, this genome-

wide significant association with BP requires further investigation.

Despite our innovative application of the LRS, there are some limitations. First, our 

approach to computing the LRS, while simple, is difficult to interpret. This is because it 

ignores features like correlations among the individual lifestyle exposures (e.g., heavy 

drinking and current smoking tend to co-occur) and different magnitude of effects on BP 

traits. Availability of a richer data resource with larger sample size would allow differences 

in magnitude of effects of component variables to be addressed by deriving the LRS 

analogous to polygenic risk scores, i.e., the LRS would be computed as a weighted sum of 

lifestyle exposures, using beta coefficients as weights for each exposure from BP regression 

on multiple lifestyle exposures (Kim et al., 2019; Park, Tao, Meeker, Harlow, & Mukherjee, 

2014). Second, the LRS identified different set of loci depending on whether it was 

quantitative or dichotomous, which may be due to statistical power. In general, our approach 

with LRS seems promising and worth pursuing with larger sample sizes and in large 

consortium settings.

In summary, by considering lifestyle risk score aggregating multiple lifestyle exposures in 

gene-lifestyle interactions, our limited proof-of-concept investigation appears to have 

identified several novel and biologically plausible loci. The genetic effects of these loci on 

BP may have been modulated by the combined effect of multiple lifestyle exposures. Our 

findings suggest that the LRS approach can contribute to novel discoveries over and above 

those from single lifestyle exposure analysis, and can complement traditional approaches 

that use single lifestyle exposures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of lifestyle risk score (LRS) in the FHS data. The quantitative LRS (QLRS), 

created by summing risks across the four lifestyle exposures, ranged between 0 and 7. The 

dichotomous LRS (DLRS), created by splitting QLRS by the median of its distribution, was 

composed of two groups: favorable lifestyle group (QLRS < 2) and unfavorable lifestyle 

group (QLRS ≥ 2).
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Figure 2. 
Venn diagram showing the number of loci detected, either uniquely or in common, by 

analysis using the QLRS, DLRS, and seven single lifestyle exposures.
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Table 2.

Component lifestyle exposures and risk assignment for computing Lifestyle risk score (LRS)

Component variable No risk (0) Low risk (1) High risk (2)

Smoking Never Former Current

Alcohol intake (drinks/week) Modest (1 – 7) Abstinence (0) Heavy (> 7)

Education College degree Some college None

Physical activity Active Inactive
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Table 3.

Descriptive statistics by lifestyle risk score in FHS study sample

QLRS DLRS

Unexposed Exposed

Sample size 6254 1924 4330

Age (years) 48.4±13.6 44.1±12.5 50.3 ±13.6

% Male 46.9 43.0 48.6

% Taking anti-hypertensive medications 18.1 10.9 21.3

SBP (mmHg) 122.8±18.9 117.7±16.7 125.0±19.4

DBP (mmHg) 76.7±10.4 75.3±10.0 77.3±10.5

Sample size shown is for individuals with SBP phenotype data and is the basis for other descriptive statistics shown. Descriptive statistics are very 
similar for DBP phenotype data with sample size differing by a single individual (N=6,253).

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osazuwa-Peters et al. Page 21

Ta
b

le
 4

.

Tw
en

ty
-o

ne
 S

N
PS

 th
at

 s
ho

w
ed

 s
ug

ge
st

iv
e/

si
gn

if
ic

an
t a

ss
oc

ia
tio

ns
 w

ith
 B

P 
in

 g
en

e-
L

R
S 

an
al

ys
is

 in
 F

H
S

L
oc

us
C

hr
:p

os
it

io
n†

SN
P

G
en

om
ic

 lo
ca

ti
on

¶
E

ff
ec

t 
A

lle
le

E
A

F
B

P
 t

ra
it

E
xp

os
ur

e
β G

SE
G

P G
β G

E
SE

G
E

P G
E

P J
oi

nt
2d

f

1
2:

13
43

12
96

0
rs

13
68

09
1

In
tr

on
ic

 N
C

K
A

P5
G

0.
28

1
D

B
P

D
L

R
S

−
1.

15
0.

28
2.

85
E

-0
5

1.
73

0.
35

7.
23

E
-0

7
4.

16
E

-0
6

2
3:

12
39

23
23

3
rs

76
52

06
5

In
tr

on
ic

 K
A

L
R

N
A

0.
37

6
SB

P
D

L
R

S
−

1.
67

0.
38

1.
48

E
-0

5
2.

43
0.

50
8.

82
E

-0
7

4.
03

E
-0

6

3:
12

39
23

92
2

rs
14

44
76

8
In

tr
on

ic
 K

A
L

R
N

G
0.

37
6

SB
P

D
L

R
S

−
1.

66
0.

38
1.

48
E

-0
5

2.
43

0.
49

8.
74

E
-0

7
4.

01
E

-0
6

3:
12

39
27

01
4

rs
88

00
00

In
tr

on
ic

 K
A

L
R

N
G

0.
37

7
SB

P
D

L
R

S
−

1.
62

0.
38

2.
00

E
-0

5
2.

40
0.

49
8.

63
E

-0
7

4.
32

E
-0

6

3:
12

39
30

54
2

rs
14

44
75

7
In

tr
on

ic
 K

A
L

R
N

C
0.

37
7

SB
P

D
L

R
S

−
1.

62
0.

38
1.

99
E

-0
5

2.
40

0.
49

9.
13

E
-0

7
4.

54
E

-0
6

3
3:

14
30

28
18

7
rs

17
63

65
99

In
tr

on
ic

 S
L

C
9A

9
T

0.
01

1
SB

P
Q

L
R

S
3.

39
1.

61
3.

59
E

-0
2

−
2.

41
0.

51
2.

28
E

-0
6

1.
80

E
-0

7

4
4:

18
01

39
17

9
rs

10
52

04
20

In
te

rg
en

ic
T

0.
98

8
D

B
P

D
L

R
S

3.
98

0.
74

9.
23

E
-0

8
−

4.
06

1.
03

7.
71

E
-0

5
6.

34
E

-0
7

4:
18

01
51

01
9

rs
41

46
83

8
In

te
rg

en
ic

G
0.

98
8

D
B

P
D

L
R

S
4.

07
0.

73
3.

01
E

-0
8

−
4.

16
1.

02
4.

63
E

-0
5

2.
13

E
-0

7

4:
18

01
64

08
1

rs
96

92
19

In
te

rg
en

ic
A

0.
98

8
D

B
P

D
L

R
S

4.
19

0.
72

6.
32

E
-0

9
−

4.
29

1.
01

2.
31

E
-0

5
4.

69
E

-0
8

4:
18

01
78

37
8

rs
11

13
19

20
In

te
rg

en
ic

G
0.

01
0

D
B

P
D

L
R

S
−

5.
10

0.
67

4.
01

E
-1

4
5.

29
0.

99
8.

95
E

-0
8

3.
71

E
-1

3

4:
18

01
79

57
6

rs
11

13
19

21
In

te
rg

en
ic

T
0.

01
0

D
B

P
D

L
R

S
−

5.
09

0.
67

4.
19

E
-1

4
5.

29
0.

99
9.

14
E

-0
8

3.
90

E
-1

3

5
7:

15
88

48
82

1
rs

37
93

21
7

In
tr

on
ic

 V
IP

R
2

A
0.

86
5

D
B

P
Q

L
R

S
−

1.
14

0.
33

6.
55

E
-0

4
0.

62
0.

12
1.

44
E

-0
7

3.
34

E
-0

7

6
8:

25
37

49
10

‡
rs

20
12

48
5

In
te

rg
en

ic
 C

D
C

A
2

C
0.

96
1

SB
P

Q
L

R
S

−
4.

31
1.

02
2.

62
E

-0
5

1.
80

0.
37

8.
23

E
-0

7
4.

51
E

-0
6

7
8:

54
27

41
00

rs
70

01
76

9
In

te
rg

en
ic

 O
PR

K
1

T
0.

82
8

SB
P

Q
L

R
S

2.
23

0.
51

1.
18

E
-0

5
−

0.
35

0.
19

6.
20

E
-0

2
7.

63
E

-0
7

8:
54

27
72

47
rs

74
65

45
8

In
te

rg
en

ic
 O

PR
K

1
A

0.
82

8
SB

P
Q

L
R

S
2.

24
0.

51
1.

03
E

-0
5

−
0.

35
0.

19
5.

81
E

-0
2

6.
94

E
-0

7

8
11

:1
13

95
48

9§
rs

10
04

74
74

In
tr

on
ic

 G
A

L
N

T
18

T
0.

45
7

D
B

P
Q

L
R

S
1.

81
0.

34
0.

00
E

+
00

−
0.

48
0.

12
5.

80
E

-0
5

4.
47

E
-0

7

9
11

:4
92

02
18

7‡
rs

71
24

49
7

In
tr

on
ic

 F
O

L
H

1
G

0.
95

0
SB

P
D

L
R

S
−

1.
06

0.
97

2.
73

E
-0

1
4.

41
1.

16
1.

47
E

-0
4

7.
40

E
-0

7

10
12

:1
33

44
13

78
rs

43
03

26
8

In
tr

on
ic

 C
H

FR
G

0.
89

2
SB

P
Q

L
R

S
−

3.
68

0.
83

9.
67

E
-0

6
1.

43
0.

29
7.

73
E

-0
7

4.
09

E
-0

6

11
15

:6
43

15
33

6
rs

12
44

20
60

In
tr

on
ic

 D
A

PK
2

C
0.

63
5

SB
P

D
L

R
S

1.
68

0.
40

2.
53

E
-0

5
−

2.
55

0.
51

5.
39

E
-0

7
3.

15
E

-0
6

15
:6

43
16

45
8

rs
17

29
95

In
tr

on
ic

 D
A

PK
2

A
0.

71
5

SB
P

D
L

R
S

1.
80

0.
44

3.
35

E
-0

5
−

2.
76

0.
55

6.
52

E
-0

7
3.

93
E

-0
6

12
18

:3
00

53
15

0
rs

11
08

17
67

In
te

rg
en

ic
 G

A
R

E
M

A
0.

46
6

D
B

P
Q

L
R

S
1.

11
0.

24
2.

00
E

-0
6

−
0.

43
0.

09
7.

14
E

-0
7

2.
24

E
-0

6

† C
hr

:p
os

iti
on

: b
as

ed
 o

n 
hu

m
an

 g
en

om
e 

bu
ild

 3
7.

‡ W
ith

in
 b

ou
nd

ar
ie

s 
of

 k
no

w
n 

lo
ci

 p
re

vi
ou

sl
y 

re
po

rt
ed

 to
 b

e 
as

so
ci

at
ed

 w
ith

 B
P 

(i
n 

pu
bl

is
he

d 
lit

er
at

ur
e 

be
tw

ee
n 

20
11

 a
nd

 2
01

9;
 s

ee
 S

?)
.

§ W
ith

in
 b

ou
nd

ar
ie

s 
of

 lo
cu

s 
de

te
ct

ed
 in

 C
H

A
R

G
E

 G
en

e-
L

if
es

ty
le

 I
nt

er
ac

tio
ns

 W
or

ki
ng

 G
ro

up
’s

 la
rg

e-
sc

al
e 

st
ud

y 
on

 g
en

e-
al

co
ho

l i
nt

er
ac

tio
ns

 o
n 

B
P 

(F
ei

to
sa

 e
t a

l.,
 2

01
8)

.

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osazuwa-Peters et al. Page 22
¶ G

en
om

ic
 lo

ca
tio

n:
 s

ou
rc

ed
 f

ro
m

 F
U

M
A

 G
W

A
S 

(h
ttp

s:
//f

um
a.

ct
gl

ab
.n

l)
. N

ea
re

st
 m

ap
pe

d 
ge

ne
 is

 in
di

ca
te

d 
fo

r 
in

te
rg

en
ic

 S
N

Ps
, w

hi
le

 g
en

e 
lo

ca
te

d 
w

ith
in

 is
 in

di
ca

te
d 

fo
r 

in
tr

on
ic

 S
N

Ps
. N

o 
ge

ne
 is

 
sp

ec
if

ie
d 

fo
r 

5 
SN

Ps
 b

ec
au

se
 o

nl
y 

un
m

ap
pe

d/
un

ch
ar

ac
te

ri
ze

d 
ge

ne
s 

ar
e 

lo
ca

te
d 

w
ith

in
 5

00
 k

b 
of

 th
es

e 
SN

Ps
.

G
en

om
e-

w
id

e 
si

gn
if

ic
an

t S
N

Ps
 a

t P
-v

al
ue

 <
 5

 ×
 1

0−
8  

ar
e 

in
 b

ol
d 

fo
nt

. A
ll 

ot
he

r 
SN

Ps
 a

re
 s

ug
ge

st
iv

e 
at

 P
-v

al
ue

 <
 1

 ×
 1

0−
6 .

A
bb

re
vi

at
io

ns
: C

hr
, c

hr
om

os
om

e;
 Q

L
R

S,
 q

ua
nt

ita
tiv

e 
lif

es
ty

le
 r

is
k 

sc
or

e;
 D

L
R

S,
 d

ic
ho

to
m

ou
s 

lif
es

ty
le

 r
is

k 
sc

or
e;

 E
A

F,
 e

ff
ec

t a
lle

le
 f

re
qu

en
cy

; β
G

, g
en

et
ic

 m
ai

n 
ef

fe
ct

; S
E G

, s
ta

nd
ar

d 
er

ro
r 

fo
r 

ge
ne

tic
 

m
ai

n 
ef

fe
ct

; P
G

, P
-v

al
ue

 f
or

 g
en

et
ic

 m
ai

n 
ef

fe
ct

; β
G

E,
 g

en
e-

en
vi

ro
nm

en
t i

nt
er

ac
tio

n 
ef

fe
ct

; S
E G

E,
 s

ta
nd

ar
d 

er
ro

r 
fo

r 
ge

ne
-e

nv
ir

on
m

en
t i

nt
er

ac
tio

n 
ef

fe
ct

; P
G

E
, P

-v
al

ue
 o

f 
1 

de
gr

ee
 o

f 
fr

ee
do

m
 (

D
F)

 

in
te

ra
ct

io
n 

te
st

; P
Jo

in
t2

df
, P

-v
al

ue
 o

f 
2 

D
F 

Jo
in

t t
es

t.

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.

https://fuma.ctglab.nl/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osazuwa-Peters et al. Page 23

Ta
b

le
 5

.

P-
va

lu
es

 f
or

 th
e 

ge
ne

tic
 e

ff
ec

t u
si

ng
 r

ef
in

ed
 m

ai
n 

ef
fe

ct
s 

m
od

el
s,

 w
hi

ch
 o

m
its

 th
e 

in
te

ra
ct

io
n 

te
rm

 b
ut

 a
dj

us
ts

 f
or

 th
e 

m
ar

gi
na

l e
ff

ec
t o

f 
th

e 
L

R
S 

(M
od

el
 

(2
))

 o
r 

th
e 

m
ar

gi
na

l e
ff

ec
ts

 o
f 

th
e 

fo
ur

 c
om

po
ne

nt
 li

fe
st

yl
e 

va
ri

ab
le

s 
(M

od
el

 (
3)

).

C
hr

:p
os

it
io

n†
SN

P
B

P
 t

ra
it

E
xp

os
ur

e
P G

M
od

el
 2

P G
M

od
el

 3

2:
13

43
12

96
0

rs
13

68
09

1
D

B
P

D
L

R
S

7.
59

E
-0

1
8.

37
E

-0
1

3:
12

39
23

23
3

rs
76

52
06

5
SB

P
D

L
R

S
9.

56
E

-0
1

9.
13

E
-0

1

3:
12

39
23

92
2

rs
14

44
76

8
SB

P
D

L
R

S
9.

54
E

-0
1

9.
11

E
-0

1

3:
12

39
27

01
4

rs
88

00
00

SB
P

D
L

R
S

8.
75

E
-0

1
8.

34
E

-0
1

3:
12

39
30

54
2

rs
14

44
75

7
SB

P
D

L
R

S
8.

87
E

-0
1

8.
49

E
-0

1

3:
14

30
28

18
7

rs
17

63
65

99
SB

P
Q

L
R

S
1.

20
E

-0
2

1.
42

E
-0

2

4:
18

01
39

17
9

rs
10

52
04

20
D

B
P

D
L

R
S

9.
21

E
-0

2
8.

20
E

-0
2

4:
18

01
51

01
9

rs
41

46
83

8
D

B
P

D
L

R
S

8.
77

E
-0

2
7.

75
E

-0
2

4:
18

01
64

08
1

rs
96

92
19

D
B

P
D

L
R

S
8.

20
E

-0
2

7.
21

E
-0

2

4:
18

01
78

37
8

rs
11

13
19

20
D

B
P

D
L

R
S

5.
01

E
-0

2
4.

25
E

-0
2

4:
18

01
79

57
6

rs
11

13
19

21
D

B
P

D
L

R
S

5.
03

E
-0

2
4.

27
E

-0
2

7:
15

88
48

82
1

rs
37

93
21

7
D

B
P

Q
L

R
S

5.
71

E
-0

2
7.

41
E

-0
2

8:
25

37
49

10
rs

20
12

48
5

SB
P

Q
L

R
S

8.
19

E
-0

1
7.

91
E

-0
1

8:
54

27
41

00
rs

70
01

76
9

SB
P

Q
L

R
S

3.
36

E
-0

6
5.

78
E

-0
6

8:
54

27
72

47
rs

74
65

45
8

SB
P

Q
L

R
S

3.
36

E
-0

6
5.

61
E

-0
6

11
:1

13
95

48
9

rs
10

04
74

74
D

B
P

Q
L

R
S

1.
06

E
-0

3
1.

64
E

-0
3

11
:4

92
02

18
7

rs
71

24
49

7
SB

P
D

L
R

S
1.

92
E

-0
4

1.
22

E
-0

4

12
:1

33
44

13
78

rs
43

03
26

8
SB

P
Q

L
R

S
7.

20
E

-0
1

6.
04

E
-0

1

15
:6

43
15

33
6

rs
12

44
20

60
SB

P
D

L
R

S
6.

93
E

-0
1

8.
14

E
-0

1

15
:6

43
16

45
8

rs
17

29
95

SB
P

D
L

R
S

6.
30

E
-0

1
7.

83
E

-0
1

18
:3

00
53

15
0

rs
11

08
17

67
D

B
P

Q
L

R
S

6.
21

E
-0

1
6.

10
E

-0
1

† C
hr

:p
os

iti
on

: b
as

ed
 o

n 
hu

m
an

 g
en

om
e 

bu
ild

 3
7.

Genet Epidemiol. Author manuscript; available in PMC 2021 September 01.


	Abstract
	Introduction
	Methods
	Study Population
	Genotype data
	Phenotype data
	Lifestyle exposures and LRS
	Statistical analysis

	Results
	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

