Table 5.
Summary of detection results on the test set using a model trained for a two fruit classes.
Network/ | Camera | overlap = 0.25 | overlap = 0.5 | overlap = 0.75 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
algorithm | Red | Green | Red | Green | Red | Green | |||||||||||||
P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | P | R | F1 | ||
classical | Overall | 0.54 | 0.81 | 0.65 | 0.62 | 0.72 | 0.67 | 0.44 | 0.66 | 0.53 | 0.47 | 0.54 | 0.50 | 0.27 | 0.40 | 0.32 | 0.23 | 0.26 | 0.24 |
segmentation | |||||||||||||||||||
Overall | 0.84 | 0.93 | 0.88 | 0.9 | 0.94 | 0.92 | 0.81 | 0.9 | 0.85 | 0.88 | 0.91 | 0.89 | 0.66 | 0.73 | 0.69 | 0.73 | 0.75 | 0.74 | |
1 | 0.7 | 0.78 | 0.74 | 1 | 1 | 1 | 0.7 | 0.78 | 0.74 | 1 | 1 | 1 | 0.7 | 0.78 | 0.74 | 0.8 | 0.8 | 0.8 | |
R50 | 2 | 0.88 | 0.93 | 0.9 | 0.81 | 0.97 | 0.88 | 0.86 | 0.91 | 0.88 | 0.76 | 0.91 | 0.83 | 0.68 | 0.72 | 0.7 | 0.63 | 0.75 | 0.68 |
3 | 0.82 | 0.94 | 0.88 | 0.95 | 0.98 | 0.96 | 0.77 | 0.89 | 0.83 | 0.93 | 0.96 | 0.94 | 0.66 | 0.76 | 0.71 | 0.8 | 0.83 | 0.81 | |
4 | 0.67 | 1 | 0.8 | 0.86 | 0.79 | 0.82 | 0.67 | 1 | 0.8 | 0.81 | 0.74 | 0.77 | 0.33 | 0.5 | 0.4 | 0.56 | 0.51 | 0.53 | |
Overall | 0.88 | 0.93 | 0.9 | 0.92 | 0.91 | 0.91 | 0.85 | 0.9 | 0.87 | 0.89 | 0.88 | 0.88 | 0.7 | 0.74 | 0.72 | 0.74 | 0.73 | 0.73 | |
1 | 1 | 0.78 | 0.88 | 1 | 1 | 1 | 1 | 0.78 | 0.88 | 1 | 1 | 1 | 1 | 0.78 | 0.88 | 0.8 | 0.8 | 0.8 | |
R50+PP | 2 | 0.92 | 0.93 | 0.92 | 0.84 | 0.94 | 0.89 | 0.9 | 0.91 | 0.9 | 0.78 | 0.88 | 0.83 | 0.72 | 0.72 | 0.72 | 0.66 | 0.74 | 0.7 |
3 | 0.82 | 0.94 | 0.88 | 0.96 | 0.98 | 0.97 | 0.77 | 0.89 | 0.83 | 0.95 | 0.96 | 0.95 | 0.66 | 0.76 | 0.71 | 0.82 | 0.83 | 0.82 | |
4 | 0.75 | 1 | 0.86 | 0.85 | 0.64 | 0.73 | 0.75 | 1 | 0.86 | 0.79 | 0.6 | 0.68 | 0.5 | 0.67 | 0.57 | 0.55 | 0.41 | 0.47 | |
Overall | 0.82 | 0.91 | 0.86 | 0.89 | 0.95 | 0.92 | 0.79 | 0.89 | 0.84 | 0.86 | 0.91 | 0.88 | 0.66 | 0.74 | 0.7 | 0.7 | 0.75 | 0.72 | |
1 | 0.64 | 1 | 0.78 | 0.71 | 1 | 0.83 | 0.57 | 0.89 | 0.69 | 0.71 | 1 | 0.83 | 0.57 | 0.89 | 0.69 | 0.71 | 1 | 0.83 | |
R101 | 2 | 0.84 | 0.9 | 0.87 | 0.79 | 0.97 | 0.87 | 0.83 | 0.89 | 0.86 | 0.74 | 0.91 | 0.82 | 0.67 | 0.71 | 0.69 | 0.6 | 0.74 | 0.66 |
3 | 0.83 | 0.92 | 0.87 | 0.94 | 0.98 | 0.96 | 0.78 | 0.87 | 0.82 | 0.92 | 0.96 | 0.94 | 0.7 | 0.77 | 0.73 | 0.78 | 0.82 | 0.8 | |
4 | 0.67 | 1 | 0.8 | 0.85 | 0.81 | 0.83 | 0.67 | 1 | 0.8 | 0.79 | 0.76 | 0.77 | 0.5 | 0.75 | 0.6 | 0.52 | 0.5 | 0.51 | |
Overall | 0.88 | 0.91 | 0.89 | 0.91 | 0.91 | 0.91 | 0.86 | 0.89 | 0.87 | 0.88 | 0.88 | 0.88 | 0.73 | 0.75 | 0.74 | 0.72 | 0.73 | 0.72 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.89 | 0.89 | 0.89 | 1 | 1 | 1 | 0.89 | 0.89 | 0.89 | 1 | 1 | 1 | |
R101+PP | 2 | 0.91 | 0.89 | 0.9 | 0.81 | 0.92 | 0.86 | 0.91 | 0.89 | 0.9 | 0.77 | 0.88 | 0.82 | 0.73 | 0.71 | 0.72 | 0.64 | 0.72 | 0.68 |
3 | 0.84 | 0.92 | 0.88 | 0.96 | 0.98 | 0.97 | 0.79 | 0.87 | 0.83 | 0.94 | 0.96 | 0.95 | 0.71 | 0.77 | 0.74 | 0.8 | 0.82 | 0.81 | |
4 | 0.75 | 1 | 0.86 | 0.82 | 0.66 | 0.73 | 0.75 | 1 | 0.86 | 0.77 | 0.61 | 0.68 | 0.75 | 1 | 0.86 | 0.52 | 0.41 | 0.46 | |
Overall | 0.94 | 0.93 | 0.93 | 0.93 | 0.95 | 0.94 | 0.93 | 0.93 | 0.93 | 0.91 | 0.93 | 0.92 | 0.82 | 0.82 | 0.82 | 0.75 | 0.77 | 0.76 | |
1 | 1 | 0.89 | 0.94 | 0.83 | 1 | 0.91 | 1 | 0.89 | 0.94 | 0.83 | 1 | 0.91 | 1 | 0.89 | 0.94 | 0.83 | 1 | 0.91 | |
X101 | 2 | 0.94 | 0.91 | 0.92 | 0.85 | 0.97 | 0.91 | 0.93 | 0.9 | 0.91 | 0.81 | 0.92 | 0.86 | 0.84 | 0.81 | 0.82 | 0.62 | 0.71 | 0.66 |
3 | 0.92 | 0.97 | 0.94 | 0.96 | 0.98 | 0.97 | 0.92 | 0.97 | 0.94 | 0.94 | 0.96 | 0.95 | 0.8 | 0.84 | 0.82 | 0.82 | 0.84 | 0.83 | |
4 | 1 | 1 | 1 | 0.92 | 0.83 | 0.87 | 1 | 1 | 1 | 0.89 | 0.8 | 0.84 | 0.5 | 0.5 | 0.5 | 0.65 | 0.59 | 0.62 | |
Overall | 0.95 | 0.93 | 0.94 | 0.94 | 0.91 | 0.92 | 0.94 | 0.92 | 0.93 | 0.91 | 0.89 | 0.9 | 0.84 | 0.82 | 0.83 | 0.77 | 0.75 | 0.76 | |
1 | 1 | 0.89 | 0.94 | 1 | 1 | 1 | 1 | 0.89 | 0.94 | 1 | 1 | 1 | 1 | 0.89 | 0.94 | 1 | 1 | 1 | |
X101+PP | 2 | 0.96 | 0.9 | 0.93 | 0.86 | 0.94 | 0.9 | 0.95 | 0.89 | 0.92 | 0.82 | 0.89 | 0.85 | 0.86 | 0.81 | 0.83 | 0.63 | 0.69 | 0.66 |
3 | 0.92 | 0.97 | 0.94 | 0.97 | 0.98 | 0.97 | 0.92 | 0.97 | 0.94 | 0.95 | 0.96 | 0.95 | 0.8 | 0.84 | 0.82 | 0.83 | 0.84 | 0.83 | |
4 | 1 | 1 | 1 | 0.92 | 0.67 | 0.78 | 1 | 1 | 1 | 0.88 | 0.64 | 0.74 | 0.67 | 0.67 | 0.67 | 0.67 | 0.49 | 0.57 |
Each row corresponds to inference results with one method/architecture. When depth post-processing is used, it is indicated by +PP.