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Abstract

Chronic ethanol exposure induces impairments in CNS excitatory and inhibitory activity. These 

impairments are associated with glutamatergic dysfunction, including altered neuroplasticity. This 

study examined the effects of 6-week ethanol (15% and 30% v/v) consumption, by male alcohol-

preferring P rats, on protein expression associated with neuroplasticity and glutamate transporter-1 

(GLT-1) function. The latter regulates intra- and extra-synaptic glutamate levels. We focused on 

the shell and core subregions of the nucleus accumbens (Acb); i.e., shell (AcbSh) and core 

(AcbCo), for these measures. Chronic ethanol exposure increased the expression of BDNF, Arc 

and phosphorylated (p)-post-synaptic density protein-95 (p-PSD-95) in the AcbSh of P rats. 

Moreover, the ratio of phospho-neuronal nitric oxide synthase (p-nNOS) to total nNOS was also 

increased in the AcbSh. These changes in BDNF, Arc and p-nNOS/nNOS ratio were not observed 

in the AcbCo. Furthermore, chronic ethanol exposure reduced GLT-1 expression in the AcbSh. 

Alternatively, treatment with ceftriaxone (CEF), a known GLT-1 upregulator, abolished the effect 
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of chronic ethanol exposure on BDNF expression in the AcbSh. Overall, the present findings 

confirm that chronic ethanol consumption modulates activity-associated synaptic proteins, 

including BDNF, Arc and nNOS in a subregion-specific (i.e., in the AcbSh but not AcbCo) 

manner. Thus, alterations in mesocorticolimbic glutamatergic homeostasis and neuroplasticity are 

possible functional targets for the treatment of alcohol use disorders.
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Introduction

Ample evidence indicates that chronic ethanol exposure induces alterations in central 

neurotransmitter function, including that of glutamate, acetylcholine (Ach), and dopamine 

(DA). A primary reward circuit includes subregions of the mesocorticolimbic reward system 

[e.g., ventral tegmental area, VTA; nucleus accumbens, Acb; prefrontal cortex, PFC) 

(Ehrlich et al., 2012; He et al., 2005; Jeanes et al., 2011; Spiga et al., 2014; Uys et al., 2016). 

The Acb has been extensively studied for its crucial role in alcohol use disorders (AUDs) 

and substance use disorders (SUDs) (Heinze et al., 2009; Müller et al., 2016; Neasta et al., 

2011). Its subregions, the core (AcbCo) and shell (AcbSh), control rewarding behavior such 

as the inhibition, or promotion, of motivated reward-seeking behavior via distinct 

neurocircuits (Augur et al., 2016; Keistler et al., 2015; Stefanik et al., 2016). For instance, 

glutamatergic projections extend from the prelimbic/cingulate and infralimbic subregions of 

the mPFC to the AcbCo and AcbSh, respectively, with the former promoting and the latter 

inhibiting drug seeking behavior (Kalivas, 2009; Scofield et al., 2016). Nevertheless, the 

functional role of these neurocircuits are also drug-specific. For example, the dorsal mPFC 

(dmPFC: prelimbic/cingulate) facilitates cocaine- and heroin-seeking behavior, whereas the 

ventral mPFC (vmPFC: infralimbic) inhibits cocaine- but facilitates heroin-seeking behavior 

(Peters et al., 2013).

Within the AcbSh, ethanol induces neuroplastic changes by remodeling dendritic spines, 

including loss of long thin spines [for review see ref. (Chandler et al., 2006)]. Ethanol also 

impairs long-term depression (LTD), and induces Acb metaplasticity by switching from LTD 

to long-term potentiation (LTP) (Jeanes et al., 2011; Spiga et al., 2014). Ethanol-induced 

alterations in neurotransmitter systems are often associated with abnormal neuroplasticity 

and neuropathology (Ji et al., 2015; Ji et al., 2017; Shillinglaw et al., 2018). Brain-derived 

neurotrophic factor (BDNF) is implicated in the regulation of synaptic activity, 

neuroplasticity and connectivity (Grande et al., 2010). Studies suggested that glutamate may 

alter BDNF function, which can regulate synaptic transmission and neuroplasticity (Martin 

and Finsterwald, 2011). BDNF upregulates both mRNA and subsequent protein expression 

of vesicular glutamate transporters, suggesting that glutamatergic neurotransmission might 

be regulated by BDNF (Melo et al., 2013). Both BDNF and glutamate transporter expression 

and/or function are altered differentially by ethanol exposure. For example, chronic ethanol 

exposure downregulates GLT-1 (its human homolog is excitatory amino acid transporter 2, 

EAAT2) and this effect was associated with increased extracellular glutamate in the Acb 
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(Alhaddad et al., 2014b; Das et al., 2015). However, acute ethanol exposure increases BDNF 

mRNA expression and its downstream signaling molecule activity-regulated cytoskeleton-

associated protein (Arc) in the central amygdala (CeA) and medial amygdala (MeA), while 

ethanol withdrawal induced downregulation of the BDNF-Arc signaling pathway (Pandey et 

al., 2008). Arc protein expression is also differentially altered by exposure to drugs of 

addiction such as morphine; specifically, morphine-induced conditioned place preference 

(CPP) upregulated Arc expression in the AcbSh, while reinstatement of morphine-induced 

CPP increased Arc expression in the AcbCo (Lv et al., 2011).

The expression of BDNF and Arc are regulated by multiple signaling pathways, including 

intracellular and extracellular nitric oxide (NO) pathways (Riccio et al., 2006). Nitric oxide 

synthase (NOS), specifically the neuronal isoform (nNOS), is highly implicated in the 

development of tolerance (Khanna et al., 1993; Khanna et al., 1995) and sensitization 

(Itzhak and Martin, 2000; Santos-Rocha et al., 2018) to ethanol. Additionally, chronic 

ethanol exposure stimulates N-methyl-D-aspartate (NMDA) receptors, which are linked to 

nNOS via the post-synaptic density protein-95 (PSD-95) (Sattler et al., 1999). This activates 

nNOS and subsequently the production of NO (Chandler et al., 1997; Spanagel et al., 2002). 

Moreover, nNOS knock-out mice have much higher voluntary ethanol intake than wild-type 

mice, indicating a role for nNOS in mediating the neurobehavioral effects of ethanol 

consumption (Spanagel et al., 2002). Together, these studies implicate the glutamatergic 

system, BDNF-Arc signaling as well as NO pathways in the development and maintenance 

of AUDs. The current study examined the effects of ethanol intake on neuroplasticity-related 

proteins (BDNF, Arc, nNOS, and PSD-95) and determined the association between these 

proteins and changes in GLT-1 expression within the AcbSh and AcbCo.

Materials and methods

Animal model

Male P rats were housed in a room that was maintained at 21°C on a 12/12 h light/dark 

cycle. Rats had free access to water and food. All experimental procedures were approved by 

the Institutional Animal Care and Use Committee (IACUC) of the Indiana University School 

of Medicine (Indianapolis, IN, USA), in accordance with the guidelines of the IACUC of the 

National Institutes of Health, and the Guide for the Care and Use of Laboratory Animals.

Ethanol-intake paradigm

Rats were randomly assigned to groups at 90 days of age: water-control and ethanol-exposed 

groups. For the ethanol naïve group (n = 8), rats were exposed to only water and food 

throughout the exposure procedures, and was considered as the water-control group. For the 

ethanol group (n = 8), rats were exposed to continuous free-choice access to ethanol (15% 

and 30%, v/v, available concurrently) for six weeks; this results in pharmacologically 

relevant blood ethanol concentration (50–200 mg%) [For review see ref. (Bell et al., 2006)]. 

Measurement of ethanol intake was performed daily (g of ethanol intake/kg of body weight/

day). The average ethanol intake during week 6 was 6.87 ± 0.41 g/kg/day (Figure 1). Rats 

whose average ethanol intake ≤ 4 g/kg/day were excluded from the study following the 
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criteria for the development of ethanol dependence (Bell et al., 2012; Li et al., 1987; Sari 

and Sreemantula, 2012).

Brain tissue extraction

At the last day of week 6, all P rats were removed from the cage around mid-day and rapidly 

euthanized by CO2 inhalation followed by rapid decapitation with a guillotine, so there was 

no ethanol withdrawal period. Brains were isolated and immediately frozen on dry ice and 

stored at −80°C. The AcbCo and AcbSh were dissected using a cryostat apparatus (−20°C). 

We used surgical blades to micropunch and isolate the brain regions following visualized 

landmarks using the stereotaxic coordinates provided by Paxinos and colleague’s rat brain 

stereotactic atlas (Paxinos et al., 2007). The AcbCo and AcbSh were kept at −80°C for later 

western blot analyses.

Western blot procedure

Western blot was used to determine protein expression of GLT-1, BDNF, Arc, phospho 

nNOS (p-nNOS), total nNOS (t-nNOS), Phospho PSD-95 (p-PSD-95), PSD-95, and β-

tubulin in the AcbCo and AcbSh as previously published (Alasmari et al., 2017; Hammad et 

al., 2017; Sari et al., 2009). AcbCo and AcbSh homogenates were generated using a lysis 

buffer containing protease and phosphatase inhibitors. The amount of protein in each tissue 

sample was quantified using a detergent compatible protein assay (Bio-Rad, Hercules, CA, 

USA). The polyacrylamide gels (10%) were loaded with an equal amount of protein from 

each lysate; and the proteins were then separated using electrophoresis. Proteins were 

transferred electrophoretically from the gels onto Polyvinylidene difluoride (PVDF) 

membranes. Membranes were incubated in 5% free-fat milk in Tris-buffered saline with 

Tween-20 (TBST) for one hour at room temperature. Membranes were then incubated 

overnight at 4°C with appropriate primary antibodies: anti-GLT-1 (1:5000, Abcam, 

ab41621), anti-BDNF antibody (1:500; Abcam, ab108319), anti-Arc antibody (1:1000; 

Abcam, ab183183), anti-nNOS (1:1000; Abcam, ab76067), anti-p-nNOS (1:1000; Abcam, 

ab16650), anti-p-PSD-95 (1:1000; Abcam ab172628), and anti-PSD-95 (1:1000; Abcam 

ab76115). Anti-β-tubulin was used as a loading control antibody (1:1000; BioLegend). 

Membranes were incubated with the matched secondary antibody (1:5000) on the next day 

at room temperature for 90 minutes. The membranes were washed with TBST and dried for 

further analysis. The dried membranes were incubated with chemiluminescent reagents 

(Super Signal West Pico, Pierce Inc.) for 1–2 minutes. The digitized blot images were 

developed using the GeneSys imaging system. ImageJ software was used to quantify and 

analyze the expression of GLT-1, BDNF, Arc, p-nNOS, nNOS, p-PSD-95, PSD-95, and β-

tubulin. The water-control group (Ethanol-naïve group) data served as 100% (relative to 

water-control) to assess alterations in the expression of these proteins, of interest, as 

performed in previous studies (Alasmari et al., 2018; Devoto et al., 2013; Koehler et al., 

2019; Li et al., 2003; Raval et al., 2003; Zhang and Tan, 2011).

Statistical analysis

Two-way ANOVA followed by Bonferroni post-hoc tests were conducted for the statistical 

analyses. Two-factor ANOVA with treatment (ethanol vs water) and location (AcbCo vs 

AcbSh) was used to detect main effects for each factor and the interaction between factors, 
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using Graph Pad Prism software. For ceftriaxone (CEF) experiment, two-way repeated 

measures ANOVA test followed by Bonferroni post-hoc multiple comparison test was used 

to compare ethanol drinking behavior between ethanol-saline and ethanol-CEF groups. 

Finally, we used one-way ANOVA followed by Newman-Keuls multiple comparison test to 

compare protein expression of BDNF and Arc between water-control, ethanol-saline and 

ethanol-CEF200 groups. p-values of 0.05 or less are presented as statistically significant.

Results:

Effects of chronic ethanol consumption on the expression of BDNF in the AcbSh and 
AcbCo

We further measured the effects of 6-weeks of continuous ethanol consumption on the 

expression of BDNF in the AcbSh and AcbCo (Figure 2). The two-way ANOVA analysis 

revealed a significant main effect of treatment [F(1,26) = 5.97, p = 0.021]. Bonferroni post-

hoc tests revealed a significant increase in the expression of BDNF (p < 0.05) in the AcbSh 

of the ethanol group compared to the water-control group, whereas there was no significant 

change in the expression of BDNF in the AcbCo (Figure 2B).

Effects of chronic ethanol consumption on the expression of Arc in the AcbSh and AcbCo

We also determined the effects of 6-weeks of continuous ethanol consumption on the 

expression of Arc in the AcbSh and AcbCo (Figure 3). Statistical analysis showed that there 

was a trend towards significance for treatment [F(1,28) = 3.78, p = 0.06] with a clear 

nonsignificant effect for location [F(1,28) = 0.01, p = 0.89] on the expression of Arc. 

Following the trend towards significance of treatment, Bonferroni post hoc analyses revealed 

a significant increase in Arc expression by ethanol in the AcbSh (p < 0.05), but not the 

AcbCo, relative to water control values (Figure 3B).

Effects of chronic ethanol consumption on the expression of p-nNOS and t-nNOS in the 
AcbSh and AcbCo

We investigated the expression of phosphorylated-nNOS (p-nNOS) and total-nNOS (t-

nNOS) in the AcbSh and AcbCo of P rats that had continuous access to ethanol (15% and 

30%, v/v, available concurrently) for six weeks (Figure 4). The two-way ANOVA revealed a 

significant main effect of location on the expression of both p-nNOS [F(1,28) = 6.58, p = 

0.016] and t-nNOS [F(1,28) = 4.30, p = 0.047] (Figure 4A, B). Post hoc tests showed that 

nNOS expression was significantly decreased by ethanol (p < 0.05) in the AcbSh, but not in 

the AcbCo, relative to the water-control group (Figure 4B), while there was no significant 

change in p-NOS expression in both Acb regions. Accordingly, the p-nNOS/nNOS ratio was 

significantly increased (p < 0.05) in the AcbSh, but not AcbCo, of the ethanol group vs the 

water-control group.

Effects of chronic ethanol consumption on the expression of p-PSD-95 and total t-PSD-95 
in the AcbSh and AcbCo

The two-way ANOVA revealed a significant effect of location [F(1,28) = 9.15, p = 0.005] on 

p-PSD-95 expression in the Acb, but only a trend towards significance for treatment [F(1,28) 

= 3.78, p = 0.06] (Figure 5A). Post hoc tests showed that p-PSD-95 expression was 
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significantly increased (p < 0.05) in the AcbSh of the ethanol exposed group as compared to 

the water-control group, while there were no difference in the AcbCo (Figure 5A). Total t-

PSD-95 was not altered in either the AcbSh or AcbCo (Figure 5B). Although, the p-PSD-95/

PSD-95 ratio was not significantly changed by ethanol in either Acb subregion (Figure 5C).

Effects of chronic ethanol consumption on the expression of GLT-1 in the AcbSh and 
AcbCo

We measured the expression of GLT-1 in the AcbCo and AcbSh of P rats given 6-weeks of 

free-choice access to 15% and 30% ethanol as well as water (available concurrently) vs 

water only (Figure 6). The two-way ANOVA analysis revealed significant main effects of 

treatment [F(1,26) = 4.86, p = 0.036] and location [F(1,26) = 6.09, p = 0.020] on GLT-1 

expression. Bonferroni tests revealed a significant decrease in GLT-1 expression (p < 0.05) 

in the AcbSh of the ethanol group compared to the water-control group, whereas there was 

no significant difference within the AcbCo (Figure 6B).

Effects of ceftriaxone treatment on ethanol and water consumption and protein expression 
of BDNF and Arc in the AcbSh

It has been proposed that CEF at dose of 100 or 200 mg/kg attenuates ethanol drinking 

behavior via, at least in part, upregulation of GLT-1 in P rats (Das et al., 2015; Qrunfleh et 

al., 2013; Sari et al., 2011). Therefore, we aimed here to investigate the effect of CEF 

treatment (200 mg/kg) on ethanol-induced changes in neuroplasticity proteins. Two groups 

of P rats (n=5–6/group) had 24 hours free access to 0, 15% and 30% ethanol in water for 5 

weeks. At Day 1 of Week 6, one group received daily CEF (200 mg/kg, i.p.) injections for 5 

days. The other group received equivolume i.p. injections of saline for 5 days. Another 

group of P rats (n=6/group) exposed to water only and served as water-control group. All 

rats were euthanized at Day 6. Ethanol and water consumption were calculated as described 

previously (Alhaddad et al., 2014b; Sari et al., 2011). Statistical analysis using two way RM 

ANOVA followed by bonferroni multiple comparison test showed that CEF (200 mg/kg, i.p.) 

treatment significantly reduced ethanol drinking as compared to ethanol-saline group 

[F(6,54) = 7.99, p< 0.01] at Day 3 through Day 6 as shown in Figure 7A. This effect was 

accompanied by significant increase in water intake in ethanol-CEF group compared to 

ethanol-saline group [F(6,54) = 7.99, p< 0.001] at Day 3 through Day 6 (Figure 7B). 

Importantly, BDNF protein expression in ethanol-CEF group was not significantly different 

compared to ethanol-saline or water-control group (Figure 7C), although there was 

significantly higher BDNF expression in ethanol-saline compared to water-control groups 

[F(2,17) = 4.05, p< 0.05], Figure 7D. However, CEF treatment did not affect Arc protein 

expression compared to ethanol-saline group [F(2,17) = 4.13, p< 0.05]. These data suggest 

that CEF may be useful in normalization of certain protein involved in neuroplasticity that 

might be affected by chronic ethanol exposure in AcbSh.

Discussion

This study revealed that chronic ethanol drinking has differential effects in the AcbSh and 

AcbCo of P rats. Specifically, the results showed that 6 weeks of voluntary ethanol 

consumption induced upregulation of BDNF, Arc, and p-PSD-95 protein expression, as well 
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as increasing the p-nNOS/nNOS ratio, while downregulating GLT-1 expression in the 

AcbSh. However, we did not find any changes in the expression of these proteins within the 

AcbCo. These results further support a discrete role for Acb subregions in regulating ethanol 

consumption. Downregulation of GLT-1 in the AcbSh is in agreement with previous studies 

showing that chronic ethanol exposure reduced GLT-1 expression in the Acb (Alhaddad et 

al., 2014b; Das et al., 2015), and increased Acb extracellular glutamate concentrations (Das 

et al., 2015; Melendez et al., 2005). We have also recently reported that chronic ethanol 

consumption induced downregulation of GLT-1 in the AcbSh, but not AcbCo, of young (21–

30 days old) P rats (Althobaiti et al., 2019) and high-alcohol-drinking (HAD) rats (Alasmari 

et al., 2020). The present results and previous studies suggest that chronic ethanol induces 

dysregulation of glutamate homeostasis in the mesocorticolimbic brain regions.

Additionally, the data showed that BDNF protein expression was increased in the AcbSh, 

but not in the AcbCo, following chronic ethanol drinking. At the glutamatergic synapse, 

BDNF exert synthesis-dependent regulation of synaptic modulation and neuroplasticity-

inducing processes through NMDAR activation (Kojima et al., 2002). It is noteworthy that P 

rats have lower protein expression of BDNF in the Acb compared to alcohol-non-preferring 

NP rats (Yan et al., 2005). In addition, other studies have shown that BDNF expression is 

differentially changed based on brain region assessed and length of ethanol exposure. For 

instance, a single dose of ethanol induced an increase in BDNF mRNA expression in the 

dorsal striatum, while 6-week of ethanol drinking was associated with decreased BDNF 

protein expression in the cortex, but neither the dorsal nor ventral striatum, of mice (Logrip 

et al., 2009). Moreover, chronic ethanol self-administration increased BDNF expression in 

the dorsolateral, but not dorsomedial, striatum of outbred rats (Jeanblanc et al., 2009). 

Furthermore, the mRNA expression of BDNF in the dorsal striatum of male C57BL/6 mice 

was increased following exposure to ethanol (McGough et al., 2004). Interestingly, it has 

been shown that activation of glutamate receptors, via kainic acid or NMDA, increased the 

expression and synthesis of BDNF, using both in vitro and in vivo assays (Zafra et al., 1991). 

We suggest here that increase in glutamatergic activity, due to decrease in GLT-1 expression 

in the AcbSh may underlie, at least partly, increase in BDNF expression. This was confirmed 

with our finding (Figure 7C) that revealed CEF, which is known to upregulate GLT-1, might 

be associated with normalization of BDNF expression upon chronic ethanol exposure in the 

AcbSh.

It is important to note that BDNF was found to regulate Arc expression via the Erk1/2-

CREB-Elk-1 pathways (Ramanan et al., 2005; Waltereit et al., 2001; Ying et al., 2002). Arc 

is an immediate early gene that is involved in neuroplasticity within the soma and dendrites 

(Guzowski et al., 2006). Studies have revealed that Arc expression is increased by stressful 

conditions, which can lead to the consolidation of neuroplasticity and long-term memory 

(Guzowski et al., 2000; Ons et al., 2004; Plath et al., 2006). BDNF also induced an increase 

in Arc expression via tyrosine kinase receptor- (TRKB)-mediated phosphorylation and 

activation of Erk1/2 (Davis et al., 2000; Waltereit et al., 2001; Yin et al., 2002). (Pandey et 

al., 2008) suggested that increases in BDNF-Arc signaling are associated with the anxiolytic 

effects of ethanol, possibly via neuropeptide Y (NPY) activity, whereas decreases in BDNF 

and Arc signaling are associated with the anxiogenic effects of ethanol withdrawal (Pandey 

et al., 2008). In other studies, the increase in Arc protein level, within the AcbSh, indicated 
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activation of synapses in that region (Steward et al., 1998). Moreover, the activation of 

NMDA receptors appears to be required for the synthesis and targeting of Arc mRNA to 

stimulated synaptic regions, within dendrites, which suggests on-site (i.e., dendritic/

synaptic) translation (Steward et al., 1998; Steward and Worley, 2001). Likewise, integrated 

signals from NMDA and AMPA glutamatergic receptors are crucial for Arc production (Rao 

et al., 2006). Therefore, present and previous findings suggest that increases in glutamate 

neurotransmission are associated with increased BDNF-Arc signaling activity in the AcbSh, 

which may modulate anxiety-like behavior induced by ethanol consumption and subsequent 

withdrawal (Pandey et al., 2008).

In the present study, the activity of nNOS was increased in the AcbSh after 6 weeks of 

ethanol intake as a result of increasing in the p-NOS/nNOS ratio, which suggests increases 

in NO production (Hinchee-Rodriguez et al., 2013; Kar et al., 2015). nNOS-derived NO is 

known to regulate synaptic plasticity by induction of protein involved in synaptic changes 

through cGMP, protein kinase G and ERK pathways (Gallo and Iadecola, 2011a). Studies 

have revealed contradictory roles for nNOS regarding ethanol dependence and withdrawal. 

For example, although consumption of ethanol is higher in nNOS KO mice compared to 

wild type mice (Spanagel et al., 2002), intracerebroventricular of nNOS antisense 

oligonucleotides resulted in decreased ethanol drinking by rats (Naassila et al., 2000) and an 

ethanol-associated CPP in mice (Itzhak et al., 2009). Interestingly, nNOS-derived NO 

production is critical for the downregulation of GLT-1 in vitro (Yamada et al., 2006). 

Moreover, cue-induced amphetamine- and cocaine-seeking behaviors were associated with 

increased glutamate release, which also was critical for the production of NO through 

activation of nNOS in the Acb (Siemsen et al., 2020; Smith et al., 2017). These studies 

supported our finding that reduction in GLT-1 expression is associated with an increase in 

nNOS activity (i.e., nNOS is phosphorylated resulting in a higher p-nNOS/nNOS ratio) in 

the AcbSh of chronically drinking P rats. Additionally, a recent study from our laboratory 

found that 6-weeks of ethanol consumption decreased glucocorticoid receptor (GR)-α 
mRNA expression in the AcbSh, while GR-β mRNA expression was reduced in the AcbCo 

(Alhaddad et al., 2020). Alternatively, chronic ethanol exposure was associated with 

inflammatory response in AcbSh but not AcbCo in HAD rats, and treatment with β-lactam 

antibiotic (ampicillin/sulbactam) was able to restore ethanol-induced inflammatory 

responses probably by modulating GLT-1 expression (Alasmari et al., 2020). These findings 

with nNOS expression alterations in our study suggest that chronic ethanol consumption 

may be associated with neuroinflammation specifically in the AcbSh.

The present results revealed that BDNF, Arc and p-PSD-95 protein expression were 

increased in the AcbSh after 6 weeks of ethanol intake. PSD-95 involved in synaptic 

remodeling, stabilization and regulation of activity-dependent synaptic plasticity (Maletic-

Savatic et al., 1999; Migaud et al., 1998). It has been shown that PSD-95 mediates several 

ethanol drinking behaviors; such as reduced ethanol drinking and hypersensitivity to some of 

ethanol’s acute intoxicating effects after functional deletion of PSD-95 (Camp et al., 2011). 

Others have shown that stimulation of NMDA receptors (an ethanol-associated effect) 

results in activation of nNOS and the production of NO (Bredt and Snyder, 1990; Brenman 

et al., 1996). This activation may be mediated through PSD-95 activity, since the nNOS-

PSD-95 pathway mediates post-synaptic nNOS activity (Zhou and Zhu, 2009). In addition, 
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nNOS-derived NO increased the expression of BDNF and Arc in an in vitro cortical 

neuronal culture (Gallo and Iadecola, 2011b), which confirms a role for NO signaling in 

neuroplasticity (Lu et al., 1999; O’Dell, 1991; Schuman and Madison, 1991). It has been 

suggested that BDNF and NO are crucial for synaptic plasticity (Biojone et al., 2015). By its 

action at TRKB, BDNF upregulates nNOS expression and increased NO production 

(Biojone et al., 2015) as well as increased CREB-dependent gene expression, which results 

in enhancement of synaptic potentiation (Hardingham et al., 2013; Nott et al., 2008). These 

studies suggested that post-translational modifications of BDNF, through a NO-dependent 

pathway, reduced the effects of BDNF on synaptic strength. Similarly, NO decreases the 

efficacy of BDNF at its receptor (TRKB), by NO-derived nitration of BDNF and/or TRKB, 

as a negative feedback mechanism. By extension, NO and BDNF act together to induce 

nitration or phosphorylation of TRKB, which activates or deactivates specific downstream 

cellular pathways of TRKB (Biojone et al., 2015). Thus, increases in BDNF and Arc 

expression as well as nNOS activity, in the AcbSh, may modulate neuroplasticity associated 

with chronic ethanol consumption (Figure 8). However, a prior study showed that 

ceftriaxone did not induce any cganges on the level of BDNF in the hippocampus and frontal 

cortex in animals had developed pneumococcal meningitis (Barichello et al., 2014). More 

research is needed to study the effects of ceftriaxone on BDNF in the AcbSh and AcbCo.

Conclusion and Future Direction

In conclusion, chronic ethanol consumption by P rats caused reductions in GLT-1 expression 

in the AcbSh with probable increases in extracellular glutamate levels, which can lead to 

overstimulation of NMDA receptors and increased PSD-95-nNOS activity. This activity can 

lead to increases in the expression of BDNF and Arc, as observed in the present study. This 

BDNF-Arc signaling pathway, in turn, regulates synaptic plasticity and neuronal 

connectivity. However, this neuroplasticity may lead to incongruous patterns of connections 

within the AcbSh, which results in a disruption of glutamate homeostasis, as it was shown in 

previous work as well this present study. However, treatment with CEF was associated with 

tendency to normalize BDNF expression. In accordance to our previous findings, these 

alterations were not observed in the AcbCo. Therefore, the maintenance of ethanol drinking 

might be maintained by dysregulated neuronal pathways in the AcbSh, which is a critical 

brain region of the mesocorticolimbic reward neurocircuitry (Augur et al., 2016; Keistler et 

al., 2015). Future studies are warranted to investigate the effects of long-term CEF treatment 

on the expression of BDNF, Arc, p-nNOS, nNOS, and p-PSD-95 in the AcbSh in animals 

exposed to alcohol.
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Highlights

• Chronic ethanol exposure increased BDNF and Arc, and reduced GLT-1 in 

Acb-shell in P rats.

• Chronic ethanol exposure increased phospho-neuronal NO synthase in Acb-

shell.

• Ceftriaxone normalized BDNF expression against the effect of ethanol intake 

in Acb-shell
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Figure 1. Ethanol consumption in P-rats.
Average ethanol intake (g/kg/24hours) over 6 weeks in male P rats (n=8) with continuous 

free access to 0, 15% and 30% ethanol [with permission from the publisher (Alhaddad et al., 

2020)]. P rats with intake of < 4 g/kg/day did not meet the criteria for the development of 

ethanol dependence and were excluded from the study.
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Figure 2. Effect of six weeks ethanol consumption on BDNF protein expression in the AcbCo and 
AcbSh.
(A) Representative immunoblots for BDNF and β-tubulin of water-control vs ethanol groups 

in AcbCo (left panel) and AcbSh (right panel). (B) Statistical analyses revealed no 

significant change in BDNF protein expression in the AcbCo of the ethanol group, as 

compared to the water-control group. A significant upregulation of BDNF protein expression 

in the AcbSh was observed following chronic ethanol drinking. Data are shown as mean ± 

SEM; (*p < 0.05); (n = 7–8 for each group).
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Figure 3. Effect of six weeks ethanol consumption on Arc protein expression in the AcbCo and 
AcbSh.
(A) Representative immunoblots for Arc and β-tubulin of water-control and ethanol groups 

in the AcbCo (left panel) and the AcbSh (right panel). (B) Statistical analyses revealed no 

significant change in Arc protein expression in the AcbCo of the ethanol group, as compared 

to the water-control group. A significant upregulation of Arc protein expression in the 

AcbSh was observed after chronic ethanol intake. Data are shown as mean ± SEM; (*p < 

0.05); (n = 8 for each group).
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Figure 4. Effect of six weeks ethanol consumption on p-nNOS and t-nNOS protein expression in 
the AcbCo and AcbSh.
(A) Representative immunoblots for p-nNOS and β-tubulin in AcbCo and AcbSh 

respectively (upper panel) of the water-control and ethanol groups. Statistical analyses 

revealed no significant change in p-nNOS protein expression within either the AcbCo or 

AcbSh of the ethanol group, as compared to the water-control group (lower panel). (B) 
Representative immunoblots for t-nNOS and β-tubulin in the AcbCo and AcbSh, 

respectively (upper panel), of the water-control and ethanol groups. Statistical analyses 

revealed no significant change in t-nNOS protein expression in the AcbCo of the ethanol 

group, whereas t-nNOS protein expression in the AcbSh was significantly downregulated by 

chronic ethanol (lower panel). (C) Statistical analyses showed a significant increase in the p-

nNOS/t-nNOS ratio following ethanol drinking in the AcbSh, but not AcbCo. The ratio is 

calculated by dividing the expression of p-nNOS by t-nNOS from the same western blot 

membranes. Data are shown as mean ± SEM; (*p < 0.05); (n = 8 for each group).

Alhaddad et al. Page 20

Brain Res Bull. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Effect of six weeks ethanol consumption on p-PSD-95 and t-PDS-95 protein expression 
in the AcbCo and AcbSh.
(A) Representative immunoblots for p-PSD-95 and β-tubulin in AcbCo and AcbSh 

respectively (upper panel) of the water-control and ethanol groups. Statistical analyses 

revealed no significant change in the p-PSD-95 protein expression within the AcbCo, 

whereas there was a significant upregulation of p-PSD-95 protein expression in the AcbSh 

(lower panel). (B) Representative immunoblots for PSD-95 and β-tubulin in the AcbCo and 

AcbSh respectively (upper panel) of the water-control and ethanol groups. Statistical 

analyses revealed no significant change in PSD-95 protein expression in either the AcbCo or 

AcbSh following ethanol drinking (lower panel). (C) Statistical analyses revealed no 

significant change in the p-PSD-95/PSD-95 ratio of the ethanol group compared to water-

control group in either the AcbCo or AcbSh. The ratio is calculated by dividing the 

expression of p-PSD-95 by PSD-95 from the same western blot membranes. Data are shown 

as mean ± SEM; (*p < 0.05); (n = 8 for each group).
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Figure 6. Effect of six weeks ethanol consumption on GLT-1 protein expression in the AcbCo and 
AcbSh.
(A) Representative immunoblots for GLT-1 and β-tubulin of water-control and ethanol 

groups in the AcbCo (left panel) and AcbSh (right panel). (B) Statistical analyses revealed 

no significant change in the GLT-1 protein expression in the AcbCo of the ethanol group as 

compared to the water-control group, while there was a significant downregulation of GLT-1 

protein expression in the AcbSh of the ethanol group, as compared to the water-control 

group. Data are shown as mean ± SEM; (*p < 0.05); (n = 6–8 for each group).
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Figure 7. Effects of ceftriaxone treatment on ethanol and water drinking behavior and 
expression of BDNF and Arc in the AcbSh.
(A) CEF (200 mg/kg, i.p.) treatment significantly reduced ethanol consumption in Day 3 

through Day 6 as compared to saline treated group (n=5–6/group). (B) Water consumption 

was significantly increased in CEF group compared to saline treated group in Day 3 through 

Day 6 (n=5–6/group). (C) Representative immunoblots for BDNF and β-tubulin of water-

control, ethanol-saline (saline) and ethanol-CEF 200 (CEF 200) groups in the AcbSh (upper 

panel). Statistical analyses revealed that BDNF expression was significantly increased in 

ethanol-saline group compared to water-control group. There was no significant change in 

BDNF expression in CEF 200 group compared to ethanol-saline and water-control groups 

(lower panel). (D) Representative immunoblots for Arc and β-tubulin of water-control, 

saline and CEF 200 groups in the AcbSh (upper panel). Statistical analyses revealed that Arc 

expression was significantly increased in ethanol-saline and ethanol-CEF 200 group 

compared to water-control group. There was no significant change in the expression between 

CEF 200 and saline groups (lower panel). Data are shown as mean ± SEM; (*p < 0.05, **p 

< 0.01 and ****p<0.0001); (n = 6 for each group).
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Figure 8. 
Schematic diagram summarizes the effects of chronic ethanol consumption on GLT-1, NO 

pathway, BDNF, and Arc expression in the AcbSh. Chronic ethanol consumption increases 

synaptic glutamate concentration mainly due to downregulation of GLT-1 (both GLT-1a and 

GLT-1b isoforms) and cystine/glutamate exchanger transporter (xCT) expression (Alhaddad 

et al., 2014a; Das et al., 2015). Chronic ethanol consumption also increases NO system 

activity, BDNF-Arc expression and PSD-95. NO regulates the incorporation of postsynaptic 

GluA1 subunit of AMPA receptors probably through CREB-BDNF-Arc pathway and 

ubiquitination of PSD-95. In addition, chronic ethanol exposure was associated with 

increases in the inflammatory response through upregulation of inflammatory mediators 

such as high mobility group box 1 (HMGB1), a receptor for advanced glycation end 

products (RAGE) and TNF-α (Alasmari et al., 2020).
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