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Individual variability in functional connectivity
architecture of the mouse brain
Eyal Bergmann 1, Xenia Gofman1, Alexandra Kavushansky1 & Itamar Kahn 1✉

In recent years precision fMRI has emerged in human brain research, demonstrating char-

acterization of individual differences in brain organization. However, mechanistic investiga-

tions to the sources of individual variability are limited in humans and thus require animal

models. Here, we used resting-state fMRI in awake mice to quantify the contribution of

individual variation to the functional architecture of the mouse cortex. We found that the

mouse connectome is also characterized by stable individual features that support

connectivity-based identification. Unlike in humans, we found that individual variation is

homogeneously distributed in sensory and association networks. Finally, connectome-based

predictive modeling of motor behavior in the rotarod task revealed that individual variation in

functional connectivity explained behavioral variability. Collectively, these results establish

the feasibility of precision fMRI in mice and lay the foundation for future mechanistic

investigations of individual brain organization and pre-clinical studies of brain disorders in the

context of personalized medicine.
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A fundamental question in brain research is what makes
individuals different from each other. This question can be
addressed at different levels of organization, starting from

genetics or neurotransmitters, going through structural or functional
measures of brain regions and networks, and ending at behavioral
phenotypes or clinical outcomes. In humans, a common approach to
study brain organization in individuals is resting-state functional
connectivity magnetic resonance imaging (fcMRI), which estimates
functional connectivity between regions based on coherent sponta-
neous fluctuations in the fMRI signal1–3.

Previous human fcMRI studies demonstrated that this measure is
stable over time and can be used to characterize individual differ-
ences4–8. These works revealed that such differences are spread
heterogeneously across the human cortex, demonstrating increased
variability in association networks, in cortices that underwent
expansion and elaboration relative to non-human primates and lower
mammals, and in cortices that are characterized by more distal
connectivity. Moreover, individual variation in functional con-
nectivity was shown to predict individual activity patterns in task
conditions9,10 and behavioral performance11–13. Finally, recent stu-
dies in patients with neuropsychiatric disorders reported that indi-
vidual functional connectivity patterns can be used as a biomarker for
diagnosis and treatment optimization14–16, key features of persona-
lized medicine.

While individual differences in functional connectivity were
thoroughly characterized in humans, including identification of
sources of intra-subject variability17, a dissection of mechanisms
relies on animal models. Such investigation demands an adequate
sample size that is hard to achieve in studies in non-human pri-
mates and may involve genetic manipulations and molecular
techniques that are more readily accessible in rodent models, par-
ticularly in mice. Previous fcMRI studies in anesthetized mice
demonstrated reproducible resting-state networks18,19, applications
to mouse models of brain disorders20–22, and correlations between
functional connectivity and behavioral measures23–26. However,
characterization of individual differences in functional connectivity
is based on repeated data acquisition that can control for mea-
surement instability. Since this experimental design is hard to
achieve in anesthetized animals, such studies can benefit from
awake mouse imaging. We have previously established fcMRI
experiments in awake head-fixed mice27–29 and used repeated-
measurement designs to link individual differences in structural and
functional connectivity30. However, a detailed analysis of individual
variability of functional connectivity in the mouse brain and its
relevance to behavior has heretofore not been demonstrated.

Here we used repeated-measurement resting-state fcMRI to
characterize individual variation in functional connectivity in the
mouse cortex. We show that despite the reduced complexity of the
mouse cortex relative to the human homolog and the animals being
genetically identical, it is also characterized by individual variation,
allowing above chance-level identification of specific mice from a
group. Then, we characterize factors affecting identification accu-
racy, and examine the distribution of individual variability in sen-
sory and association networks. Finally, we link individual
differences in functional connectivity to behavioral variability in the
accelerating rotating rod task (rotarod), which assesses motor per-
formance. Collectively, these findings indicate that mouse func-
tional networks are characterized by behaviorally relevant
individual variation and lay the foundation for future mechanistic
investigations of sources of individual variability and pre-clinical
studies of brain disorders in the context of personalized medicine.

Results
Individual variation in the mouse functional connectome. Data
of the study consisted of nineteen F1 C6/129P (male, age

9–12 weeks), which underwent multiple daily fcMRI sessions
during passive wakefulness as previously described30, followed by
behavioral testing in the rotarod task31. After exclusion of sessions
with image artifacts or excessive motion (see “Methods”), the final
dataset included 16 mice with six sessions (each comprising ~30
min of data), which were split to two halves of three sessions each
to examine the group and individual similarities in the mouse
functional connectome. For the comparison between functional
connectivity and behavior, two additional mice with 4–5 sessions
were included. In this analysis, data from all sessions were aver-
aged, resulting in a single connectivity matrix per mouse.

Functional connectivity matrices were built based on the Allen
Mouse Brain Atlas (https://mouse.brain-map.org)32 using the
Common Coordinate Framework Reference Atlas (CCFv3)33. The
atlas was downsampled to fMRI resolution (Fig. 1a; mouse-specific
images are presented in Supplementary Fig. 1), and included 43
cortical parcels per hemisphere, which were divided into six
modules (Prefrontal, Lateral, Somatomotor, Visual, Medial and
Auditory) based on anatomical connectivity patterns34. The two
connectivity matrices of each mouse were compared to each other
and to all other connectivity matrices of the other mice
(representative matrices are presented in Fig. 1b) by calculating
the Fisher’s z-transformed correlations between all edges in the
connectome. The resulting network similarity matrix diagonal
represents the similarity within individuals, while rows and columns
represent similarity between specific mouse and all other mice in
the group (Fig. 1c). This matrix was used for quantification of
individual variation in the mouse connectome by comparing group
and individual network similarities7. We found substantial group
similarity (mean z(r)= 0.9), which indicates that mouse con-
nectomes share a common structure. Nevertheless, we also found
that individual similarity (mean z(r)= 1.08) is significantly higher
than group similarity (two-tailed paired student t-test: t(15)= 7.32,
P < 0.001, Cohen’s d= 1.83), demonstrating substantial differences
in 15 out of 16 mice (Fig. 1d), and indicating that fcMRI can
capture individual variability in the mouse connectome.

The significant difference between group and individual
network similarities means that on average, connectivity matrices
from the same mouse are more similar than connectivity matrices
from different mice. A more stringent criterion for estimation of
individual variation is connectome-based fingerprinting, which
tests the ability to accurately identify mice from a group12. Such
identification means that the similarity between the two
connectivity matrices of the same mouse must be higher than
the similarity to all other connectivity matrices in the group. To
test the feasibility of functional connectome-based fingerprinting
in mice, we calculated the fraction of mice in which the values
along the diagonal of the similarity matrix were higher than other
values in each row and column. We found that the rates of
successful identification of mice in the first and second halves of
data were 68.75% and 62.5% out of the 16 mice, respectively
(Fig. 1e). To formally test the significance of those rates, we used a
shuffling procedure, calculated the distribution of identification
rates when assigning random identities in either the first or
second halves of the connectivity matrices, and found that the
observed identification rates are significantly higher than values
in all 1000 shuffled iterations (P < 0.001, Fig. 1e). While the
identification rates are more modest than the ones observed in
humans (92.9–94.4%)12, they nonetheless indicate that individual
variability in the mouse connectome is substantial enough to
compare between individual connectomes, and distinguish
individual connectivity patterns between mice.

A possible confound that may contribute to the estimation of
individual variation is head motion. In such case, we expect that
mice with increased head motion will have higher individual
similarity. An alternative explanation is that mice with higher
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head motion have less amount of data available for analysis due to
motion scrubbing, and as a result will have lower individual
similarity. To address this issue, we compared between the
average number of frames included after motion scrubbing and
the different measures of individual variation, namely group
similarity, individual similarity, and identifiability (Supplemen-
tary Fig. 2). The results support the second explanation as
number of included frames was positively correlated with
individual similarity (Spearman correlation: ρ(14)= 0.7, p=
0.003), but not with group similarity (Spearman correlation:
ρ(14)= 0.02, p= 0.94). Importantly, mice with lower numbers of
frames included were less identifiable in the connectome-based
fingerprinting analysis. Another control analysis we conducted
was to examine whether the estimated individual variation is a
result of spurious connections in the connectome (Supplementary
Fig. 3). We discovered that applying sparsity thresholds that

constrain the analysis to strong and consistent functional
connections that are more anatomically plausible, results in
higher estimation of individuality. Finally, to assure that our data
acquisition parameters and preprocessing procedure support
estimation of individual functional connectivity profiles, we
replicated a well-validated quality control measure of functional
connectivity specficity19, and found that our findings are not
driven by mice with non-specific functional connectivity
estimates (Supplementary Fig. 4). Collectively, these control
analyses suggest that the individual differences observed in the
original analysis are not a result of structured noise related to
head motion, spurious connections or data quality.

Factors contributing to characterization of individual variation.
Studies in humans demonstrated that successful identification12
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Fig. 1 Individual variation in the mouse functional connectome. a Anatomical parcellation of the mouse cortex overlaid on average fMRI image at native
resolution. Eighty-six cortical labels (black borders) were taken from the Allen Mouse Brain Atlas CCFv3 and divided to six modules (label color) based on
their anatomical connectivity profiles34. b Individual functional connectomes of three representative mice from the cohort demonstrate unique patterns
that are consistent between the first and second halves of data. The identity of the anatomical modules of each node is designated by the color. c A
network similarity matrix in which each cell represents the similarity between two connectomes. The matrix is asymmetric as columns represent the
similarity between the first half of data of each mouse and the second half of the data of all the other mice, while rows represent the similarity between the
second half of data of each mouse and the first half of data of all the other mice. The values along the diagonal represent individual similarity, which is the
correlation between the edges of the two connectivity matrices of the same mouse. d A comparison between group and individual similarities
demonstrates higher similarity between connectomes from the same mouse (n= 16 mice, ***P < 0.001), the magenta line depicts the average group and
individual network similarities. e True connectome-based identification rates (magenta) were compared to 1000 iterations of identity shuffling indicating
that individual variation in the mouse functional connectome is substantial enough to enable above chance-level identification of mice from the group.
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and precise characterization of individual variation7 depend on
the amount of fcMRI data available per participant. Therefore,
leveraging the repeated-measurement design of our fcMRI
experiment, we sought to characterize how much data is needed
to stably characterize the functional cortical organization in
individual mice.

In our original analysis (Fig. 1) two average connectivity matrices
were calculated per mouse by splitting its six sessions to two halves,
controlling for the total number of included frames per half (see
“Methods”). In the current analysis, we built a set of connectivity
matrices using all combinations of one (n= 15), two (n= 45) or
three sessions (n= 20) per mouse, and examined network similarity
and identification rates as a function of the number of sessions
averaged per connectome (Fig. 2a). First, we calculated group and
individual network similarity values for different number of included
sessions and submitted the results to a repeated-measures ANOVA
(corrected with the Huynh-Feldt method) with individuality and
number of sessions as within mouse factors. We found significant
effects of both factors (individuality: F(1, 15) = 34.28, P < 0.001,
εH-F= 1, η2= 0.71; number of sessions: F(2, 30)= 7318.76, P < 0.001,
εH-F= 0.51, η2= 0.998), confirming that network similarity between
connectivity matrices from the same mouse is higher than group
similarity, and that increasing the amount of data per mouse
improves network similarity estimation. Importantly, we also found a
significant interaction between individuality and number of sessions
(F(2, 30)= 109.87, P < 0.001, εH-F= 0.5, η2= 0.887), indicating that
increasing the amount of data per mouse preferentially increases
individual over group network similarity values. In agreement with

this finding, the results of the identification analysis revealed that
increasing the number of sessions improve identification (two-tailed
unpaired student t-test: two sessions vs. one session: t(58) = 9.08,
P < 0.001, Cohen’s d= 2.9; three sessions vs. one session:
t(33)= 15.53, P < 0.001, Cohen’s d= 5.3; three sessions vs. two
sessions: t(63)= 8, P < 0.001, Cohen’s d= 2.15). Collectively, these
analyses indicate that repeat-measurement fcMRI designs supported
by awake imaging are useful for characterizing individual functional
connectivity patterns.

After establishing that the mouse functional connectome is
characterized by stable individual features, we sought to
characterize which brain connections contribute to individual
variation. Therefore, we replicated that analysis of Finn et al.12

and characterized which edges possess high differential power
(DP) that contribute to identification, and which edges possess
high group consistency (Φ) within mice and across the group. We
derived those values for all edges in the connectivity matrix, and
determined which edges were in the top 1% of each measure
(Fig. 2b). We found that most edges in the top 1% of DP are
related to the posterior modules, namely, Visual, Medial, and
Auditory, and include many inter-hemispheric and inter-module
connections. In contrast, edges in the top 1% of Φ came from all
modules and included mainly intra-hemispheric intra-module
connections. In the original analysis of Finn et al.12, high DP were
observed in high-order fronto-parietal connections, while high Φ
were observed in inter-hemispheric connectivity within the
Somatomotor and Visual networks. Comparing the analyses
across species, we conclude that while the mouse data recapitulate
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the Φ difference between intra- and inter-module connections,
and show DP bias toward specific modules, it seems to not show a
difference between sensory and association regions. Therefore, we
sought to directly examine individual variation in those
qualitatively different brain systems.

Individual variation across brain systems. To better characterize
individual variation in sensory and association systems in the
mouse cortex, we sought to examine whether functional con-
nectivity profiles within these systems differ in their identifiability
or group and individual network similarities. Therefore, we
defined each cortical node as either sensory (Somatomotor,
Visual, and Auditory modules) or association (Prefrontal, Lateral,
and Medial modules) and derived two network similarity matri-
ces (Fig. 3a). Then, we calculated group and individual network
similarities for each system (Fig. 3b), and found higher values
compared to the original full connectivity matrix (all connec-
tions) in both group (two-tailed paired student t-test: all con-
nections vs. association: t(15)= 26.9, P < 0.001, Cohen’s d= 6.73;
all connections vs. sensory: t(15)= 18.44, P < 0.001, Cohen’s
d= 4.61) and individual similarities (all connections vs. associa-
tion: t(15)= 8.92, P < 0.001, Cohen’s d= 2.23; all connections vs.
sensory: t(15)= 11.59, P < 0.001, Cohen’s d= 2.9). Comparison
between association and sensory systems revealed significant
difference in group network similarity (t(15)= 4.96, P < 0.001,
Cohen’s d= 1.24), but no difference in individual network
similarity (t(15)= 0.56, P= 0.583, Cohen’s d= 0.14; all values
were corrected for multiple comparison using false-discovery rate

based on the Benjamini–Hochberg method). Examining the
normalized relative effect magnitude of individuality (Fig. 3c), we
found no difference between sensory and association systems
(t(15)= 1.803, P= 0.137, Cohen’s d= 0.45). Nevertheless, com-
parison to the full connectivity matrix revealed lower effect
magnitude of individuality in association (t(15) = 3.02, P= 0.026,
Cohen’s d= 0.75), but not sensory (t(15) = 0.134, P= 0.85,
Cohen’s d= 0.03), systems. Finally, we carried out the identifi-
cation analysis for each type of connectome and found similar
identification rates in sensory and association systems (Fig. 3d),
which were only slightly lower than the original values yielded by
the full connectivity matrix. Collectively, these analyses indicate
that connections between sensory and association regions, which
reflect inter-module connectivity, are less consistent across the
group. Importantly, the results indicate that the relative effect
magnitude of individuality on functional organization of the
mouse cortex is more modest compared to humans7, and the
qualitative differences between sensory and association networks
in the human brain are not well recapitulated in mice.

After characterizing individual variation at the level of cortical
network, we sought to examine this measure at a regional level.
Therefore, we calculated group and individual similarity for each
of the 86 cortical regions (Supplementary Data 1 and Supple-
mentary Fig. 5). We found consistent group and individual
similarity values in most regions, except for lower values in
posterior areas with lower signal-to-noise ratio (postrhinal area
and posterolateral visual area). Importantly, we also found that
the normalized relative individual effect magnitude is also varied
between different regions. We hypothesized that this variation
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could be explained by the hierarchical organization of the mouse
cortex34, which might be reflected in differential variability of
regions with different proportions of feedforward and feedback
connections. However, comparisons between regional normalized
effect magnitudes and anatomical hierarchy scores revealed non-
significant Spearman correlations (corticocortical hierarchy:
ρ(35)=−0.21, p= 0.2; corticocortical+ thalamocortical+ corti-
cothalamic hierarchy: ρ(35)=−0.26, p= 0.12), which is consistent
with the homogeneity between sensory and association systems.
Nevertheless, this finding may also be explained by the fact that in
comparison to anatomical tracing, fcMRI lacks directionality or
layer-specificity and is affected also by polysynaptic connectivity.

Individual brain-behavior relations in mice. After characterizing
individual variation in the functional architecture of the mouse
cortex, we sought to examine whether it can predict behavioral
phenotypes. Therefore, we used connectome-based predictive
modeling (CPM)35 to link between functional connectivity profiles
and behavioral performance in the rotarod task, which is a well-
validated test for motor coordination in rodents31. In this task,
mice are placed on an accelerating horizontal rod and learn to
walk forward and not fall off. Examining rotarod performance, we
found prominent variability within the group with different mice
presenting wide range of latencies to fall (Fig. 4a). This behavioral
variability could be predicted by the functional connectivity data
using CPM (Fig. 4b) as leave-one-out cross-validation (LOOCV)
analysis, in which the rotarod performance of an individual mouse
is predicted based on brain-behavior correlations in the rest of the
group, demonstrated good correspondence between predicted and
observed mean latencies to fall (r(16)= 0.51). To formally test the
goodness of prediction, we shuffled the behavioral data 1000 times
and ran LOOCV analyses on shuffled data to extract significance
level (P= 0.021), which confirmed significant prediction. Impor-
tantly, latency to fall values were not correlated with individual
average head motion estimates during scanning (r(16)=−0.27, P
= 0.27), confirming that the prediction is not artifactually
increased by motion patterns.

Finally, we explored which functional connections contributed
to the model (Fig. 4c) and found that positive correlations were
more frequent in edges connecting sensory nodes, while negative
correlations were less frequent and characterized mainly edges
connecting between sensory and lateral association nodes. To
formally test this observation, we used a set of two-tailed Z-tests
for independent proportions (Fig. 4d) to test whether significant
edges are biased toward connections between association nodes
(A:A, n= 946), sensory nodes (S:S, n= 861) or one sensory and
one association node (A:S, n= 1848, all comparisons were
corrected for multiple comparisons using false-discovery rate).
This analysis confirms that positive correlations are more
frequent in S:S connections than in A:S (Z= 5, P < 0.001) and
A:A (Z= 6.07, P < 0.001) connections, with additional bias
toward A:S relative to A:A connections (Z= 2.62, P= 0.018). In
contrast, negative correlations were more frequent in A:S
connections, demonstrating significant bias relative to S:S
connections (Z= 2.27, P= 0.035), and marginally significant
bias relative A:A connections (Z= 1.87, P= 0.073); comparison
of A:A and S:S connections revealed no difference (Z= 0.95, P=
0.34). Collectively, the data establish that fcMRI can be used to
characterize individual brain-behavior relations.

Discussion
In this study, we characterized individual variation in the func-
tional organization of the mouse cortex. We found evidence for
stable individual features in the mouse connectome, that allows
above chance level identification of individual mice from a group.

Then, we demonstrated that identification rates increase with the
amount of data per mouse, indicating that repeated-measurement
experimental design is advantageous for precise characterization
of mouse-specific connectomes. Comparing individual variation
between sensory and association networks, we found that the
differences observed between those cortical systems in humans
are not well recapitulated in mice. Finally, we show that variance
in functional connectivity, especially between sensory cortices,
can explain behavioral variability in the rotarod task. Collectively,
these findings lay the foundations for studying the functional
organization of the mouse brain in health and disease at the level
of the individual animal.

While the field of precision fMRI has recently emerged in
human brain research4,7,12,36,37, rodent data are still analyzed at
the group level19,38. A major challenge in precision fMRI is the
need for extensive amounts of data per subject ranging from 50 to
100 min based on the studied brain structure39. This amount of
data is not trivial to obtain in anesthetized mice in which
acquisition is predominantly between several minutes and up to
40 min per session40,41 and a substantive repeated-measurement
design is challenging due to the difficulties that arise from repe-
ated ventilation and catheterization and the potential impact of
prolonged anesthesia, although longitudinal imaging with inter-
scan gap of few to several weeks was demonstrated22. On the
other hand, experimental setups for awake fcMRI27,42–44 can
easily support such repeated-measurement designs. Therefore,
despite the controversy on optimal scanning procedure in rodents
and the lack of standardization in the field45, awake fcMRI is
highly useful for precision fcMRI analysis in individual mice.

Comparison between the findings of this work and the two
seminal human studies of Finn12 and Gratton7 shows that while
the central findings of those studies are recapitulated in mice,
there are also some important differences. First, identification
rates in our mouse cohort are lower and the effect magnitude of
individuality is more modest in mice, in which cortical organi-
zation is strongly dominated by group shared features. Moreover,
the heterogeneity in individual variation among brain networks
was not recapitulated in mice, demonstrating similar patterns in
sensory and association systems. While these differences might be
explained by the complex organization of the human cortex46,
expansion of association networks in humans47,48 or qualitative
differences in anatomically homologous high-order structures27,
it is also likely that genetic homogeneity in our cohort reduces the
contribution of induvial features, as genetics was previously
shown to shape functional connectivity49. In addition, some
differences are perhaps related to the areal parcellation that was
used for defining nodes in the connectome. In humans, con-
nectomes defined based on functional areal parcellation resulted
in several hundred seed regions50–53. Since such algorithms have
yet to be adapted to mice, and are beyond the scope of the current
work, we used anatomical parcellation based on the Allen Mouse
Brain Atlas, which is comprised of 86 cortical labels33,34. Previous
studies in mice showed close agreement between structural and
functional connectivity in the mouse brain27,54, including in gross
cortical organization55. Moreover, using the Allen Mouse Brain
Atlas, we have recently shown that structural connectomes can
predict their functional counterpart30, suggesting that this ana-
tomical parcellation is functionally relevant. However, a major
limitation of using the Allen Mouse Brain Atlas is mouse-specific
variability in areal organization or geometric deformation in the
registration process, that may bias connectivity matrices from the
same mouse to be more similar. While we cannot exclude such
bias as controlling for it analytically is difficult, it does not explain
why individual similarity increases with the amount of data per
mouse. Further, restricting the connectivity matrices to anato-
mically plausible connections replicates the result, suggesting that
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a major biological component contributes to individual variation.
Importantly, it is unlikely that registration issues will result in
variations that predict behavior in a leave-one-out cross-
validation analysis such as CPM.

An important aspect of this study is the link between individual
variation in functional connectivity and behavioral variability in

the rotarod task. While CPM is a well-validated approach in
humans35, it is usually implemented on a large cohorts (N > 100),
although Rosenberg et al.13 were able to predict sustained
attention in a group of 31 participants. Here, we used a repeated-
measurement design to collect large amount of data per mouse,
allowing us to successfully implement a CPM analysis in a group
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Fig. 4 Connectome-based predictive modeling of individual performance in the rotarod task. a Individual (light gray) and group average (magenta)
performance in the rotarod task (top), demonstrate considerable variability in the mean latency to fall of different mice in the group (bottom). b Relations
between observed and predicted mean latency to fall values (n= 18 mice) show close agreement (top). A formal statistical analysis was done using a
shuffling analysis in which connectome-based predictive modeling was applied to shuffled rotarod data, the original r-value (magenta arrow) designates
the 21 highest value out of 1000 iterations. c Circle plot (left) and matrix (right) representations of edges that were positively (red, top) or negatively (blue,
bottom) correlated with rotarod performance in all leave-one-out cross-validation iterations. d All edges from the previous analysis were divided to three
categories: connections between two association regions (assoc:assoc, n= 946), connections between an association and a sensory region (assoc:sensory,
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of 18 mice with correlation between predicted and observed
behavior that is comparable to the results of the previous reports
in humans12,13,56. The contributing edges in our model involve
mainly sensory nodes, which are expected to support motor
learning. Surprisingly, the contributing edges do not involve
many connections within the somatomotor system, but connec-
tions of this system to visual and auditory regions, which may
facilitate multisensory integration required for balance. While the
whole brain correlates of the rotarod task were not well-studied,
structural MRI revealed that rotarod training is related to reduced
fractional anisotropy in the visual cortex. Additionally, the visual
cortex is known to encode running-related locomotion signals57.
Finally, vestibular stimulation is known to activate somatomotor,
visual and auditory cortices58, thus shared vestibular signals may
explain the role of the connectivity of those regions in behavioral
variability. Collectively, the findings suggest that such multi-
sensory integration is required for performance in the rotarod
task, but better characterization of the role of auditory and visual
areas in the task, as well as causal manipulation of their activity
are needed to better understand their exact role in motor
coordination.

A major limitation of precision fMRI in humans is the
restriction to one level of analysis, as it is limited to large-scale
organization59. As a result, it is hard to link individual variation
in functional connectomes to brain function and dysfunction.
In contrast, tools available in rodents support causal manip-
ulation of brain activity using molecular techniques such as
chemogenetics or optogenetics, which can be combined with
fMRI41,60–64. However, heretofore such analyses were restricted
to the group level. Future studies can use the individual func-
tional connectome to predict the effect of causal control similar
to the way human resting-state fMRI is used to predict indi-
vidual task fMRI activation pattern9, linking the different levels
of organization and uncovering sources of individual variation.
In addition, rodent models of disease are commonly studied
using fcMRI21,22,29,65, which allows direct translation to
humans20,28, as well as studying the relations between func-
tional connectivity and behavior23–26. Such studies can utilize
the approach presented here to follow the trajectory of indivi-
dual animals during development, aging or after treatment, as
well as CPM, which provides a data-driven alternative for
fcMRI-based behavioral prediction35, rather than the
hypothesis-driven approach that examines the behavioral cor-
relations of specific functional connections.

Together, our results establish the feasibility of the precision
fMRI approach in studying the mouse functional connectome,
indicating that individual variation in the organization of cortical
networks is likely to extend across the mammalian class in gen-
eral, and is not restricted to primates. Given this foundation,
future mouse fMRI studies can follow the human neuroimaging
community by moving from group-level inferences to the level of
the individual animal. Such transition can be highly beneficial for
mechanistic investigation of brain organization, as well as for pre-
clinical studies of neuropsychiatric disorders in the context of
personalized medicine.

Methods
Mice, surgical procedures, behavioral training. All procedures were conducted
in accordance with the ethical guidelines of the National Institutes of Health
and were approved by the institutional animal care and use committee (IACUC)
at Technion. A detailed description of the experimental design was previously
published30. Briefly, 19 first generation B6129PF/J1 hybrid mice (males,
9–12 weeks old) were implanted with MRI-compatible head-posts and housed
in reversed 12 h light/dark cycle. Then, acclimatized to awake fMRI during passive
wakefulness over 4 sessions (2, 5, 10, and 25 min)27 and underwent seven
45 min long awake imaging sessions over 7–12 days (9.94 ± 1.59, mean ± SD),
followed by one structural MRI session under anesthesia (not used in the current

study). Three days after MRI data were acquired, mice underwent a 2-day
rotarod testing.

Image acquisition. MRI scans were performed at 9.4 Tesla MRI (Bruker BioSpin
GmbH, Ettlingen, Germany) using a quadrature 86 mm transmit-only coil and a
20 mm loop receive-only coil (Bruker); Raw fMRI data were reconstructed using
ParaVision 5.1 (Bruker). Each awake fMRI session started with a brief anesthesia
(5% isoflurane) to allow proper mounting to the custom-made cradle27. Mice
typically were alert within less than a minute. Mice had ~15 min to fully recover
from the anesthesia during scanner calibrations and acquisition of a short low-
resolution rapid acquisition process with a relaxation enhancement (RARE) T1-
weighted structural image (TR= 1500 ms, TE= 8.5 ms, RARE-factor= 4, FA=
180°, 30 coronal slices, 150 × 150 × 450 µm3 voxels, no interslice gap, FOV 19.2 ×
19.2 mm2, matrix size of 128 × 128). Then, four spin-echo echo-planar imaging
(SE-EPI) runs were acquired (TR= 2500 ms, TE= 18.398 ms, 200 time points,
FA= 90°, 30 coronal slices, 150 × 150 × 450 µm3 voxels, no interslice gap, FOV
14.4 × 9.6 mm2, matrix size of 96 × 64) before mice were returned to their
home cages.

Rotarod. To assess general motor function, we used the accelerating rotating rod
task (rotarod)31 in which mice (up to five at once) walk on a rotating rod (ENV-
575MA, Med Associates, St. Albans, VT) while the speed of rotation is accelerating
from 4 to 40 rounds per minute during a period of 6 min. Each mouse was trained
for two consecutive days over four trials per day with an inter trial interval of 15
min. The latency between the beginning of each trial and falling time was calcu-
lated to extract individual learning curves and later averaged across trials to extract
a single value for overall task performance per mouse.

MRI data preprocessing. Functional data were preprocessed as previously
described27,28,30 including removal of the first two frames for T1-equilibration
effects, compensation for slice-dependent time shifts, rigid body motion correction,
registration to a downsampled version of the Allen Mouse Brain Atlas (AMBC
CCFv3, available at https://mouse.brain-map.org)32,33 using session-specific low-
resolution anatomical scan and high-resolution anatomical template (see supple-
mentary Fig. 1 in Bergmann et al.27), and intensity normalization. At this stage, one
mouse was excluded due to susceptibility artifacts in the parietal cortex, and
additional three sessions were also excluded due to ghosting artifacts in the EPI.

After this general fMRI preprocessing, an fcMRI-specific preprocessing was
performed. First, data underwent motion scrubbing to remove motion-related
artifacts66. Censoring criteria were frame displacement of 50 µm and temporal
derivative root mean square variance over voxels of 150% inter-quartile range
above the 75th percentile, with an augmented mask of one additional frame after
each detected movement and censoring of sequences with less than five included
frames. Runs with less than 50 frames and sessions with less than 192 frames
(8 min) were excluded (a total of six sessions). The average number of included
sessions per mouse was 6.33 ± 0.84 (mean ± SD) and the average total included
time per session was 19.31 ± 3.67 min per session. After motion scrubbing,
preprocessing continued with demeaning and detrending, nuisance regression of
six motion parameters, ventricular and white matter signals, and their first
derivatives, temporal filter (0.009 < f < 0.08 Hz), and spatial smoothing (Gaussian
kernel with FWHM of 450 µm).

Construction of the functional connectome. To construct the functional con-
nectome of each mouse, we used the AMBC Atlas to define 86 regions in the mouse
cortex (43 per hemisphere), which were classified into six different modules
(Prefrontal, Lateral, Somatomotor, Visual, Medial, and Auditory) based on their
anatomical connectivity patterns34. Labels were registered to the native fMRI
resolution using the nearest neighbor interpolation67,68. The very deep and
superficial aspects of each label were removed to minimize partial-volume effects.
In addition, posterior parts of the retrosplenial and primary visual cortices were
also removed due to inconsistent registration in these areas.

After defining connectome nodes, we extracted their time courses in each
session of each mouse and calculated the Fisher’s z-transformed Pearson
correlation (r) values69, resulting in an 86 × 86 connectivity matrix per session.
Then, these matrices were split to two halves of three sessions per mouse for
similarity and identification analyses (minimizing the difference in number of
included frames per half) or averaged across all sessions of each mouse for the
connectome-based predictive modelling (CPM) analysis. Mice with less than six
valid sessions (n= 2) were included only in the CPM analysis. In mice with seven
valid sessions (n= 9), the session with the highest head motion was excluded from
the similarity and identification analyses in order to match the amount of data
per half.

Similarity and identification analyses. To quantify individual variation and
perform connectome-based fingerprinting/identification, we adapted algorithms
developed in humans to estimate network similarity7 and identification rates12.
Both procedures are based on the construction of a similarity matrix, in which each
cell is the Fisher’s z-transformed correlation between values in all 3655 edges in two
connectomes, columns represent the first half of data and rows represent the
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second half of data. For quantification of network similarity, values along the
diagonal represent individual similarity, which is the correlation between the
connectomes built for the same mouse from the two halves of data. Group simi-
larity is defined as the average of values in a combined row and column vector
(excluding the value along the diagonal). The identification procedure is a more
stringent analysis that quantifies the fraction of mice in which the individual
similarity is higher than any other value in each row or column.

To test whether individual variation differs between association and sensory
networks in the mouse cortex, we constructed connectomes limited to either
association (n= 44) or sensory (n= 42) modules. Then, we ran the similarity and
identification analyses as described. Additionally, we calculated the normalized
relative individual effect magnitude, which is the added similarity of individual
connectome over group connectomes, calculated by subtracting group similarity
from individual similarity and dividing by the latter.

Parcel-level individual variation was estimated similarly by comparing the
functional connectivity profiles of each of the 86 cortical regions. For estimatation
of normalized relative effect magnitude of individuality, negative similarity values
were rounded to 0.001, and then normalized relative effect magnitudes of
individuality that were negative were rounded to zero. To compare parcel-level
similarity to anatomical hierarchical scores taken from the supplementary materials
in the work of Harris et al.34, the normalized relative effect magnitudes were
averaged between the two cortical hemispheres.

Quantifying the amount of data needed to study individual variation in mice.
To characterize the amount of data needed for studying individual variation in
mice, we examined the effects of the number of sessions included in the con-
struction of each connectome on network similarity and identification rate. We
built two connectomes per mouse using one, two or three sessions per connectome,
and examined all possible combinations. Similarity values were averaged between
the combinations of the different sessions per mouse, while identification rates
were extracted per combination. Then, we replicated the similarity and identifi-
cation analyses described above.

Quantifying edgewise contributions to identification. Edge-based analyses
examine which connections contribute more to successful identification. A detailed
description of the calculation of group consistency (Φ) and differential power (DP)
was previously published12. Briefly, each connectome underwent z-normalization, and
the edgewise product was calculated for each edge in all pairs of connectomes. Group
consistency values are the average edgewise products from the comparisons of the two
connectomes of each mouse. In contrast, DP represents the empirical probability
that the edgewise product of two connectomes from the same mouse is higher than
the edgewise product of two connectomes from different mice. The top 1% of DP and
Φ were presented in either circle plots or matrix plots grouped to modules35.

Connectome-based predictive modelling (CPM). To link individual variation in
the functional connectome to behavioral variability in the rotarod task, we followed
a previously published detailed protocol for CPM35. We used a leave-one-out
cross-validation approach in which Spearman correlation was calculated between
functional connectivity in each edge in the connectome and rotarod mean latency
to fall values for n−1 mice over 18 iterations. In each iteration, significant (P < 0.05,
uncorrected) positive and negative correlations were selected and summarized to
two values per mouse, which were combined in a single regression model. This
model was used for prediction of rotarod performance in the nth testing mouse in
each one of the 18 iterations. Finally, the correlation between predicted and
observed rotarod performance, which is statistically independent of the edge
selection threshold, was calculated and formally tested by comparing it to the
distribution of correlation in 1000 iterations in which rotarod mean latency to fall
values were randomly assigned to mice35. To characterize the edges that con-
tributed to the prediction, we extracted the edges that were included in the model
in all 18 iterations and presented them in both circle and matrix plots and
examined whether the contributing edges were biased to connections between
association or sensory regions.

Statistics and reproducibility. Group and individual similarity values (n= 16) were
compared using paired student t-test or repeated-measures ANOVA after normality
was tested using the Lilliefors test. Statistical analysis for connectome-based identi-
fication (n= 16) and connectome-based predictive modelling (n= 18) was done
using shuffling analysis with 1000 iterations in which animals’ identities were ran-
domly assigned before calculating identification rates or correspondence between
predicted and observed rotarod performance. The rank of the observed values
compared to the sorted shuffled values was used to determine statistical significance.

The effects of number of included sessions on estimation of network similarity
and identification rates were examined using repeated-measures ANOVA or two-
tailed unpaired student t-test, respectively.

A set of Z-tests for independent proportions was used to compare the
distribution of contributing edges in the CPM analysis between sensory and
association regions.

Data availability
Imaging raw data in this study are available in BIDS format on OpenNeuro, https://
openneuro.org/datasets/ds002307.

Code availability
MRI data were preprocessed using SPM2 and FSL. Data analysis was conducted in
MATLAB (Mathworks) using the Statistics and Machine Learning toolbox code.
Network similarity was calculated using a custom-written code available on OpenNeuro
(https://openneuro.org/datasets/ds002307). Codes for identification and connectome-
based predictive modeling adapted from the work of Finn et al.12 and Shen et al.35 which
were previously published: https://www.nitrc.org/projects/bioimagesuite. The circular
graphs were generated using P. Kassebaum’s (2020) circle plots (https://www.github.
com/paul-kassebaum-mathworks/circularGraph).
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