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a b s t r a c t 

Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response 

to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO 

from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting 

viral replication in host defense and warrants investigation for the development of antiviral therapeutics. 

With increased incidence of global pandemics concerning several respiratory-based viral infections, it is 

necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more effi- 

cient host clearance, as well as to fabricate new materials for deterring viral transmission from medical 

devices. Recent developments in creating stabilized NO donor compounds and their incorporation into 

macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based 

therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. De- 

spite this abundance of research, there has been little consideration of NO-releasing scaffolds and sub- 

strates for reducing passive transmission of viral infections or for treating several respiratory viral infec- 

tions. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, 

and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; 

and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral 

platforms. 

© 2020 Elsevier Ltd. All rights reserved. 
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Abbreviations: HI, Host Immunology; ACE, angiotensin converting enzyme; AP1, 

ctivator protein 1; IFN, interferon; IFN γ , interferon gamma; IKK, inhibitor of nu- 

lear factor kappa B kinase; IRF-1, interferon regulatory factor 1; NF- κB, nuclear 

actor kappa-light-chain enhancer of activated B cells; P38-MAPK, P38 mitogen- 

ctivated protein kinases; PAMP, pathogen-associated molecular pattern; PKR, pro- 

ein kinase R; STAT-1, signal transducer and activator of transcription 1; TAK1, 

ransforming growth factor β-activated kinases-1; TLR, toll-like receptor; Medical 

erminology: ARDS, acute respiratory distress syndrome; COVID-19, coronavirus dis- 

ase 2019; ECMO, extracorporeal membrane oxygenation, FDA, United States Food 

nd Drug Administration; I/R, pulmonary ischemia-reperfusion; PHT, pulmonary hy- 

ertension; SARS, severe acute respiratory syndrome; VAP, ventilator associated 

neumonia; Nitric Oxide and Related Compounds: eNOS/NOS 3, endothelial nitric 

xide synthase; gNO, gaseous nitric oxide; GNSO, S -nitrosoglutathione; iNOS/NOS 

, inducible nitric oxide synthase; mtALDH, mitochondrial aldehyde dehydrogenase; 

O, nitric oxide; NOS, nitric oxide synthase; nNOS/NOS 1, neuronal nitric oxide syn- 

hase; RNI, reactive nitrogen intermediate; RSNO, S -nitrosothiol; SNAP, S -nitroso- N - 

cetyl-penicillamine; Viruses: CVB3, coxsackievirus; H1N1, influenza A virus sub- 

ype H1N1; HIV, human immunodeficiency virus; HPV, human papillomavirus; HSV, 

erpes simplex virus; PCV2, porcine circovirus type 2; SARS-CoV-2, severe acute 

espiratory syndrome coronavirus 2; Other: DNA, deoxyribonucleic acid; dsRNA, 

ouble stranded (viral) ribonucleic acid; IC50, inhibitory concentration 50; RNA, ri- 

onucleic acid. 
∗ Corresponding author. 

1

c

a

r

f

t

d

p

a

i

m

o

l

c

m

ttps://doi.org/10.1016/j.apmt.2020.100887 

352-9407/© 2020 Elsevier Ltd. All rights reserved. 
. Introduction 

The current and projected global health and economic ramifi- 

ations of a viral pandemic emphasize the need to develop robust 

ntiviral treatments and corresponding mitigative effort s to enable 

apid response. Concerns with the inflexibility of current therapies 

or novel viruses have prompted two needs: 1) comprehensive an- 

iviral treatments, and 2) enhancements to conventional medical 

evices (e.g. nasal cannulas, mechanical ventilators, and extracor- 

oreal membrane oxygenation) to improve patient outcomes. Even 

t an accelerated rate, vaccine development for emergent viruses 

s optimistically expected to take at least 12–18 months [1] . Rapid 

utations associated with many viruses including human immun- 

deficiency virus (HIV) and influenza present a significant chal- 

enge in vaccine development, emphasizing the need for nonspe- 

ific antiviral treatments. A broad-spectrum agent exhibiting multi- 

echanistic antiviral activity could be used as a tool to combat in- 
E-mail addresses: ejbrisbois@uga.edu (E.J. Brisbois), hhanda@uga.edu (H. Handa). 

https://doi.org/10.1016/j.apmt.2020.100887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apmt
mailto:ejbrisbois@uga.edu
mailto:hhanda@uga.edu
https://doi.org/10.1016/j.apmt.2020.100887


M.R. Garren, M. Ashcraft, Y. Qian et al. Applied Materials Today 22 (2021) 100887 

f

s

d

p

(

a

n

t

l

f

p

t

t

s

R

t

p

i

s

g  

n

F

M

p

p

r

r

N

p

N

r

b

d

f

m

e

s

a

o

o

i

g

m

t

r

d

p

v

i

a

2

s

(

e

i

s

t

t

t

i

a

t

p

[

t

r

i

c

d

b

t

p

c

d

m

a

r

t

c

a

k

c

r

r

i

c

d

r

s

n

(

r

i

o

c

t

w

c

(

h

[

o

i

p

b

c

o

(

r

m

N

t

o

3

m

t

T

l

N

a

v

w

ections caused by an array of viruses, reduce instances of drug re- 

istance, and alleviate additional costs in developing virus-specific 

rugs [2] . Moreover, much like other viral pandemics, early re- 

orts on the 2019 severe acute respiratory syndrome coronavirus 

SARS-CoV-2) outbreak have agreed that secondary infections are 

 significant predictor of patient outcome, affecting up to 50% of 

on-survivors [3–6] . Secondary infections are not new – cumula- 

ively, 86% of pneumonia infections in critically ill patients are re- 

ated to mechanical ventilation [7] . Viral outbreaks coupled with 

requent secondary bacterial infections have devastating effects on 

atient care – increasing disease severity, requiring supplementary 

reatment, and significantly impacting patient morbidity and mor- 

ality [8] . Therefore, in addition to the pressing need for broad- 

pectrum antiviral agents capable of treating a range of DNA and 

NA viruses, there is significant interest in developing multifaceted 

herapeutic strategies that not only inhibit viral invasion but also 

revent secondary bacterial infections. 

Prior to its discovery as the endothelium derived relaxing factor 

n the 1980s, nitric oxide (NO) had been categorized as an atmo- 

pheric pollutant, a precursor of acid rain, and believed carcino- 

en [9 , 10] . After recognizing the role of NO as a cardiovascular sig-

aling molecule, co-recipients Louis Ignarro, Robert Furchgott, and 

erid Murad were awarded the 1998 Nobel Prize in Physiology or 

edicine, thus encouraging researchers to further examine other 

hysiological roles of NO. Within the next decade, NO was found to 

lay an important role in digestion, blood pressure regulation, neu- 

al function, platelet regulation, and immune response [10 , 11] . As a 

esult, researchers at the turn of the century began to use antiviral 

O-based therapeutics through three different strategies: 1) com- 

ounds that modulate endogenous production of NO, 2) gaseous 

O (gNO) inhalation, and 3) direct NO donor compounds. More 

ecently, NO-releasing and catalytic NO-generating surfaces have 

een developed for blood-contacting and other indwelling medical 

evices to combat bacterial infection and prevent blood thrombus 

ormation that are often associated with urinary/vascular catheters, 

echanical ventilators, and ex vivo blood circulation in dialysis and 

xtracorporeal membrane oxygenation (ECMO) [12–14] . 

While the antibacterial activity of NO is well-documented, re- 

earchers have also shown NO-mediated antiviral mechanisms 

gainst several DNA and RNA viruses. During the 20 02-20 04 SARS 

utbreak, a rescue trial found that gNO treatments both improved 

xygenation and reduced lung infiltrates associated with the viral 

nfection, therefore warranting further investigation of NO strate- 

ies [15] . Preliminary findings of NO’s role in viral clearance has 

erited further examination of its comprehensive antiviral and an- 

ibacterial capacities and has earmarked its potential through NO- 

elated treatment strategies and modifications to existing medical 

evices to combat current and future infections. In this review, we 

rovide an in-depth discussion of NO’s role in the pathogenesis of 

iral infections, survey current NO-based treatment strategies, and 

dentify key gaps for overcoming the limited clinical translation of 

ntiviral NO-based technologies to date. 

. Biology and in vivo Metabolism of NO 

NO contributes to and/or regulates many physiological re- 

ponses, commonly through cyclic guanosine monophosphate 

cGMP) pathways. Within the vasculature, NO released from the 

ndothelium temporarily inhibits platelet activation – prevent- 

ng thrombosis [16] . NO also causes vasodilation by signaling for 

mooth muscle cells to relax and promotes angiogenesis [17 , 18] . In 

he gastrointestinal tract, NO contributes to vascular tone regula- 

ion in addition to promoting gastric mucosal integrity [19] . Within 

he nervous systems, NO acts as a neurotransmitter by stimulat- 

ng cGMP pathways, which modulate excitatory neurotransmission 

nd inhibit synaptic transmission [20] . Finally, NO is an instrumen- 
2 
al component of the immune system, with activated macrophages 

roducing NO for antimicrobial, antitumor, and antiviral effects 

21] . 

NO is produced endogenously from L-arginine via three NO syn- 

hase (NOS) isoforms: neuronal (nNOS or NOS1) found in neu- 

onal and skeletal muscle tissues; inducible (iNOS or NOS2) found 

n macrophages; and endothelial (eNOS or NOS3) found in vas- 

ular endothelial cells [22] . Activation of these isozymes is me- 

iated by binding to calmodulin, with nNOS and eNOS binding 

eing calcium dependent. Whereas nNOS and eNOS are constitu- 

ive – producing low levels of NO, iNOS activity is insensitive to 

hysiological changes of calcium which enables prolonged, higher 

oncentrations of NO to be developed – making it a crucial me- 

iator of the immune response [23] . While endogenous NO plays 

any beneficial roles in the human body, it is often considered 

 “double-edged sword” [20 , 24] . Different NO concentrations are 

elated to different physiological responses, with low concentra- 

ions (nM range) facilitating cellular proliferation and higher con- 

entrations (μM range) inducing cellular apoptosis and cell cycle 

rrest [25] . In infected M1 macrophages, NO concentrations are 

nown to exceed several hundred μM [26] . Elevated and/or de- 

reased levels of NO have been implicated in contributions to neu- 

onal destruction, cardiovascular diseases, cancer, obesity, insulin 

esistance, and inflammatory conditions [24 , 27–29] . Therefore, it is 

mportant to consider NO in a tissue and concentration-dependent 

ontext when developing NO-based therapeutics. 

The balance between beneficial and detrimental effects of NO 

epends on its steady-state concentration, considering both its 

ates of formation and decomposition. As a free radical, NO has 

everal modes of reaction in the human body: oxidation to form 

itrosonium cations (NO 

+ ); reduction to form nitroxyl anions 

NO 

−); autooxidation to form dinitrogen trioxide (N 2 O 3 ), which 

apidly converts to nitrite (NO 2 
−); and reaction with superox- 

de radical anions to form reactive nitrogen species such as per- 

xynitrite (ONOO 

−) [30 , 31] . Still further, the autooxidation pro- 

ess of NO forming N 2 O 3 can lead to the nitrosation of pro- 

ein Cys residues and the formation of S -nitrosothiols (RSNOs), 

hich are heavily involved in cell signaling and regulatory pro- 

esses [32] . In the vasculature, NO is rapidly converted to nitrate 

NO 3 
−) via oxyhemoglobin, which contributes to its approximate 

alf-life of 0.1–2 s as a local modulator of vasodilatory response 

33] . Whether exogenously inhaled, endogenously synthesized, or 

therwise formed from intravascular drug administration, NO and 

ts metabolic derivatives undergo a variety of localized catabolic 

rocesses as summarized in Fig. 1 . Overall, several key factors have 

een shown to contribute to rates of NO’s in vitro catabolism, in- 

luding: (1) its reactivity with catalytic metal ions; (2) localized 

xygen concentration and redox environment; (3) cell type; and 

4) tissue diffusivity [34–36] . Readers are directed to several recent 

eviews on NO metabolism for further elaboration on the subject 

atter [31 , 36 , 37] . Any prospective antiviral therapy stemming from 

O or its many derivatives must therefore make careful considera- 

ion of its concentration and localization specific effects in design 

f both the active agent and delivery mechanism. 

. Antiviral mechanisms of NO 

Endogenous NO has long been recognized for its capacity to 

odulate vascular physiology and defend against microbial infec- 

ion, though its role in antiviral mechanisms is less understood. 

he endogenous antiviral mechanism of NO begins with stimu- 

ation of iNOS through one of several mechanisms (see Fig. 2 A). 

O production from iNOS is critical to the inflammatory response 

nd is supported by type I interferon (IFN) host defense against 

iral infection in key cell types. Several pathways are activated 

hen viruses invade cells and mediate iNOS upregulation to lead 
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Fig. 1. Pathways for the production and consumption of nitric oxide (NO) and its related metabolic products. Exogenous nitrogen oxide species (NO x ) and endogenously 

produced NO are shuffled to the vasculature. Basal levels of NO are stored in the blood via low molecular weight S -nitrosothiols (RSNOs). Otherwise, NO is rapidly converted 

to nitrite (NO 2 
−) and nitrate (NO 3 

−). Nitrites and nitrates are ultimately discharged directly or converted to other species such as ammonia (NH 3 ) and nitrogen (N 2 ) for 

removal. 
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o NO production and virus elimination: The first of these path- 

ays is based on toll-like receptors (TLRs) in immune and non- 

mmune cells (macrophages, T and B lymphocytes, and epithe- 

ial cells). TLRs respond to both DNA and RNA viruses, detect 

athogen-associated molecular patterns (PAMPs), and activate both 

uclear factor kappa-light-chain enhancer of activated B cells (NF- 

B) and activator protein 1 (AP1) via transforming growth factor 

-activated kinases-1 (TAK1). AP1 enters cellular nuclei to upreg- 

late iNOS and subsequent NO production [38] . A second path- 

ay for iNOS regulation develops from the activation of signal 

ransducer and activator of transcription 1 (STAT-1). Approximately 

4–36 h after viral infection, interferon gamma (IFN γ ) produced 

y lymphocytes regulates STAT-1 and leads to the upregulation of 

NOS. The third and final major pathway targets double stranded 

iral RNAs (dsRNAs) involved in viral replication within the host 

ell. Viral dsRNAs are products of both DNA and RNA-based viral 

nfections and are potent inducers of IFNs. Viral dsRNAs bind to 

nd activate protein kinase-R (PKR), leading to signal transduction 

or iNOS upregulation [39] . Following iNOS upregulation by any 

ne of the above three pathways, L-arginine is readily converted to 

-citrulline to produce NO that freely diffuses across cellular mem- 

ranes to inhibit viruses. 

NO has several direct modes of action as an antiviral agent, in- 

luding: 1) inhibition of viral enzymes through nitrosylation of vi- 

al proteins; 2) damage to viral DNA via oxidative and nitrosative 

tress during pathogenesis; 3) modulation of viral-encoded tran- 

cription factors; and 4) further activation of host signaling path- 

ays for adaptive response (see Fig. 2 B-D) [38 , 40–42] . NO appears

o be effective in the clearance of both DNA and RNA viruses based 

n various in vitro and in vivo studies [38 , 43] . NO is a highly un-

table free radical that reacts with oxygen, superoxide, and hydro- 

en peroxide to generate reactive nitrogen intermediates (RNIs), 

uch as peroxynitrite (ONOO 

−), that in turn react with thiol moi- 

ties on cysteine residues of both viral and host proteins [41] . 

hese nitrosylation reactions, especially on viral proteases, reduc- 
3 
ases, and reverse transcriptases interrupt the viral replication cy- 

le, prevent further infectivity of virions, and enable more effi- 

ient host clearance [41] . Other antiviral effects of NO center on 

ts activity towards viral transcription and replication. Specifically, 

O has the observed effect of modulating early transcript levels 

f some viruses such as human papillomavirus (HPV), while pre- 

enting further viral DNA replication [44] . RNIs developed from NO 

uch as peroxynitrite have shown only modest inhibition of viral 

eplication in host cells, though viability of free virions was signif- 

cantly impaired. These results corroborated against tests with di- 

ect NO donors have suggested that the reactive nitrogen interme- 

iate formed can significantly affect viral clearance [45] . RNIs tend 

o induce strand breakages, deamination of adenine and guanine 

ases, and other oxidative damage near indiscriminately against 

oth viral and host DNAs/RNAs, though host genomes are more 

obust in encoding repair nucleases and polymerases. Because of 

he inherent limitations of viral genome sizes, most viruses do not 

ncode repair mechanisms for oxidative damage and instead rely 

n integration into the host genome to mediate repair by host ma- 

hinery – in analogy to the pathogenesis of many RNA viruses [46] . 

eaders are directed to a recent review by Uehara et al. [47] that 

urther covers the antiviral mechanisms of NO, it’s potentially dele- 

erious effects in certain disease states, and its use as a potential 

rognostic marker. 

In many circumstances, NO’s role in host viral infection is time 

nd concentration dependent as well as contingent on viral patho- 

enesis. In some circumstances, endogenous NO production is in- 

ibited, and exogenous NO may be necessary to provide an an- 

iviral effect. For example, the overproduction of NO by iNOS can 

ownregulate many inflammatory cytokines and chemokines based 

n the inhibition of both NF- κB and interferon regulatory factor 

 (IRF-1) dependent transcription in epithelial cells [4 8 , 4 9] . In a

uman rhinovirus infection study, endogenous NO production was 

imited by feedback inhibition through NF- κB and IRF-1 pathways, 

ith exogeneous NO otherwise eliciting a desired antiviral effect 



M.R. Garren, M. Ashcraft, Y. Qian et al. Applied Materials Today 22 (2021) 100887 

Fig. 2. Overview of endogenous nitric oxide (NO) production in response to host viral infection. a) Host recognition of viral DNA initiates one of many signal transduction 

pathways that converge with iNOS upregulation, leading to increased endogenous NO. NO has several antiviral effects in host defense, including: b) nitrosylation of Cys 

residues leading to viral enzyme deactivation, c) formation of reactive nitrogen species such as peroxynitrite that induce DNA strand breaks, and d) suppression of viral 

transcription factors leading to inhibition of viral replication and disease state propagation. 

[

c

s

s

s

s

[

(

h

t

r

d

m

t

r

p

a

o

e

4

s

d

d

t

i

v

r

i

h

a

p

m

49] . Additionally, some antiviral components such as acetylsali- 

ylic acid [50] , chebulagic acid, and punicalagin [51] have been 

hown to suppress iNOS activity via the IKK-NF- κB and P38-MAPK 

ignaling pathways. In other circumstances, viruses can actively 

uppress NO production through downregulation of iNOS expres- 

ion via inhibition of NF- κB, as has been demonstrated with HIV-1 

52 , 53] . SARS-CoV is also reported to have its membrane protein 

SARS-CoV M) suppress NF- κB activity through interaction with in- 

ibitor of nuclear factor kappa-B kinase subunit beta, which fur- 

her indicates the need for exogenous NO therapeutics [54] . 

Endogenous NO production must closely balance inflammation 

esponse with antiviral effects. Otherwise, excessive NO is pro- 

uced and can lead to several complications such as: viral pneu- 

onia from influenza [55 , 56] ; various neurological diseases tied 

o HIV-1 [57] and Dengue viral infections [58] ; and late stage up- 

egulation of iNOS that leads to enhanced viral replication in the 

athogenesis of HIV-1 infection [57] . In short, NO is by no means 

 “magic bullet” against host viral infections, but the development 
4 
f NO-based therapies holds value for many host infections and the 

radication of free virions [59] . 

. Survey of NO-based antiviral therapies 

NO-based antiviral therapies are broadly categorized into three 

trategies: 1) drugs that affect NOS regulation or endogenous pro- 

uction of NO; 2) gNO inhalation therapies; and 3) direct NO 

onor compounds. The bulk of existing antiviral NO therapeu- 

ic strategies target strains specific to respiratory tract infections, 

ncluding: adenovirus, coronavirus, human respiratory syncytial 

irus, influenza A and B viruses, human parainfluenza viruses, and 

hinovirus, among others [40 , 41 , 60] . Upper respiratory tract viral 

nfections are often associated with increased lower airway ex- 

aled NO, which as a host defense strategy has shown clearance 

bility against rhinoviruses [61 , 62] , coronaviruses [63] , herpes sim- 

lex virus (HSV) [64] , and human influenza [65] in addition to 

any other bacterial, fungi, and viral strains [66] . Other chronic 
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Table 1 

Summaries of clinical trial work and in vivo studies with gNO and NO donor compounds as active antiviral agents. 
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nflammatory diseases such as asthma and bronchiectasis are as- 

ociated with increased endogenous NO [67] . Therefore, the pri- 

ary considerations of any antiviral NO therapeutic strategy are: 

) the effect of NO release/scavenging on the underlying pathol- 

gy, 2) the effect of the mode of delivery on therapeutic action, 

nd 3) parallel effects of NO on pulmonary circulation and vascular 

hysiology. 

Reiss et al. provide an excellent summary of the roughly first 

ecade of in vitro and in vivo studies with NO for viral infection 

59] . A summary of more contemporary clinical trial work with 

NO and dissolved NO donor therapies as well as other promis- 

ng in vivo studies are summarized in Table 1 . Many in vitro and

x vivo studies performed to date demonstrate the potency of both 

NO and direct NO donor compounds for reducing titers or other- 

ise inhibiting RNA replication of a number of viral strains, includ- 

ng: porcine circovirus [68] , coronavirus [69] , human influenzas A 

nd B (including H1N1) [65 , 70] , human rhinovirus [48 , 61] , Hantaan

antavirus [45] , Crimean Congo hemorrhagic fever virus [71] , HPV 

72 , 73] , and HSV and vaccinia [74] . A summary of these in vitro

tudies, their dosages, and infection models is provided in Table 2 . 

.1. Endogenous NO Regulating Drugs 

Several antiviral compounds have been developed to attenu- 

te the physiological formation of NO via their metabolic degra- 

ation into NO or modulation of iNOS expression. One such ex- 

mple is hydroxyurea, which has shown antiviral effects through 

he inhibition of viral replication as a ribonucleotide reductase in- 

ibitor and modulator of intracellular deoxynucleotide availabil- 

ty [75] . Hydroxyurea is metabolically oxidized into NO and has 

hown promise in several therapies against HIV-1, parvovirus, and 

epatitises B and C [76-79] . Other strategies to create NO donor 

rodrugs include the glycosylation or vinylation of diazeniumdi- 

lates, though no reports of their application as antiviral agents 

ere found in literature to date [80 , 81] . Similarly, other NO pro-

rug classes such as furoxans, nitrates, and sydnonimines have 
5 
hown efficacy in preclinical drug development for anti-cancer and 

lzheimer’s disease therapies, though to date little consideration 

as been made for their potential antiviral application [82–86] . 

Beyond NO donor prodrugs, other compounds have been de- 

igned to modulate iNOS activity for intended antiviral effect. 

ilirubin has been shown to upregulate NO release in achiev- 

ng viricidal activity against HSV-1 [87] . In contrast, many an- 

iviral drug therapies selectively inhibit iNOS for antiviral effects, 

uch as various dihydropyrazole derivatives against vaccinia virus 

88] as well as ribavirin and acetylsalicylic acid against hepatitis 

 virus, wherein increased NO production may contribute towards 

he pathophysiology and clinical manifestation of the viral disease 

tate [50 , 89] . Finally, several NO scavenging compounds such as 

TIO (CAS 18390 0-0 0-6), hemoglobin derivatives, low molecular 

eight iron compounds, and cerium oxide have been investigated 

or treating NO mediated diseases, though not as antiviral com- 

ounds [90] . Because of the many possible deleterious effects from 

iding viral immunopathogenesis by upregulating iNOS, many ther- 

pies have instead opted to explore direct application of gNO, pro- 

rugs, and direct donor compounds for viral strains attenuated by 

ncreased NO production [47] . 

.2. gNO Therapies 

Direct gNO therapies have been investigated since the 1980’s 

or treating a variety of medical conditions, including: acute res- 

iratory distress syndrome (ARDS) [91] , persistent pulmonary hy- 

ertension (PHT) in neonates [92] , reversible pulmonary vasocon- 

triction [93] , bronchoconstriction [94] , cystic fibrosis [95 , 96] , and 

arious pneumonias among other medical conditions [97–99] . Al- 

hough therapies such as INOmax TM have received FDA approval 

or treating PHT in neonates [100] , gNO has received mixed re- 

eption in literature because of its dose sensitivity thresholds for 

ntiviral and antimicrobial action in parallel to those for vasodila- 

ion and platelet quiescence [66 , 101] . One prominent example of 

his is seen in gNO treatments for ARDS – a condition prompted 
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Table 2 

Summaries of in vitro and ex vivo studies with gNO and NO donors as antiviral agents. 
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y diverse etiologies such as SARS-related coronavirus (SARS-CoV) 

nfection, pulmonary ischemia-reperfusion (I/R) injury, and bacte- 

ial/viral pneumonias, among others [102] . Treatment with gNO 

or ARDS manifested from SARS-CoV infection has shown to im- 

rove arterial oxygenation and reduce pneumonia infiltrates in 

escue trials [15] . On the other hand, some reports have shown 

hat gNO can intensify I/R-induced lung injury and be a causative 

gent of endotoxin-induced ARDS in various in vivo models of 

cute lung injury in mice [103 , 104] . Recent retrospective analy- 

es of gNO therapeutic clinical trials for refractory hypoxemia from 

RDS have found insufficient evidence to support any overall ben- 

fit for its treatment with gNO [105 , 106] . These results are sup-

orted by similar studies of gNO inhalation therapies for severe 

nfluenza within in vivo mouse models, which found that inter- 

ittent treatment at even 160 ppm of NO failed to reduce lung 

iral load [107] . Regardless, a rescue trial [15] for SARS-CoV infec- 

ions (during the 20 02–20 04 outbreak) evidenced against promis- 

ng in vitro work with NO donors [69] has prompted several 

ngoing clinical trials that aim to develop gNO treatments against 

oronavirus disease 2019 (COVID-19) that address: 1) early stage 

nfection to prevent further propagation (NCT04305457); 2) me- 

hanically ventilated patients to improve oxygenation in hypoxic 

ARS-CoV-2 infection (NCT04306393); and 3) hospital-associated 

ransmission among healthcare workers (NCT04312243) [108–111] . 

nother ongoing trial (NCT03331445) is adapting gNO thera- 
6 
ies originally conceived against non-tuberculosis mycobacteria 

or application as an antiviral therapy to reduce intervention 

ith mechanical ventilators and the need for oxygen therapies 

112] . 

To date, gNO has debatably had the most success as an FDA- 

pproved drug under the tradename INOmax TM for treating oxy- 

en desaturation at recommended dosages of 20 ppm for up to 

wo weeks in neonates with hypoxic respiratory failure and to 

elp avoid further intervention with ECMO. gNO therapies are of- 

en used because of minimized systemic effects owed to the short 

alf-life of NO in physiological conditions [113 , 114] , though exact 

osages needed for antiviral action may be well above those for 

ttenuating pulmonary vasculature. For example, while less than 

0 ppm is cited as eliciting pulmonary vasoconstriction without di- 

ation [93] , 80 ppm failed to elicit any antimicrobial effect in clini- 

al trials [101] . Furthermore, most in vitro studies point to excesses 

f 160 ppm being needed for full antimicrobial effect, while still 

eing largely dependent on the inhalation period and physiolog- 

cal environment [66 , 98 , 115] . Although a rescue trial of SARS pa-

ients during the 20 02–20 04 outbreak demonstrated reduced lung 

nfiltrates with a stepped-down treatment regimen from 30 ppm 

ver three days, the authors advised caution towards interpreta- 

ion as an efficacious antiviral treatment strategy because of the 

mall treatment group. Regardless, gNO was found effective in its 

rimary role for improving oxygen saturation [15] . 
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Currently, a large gap in knowledge remains in understand- 

ng differences in therapeutic outcomes observed in vitro with 

NO treatments compared to those with dissolved NO donor com- 

ounds. Recent work testing the antimicrobial efficacy of gNO ver- 

us a NO-releasing soluble chitosan oligosaccharide demonstrated 

hat excesses of 500 ppm of gNO were necessary to elicit the same 

-log reduction of Pseudomonas aeruginosa observed with the solu- 

le donor, despite the gNO treatment reportedly leading to almost 

 20x excess in dissolved NO compared to the donor compound 

115] . Other studies have shown corroborative results and empha- 

ize that the success of gNO therapies is contingent on continuous 

eplenishment of gNO because of limitations in phase transfer to 

he physiological medium coupled with physiological buffering and 

he short half-life of gNO [96] . In contrast, dissolved NO donors 

ere shown to achieve the same antimicrobial thresholds with a 

ne-off treatment because of the enhanced stability and controlled 

egradation of NO-donating compounds in physiological conditions 

96 , 115] . For these reasons as well as ease of application, storage

tability, and ready clinical translation, NO-donating compounds as 

ntiviral agents have been shown increased interest and will be the 

ocus of the remainder of this section. 

.3. Direct NO donor therapies 

NO donor compounds used as antiviral agents fall under 

hree general classifications: nitrites, N -diazeniumdiolates, and S - 

itrosothiols (RSNOs). The earliest antiviral clinical trial work with 

O donors tested acidified nitrites in topical ointments against 

olluscum contagiosum infection but faced several issues with 

kin discoloration, irritation, and other side effects [116] . While 

here has been limited academic literature with NO donors in an- 

iviral clinical trial work, significant effort has been made to com- 

ercialize an investigational product named SB206 (NOVAN Inc, 

orrisville, NC, USA) for application against molluscum contagio- 

um and HPV infection. The active component of SB206 is a pro- 

riety NO-releasing compound NVN10 0 0 (berdazimer sodium, CAS 

846565-00-1, NOVAN Inc.) that has previously shown promising 

ntiviral capacity in vitro with HPV raft cultures [72] . Combined 

ork on this product has been successful through a phase II clin- 

cal trial against HPV with significant improvements in wart clear- 

nce (NI-MC201) and is undergoing continued testing in phase 

II trials against molluscum contagiosum (NI-MC301, NI-MC302) 

73 , 117 , 118] . 

Most other contemporary antiviral work with NO donor com- 

ounds has involved small molecule, synthetic RSNOs such as S - 

itroso- N -acetylpenicillamine (SNAP) due to their favorable stabil- 

ty in physiological conditions (see Fig. 3 a). Most recently, Akaberi 

t. al [119] demonstrated reduction in SARS-CoV-2 protease activity 

ith up to 99.42% replication inhibition using low doses of SNAP 

ith a SARS-CoV-2 infection model in Vero E6 cells (see Fig. 3 b). 

tudies such as these have been mostly relegated to in vitro mod- 

ls of viral infection [59 , 64 , 70 , 119–122] ; however, SNAP and var-

ous other RSNO derivatives have also shown promising antibac- 

erial, anti-thrombotic, and non-cytotoxic results in other in vivo 

odels of blood circulation and urinary tract infection [12 , 14 , 123] .

hese applications incorporated NO donors such as SNAP or S - 

itrosoglutathione (GSNO) into medical grade polymers, polysac- 

harides, and various macromolecular scaffolds via covalent mod- 

fications (see Fig. 3 c), solvent swelling impregnation, or blending 

nto bulk substrates [124–126] . Other degradable scaffolds are de- 

igned to expose microenvironments to NO from the controlled 

elease of embedded NO donor compounds (see Fig. 3 d) as well 

s from covalently attached NO donors through various biodegra- 

ation mechanisms [125 , 127] . Additionally, NO-releasing scaffolds 

nd nanoparticles have been designed to target organs and tis- 

ues to deliver payloads following stimuli-response to differences 
7 
n oxidation environment or the presence of catalytic metal ions 

127–131] . Through rational design approaches, NO-releasing for- 

ulations could be developed to target specific viral disease states. 

eaders are directed to detailed reviews on NO-releasing macro- 

olecular scaffolds [124] as well as others on antimicrobial and 

ntithrombotic applications of NO donor compounds for further 

laboration on this material chemistry design [132 , 133] . 

. Pharmacological considerations for NO-based antiviral 

herapies 

Designing therapeutic agents that discharge NO or produce it 

n a targeted tissue environment has been met with consider- 

ble challenges. The “double-edged” nature of NO in homeosta- 

is coupled with the poor physiochemical properties of many NO 

rodrugs and direct donor compounds has greatly limited the 

ranslational application of the technology. Nonetheless, the rising 

uccess of many of these NO-based therapies for antiviral applica- 

ion motivates further consideration of their underlying pharmaco- 

ogical properties in comparison to existing alternatives. This sec- 

ion therefore surveys the pharmacokinetics and pharmacodynam- 

cs of gNO, NO prodrugs, and NO donor compounds previously de- 

eloped in antiviral therapies and critically evaluates their thera- 

eutic potential with respect to existing antiviral agents. 

.1. Developing pharmacokinetic and pharmacodynamic models 

During the development of NO-based therapies for preclini- 

al animal studies, NO becomes a difficult species to localize and 

uantify directly in physiological models. In these studies, NO gen- 

ration and consumption from gaseous NO treatments, prodrugs, 

nd other donor compounds are frequently measured indirectly, 

hrough the formation of nitrites and nitrates in blood, tissue 

ialysate, or urine samples. Detection then depends on combina- 

ions of colorimetric methods such as Griess assay, fluorometric 

ssays with aromatic diamino compounds, dedicated high through- 

ut high performance liquid chromatography methods, or com- 

inations thereof – each with its inherent limitations in detec- 

ion thresholds [134] . Because many of these assays are limited by 

ample preparation and impurity, alternatives such as chemilumi- 

escence or electrochemical based methods are often considered, 

here direct NO detection is achieved via its light-emitting reac- 

ion with ozone or reduction to diazeniumdiolate (N 2 O 2 
2 −) and 

itrate (NO 3 
−), respectively [25] . NO-based therapy studies have 

herefore become critically dependent on the accuracy of their de- 

ection system for determining dose-response relationships. 

Because NO is a key gasotransmitter in homeostasis, the ad- 

inistration route and pharmacokinetics are critical parameters 

or optimizing therapeutic systems to minimize off-target effects. 

aseous NO therapies are often associated with mechanical ven- 

ilation via endotracheal intubation with proprietary gas formula- 

ions, such as INOmax TM , paired with injection systems that have 

een validated in lung models with external chemiluminescence- 

ased readouts [135] . Since the past thirty years of preclinical and 

linical research have focused on using gNO for improving pul- 

onary vasodilation and oxygenation in ARDS and neonatal hyper- 

lasia, direct dose-response correlations with gNO for preclinical 

ntiviral therapies have yet to be shown [91 , 105 , 136] . 

A similar lack of knowledge regarding dose-response correla- 

ions exists with NO prodrugs and donor compounds, for which 

ntiviral work has been mostly limited to in vitro studies. Zell 

t al. [137] have pioneered work in this respect with organic ni- 

rates for the treatment of coxsackievirus B3 (CVB3) linked to car- 

iac arrhythmias in a mouse model (see Table 3 ). In these stud- 

es, two organic nitrates – glyceryl trinitrate and isosorbide dini- 

rate, were studied for their pharmacodynamics with respect to 
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Fig. 3. S -nitroso- N -acetyl-penicillamine (SNAP) is a synthetic NO donor used in a variety of biomedical applications. a) SNAP undergoes homolytic cleavage of its S-N bond 

in the presence of heat, light, or catalytic metal ions to afford NO. b) Treatment of SARS-CoV-2 infected Vero E6 cells with low doses of SNAP can lead to over 99% inhibition 

of viral replication. Reproduced with permission from Akaberi et al. [119] . c) Direct conjugation of SNAP onto bulk polymer networks enhances its degradation kinetics for 

enhanced NO released rates over several months. Reproduced with permission from Hopkins et al. [124] . d) Incorporation of SNAP into biodegradable poly lactic-co-glycolic 

acid (PLGA) microspheres allows for tunable NO release rates in the presence of catalytic copper ions (PBSACu). Modified with permission from Lautner et al. [127] . 
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NOS expression, fibrinolysis, and viral titer in cardiac tissue. Vas- 

ular bioactivation of glyceryl trinitrate via soluble guanylyl cy- 

lase occurs with excesses of ascorbate and cysteine in the pres- 

nce of mitochondrial aldehyde dehydrogenase (mtALDH) [138] . 

sosorbide dinitrate is alternatively activated through a mtALDH- 

ndependent pathway, though both prodrugs have been shown 

o generate similar dose-response curves in vasorelaxation [139] . 

oth nitrates demonstrated reductions in viral titer and asso- 

iated cardiac fibrinolysis and showcase the potential of future 

ork with other established NO prodrugs for antiviral applications 

137] . Horton et al. [140] recently summarized the pharmacoki- 

etics and pharmacodynamics of many NO prodrugs developed 

nd tested in preclinical animal models within the past decade, 

ncluding various nitrates, diazeniumdiolates, sydnonimines, and 

uroxans. 

Direct NO donor compounds have also seen limited study in 

reclinical animal models for antiviral application, with the only 

m

8 
ork coming from Liu et al. [68] with GSNO on porcine cir- 

ovirus type 2 (PCV2) in a mouse model (see Table 3 ). GSNO has

reviously been studied through in vivo models for neuroprotec- 

ion, gastrointestinal mucosal barrier integrity, inflammation, and 

latelet activation [141] . While Liu et al [68] demonstrated de- 

reased PCV2 tissue copies after intraperitoneal GSNO administra- 

ion, dose-response relationships for GSNO and other RSNOs in an- 

mal models of viral infection remain underdeveloped. Taken alto- 

ether, the effects of administration route, dose, and other factors 

uch as metabolic activation or degradation are mostly unexplored 

or NO-based antiviral therapies and though reflective of the in- 

ancy of the field are critical to its clinical translation. 

.2. Comparison of NO-based therapies to other existing therapies 

NO-based therapies are considered a multi-faceted tool for im- 

une defense due to broad-spectrum antiviral and antimicro- 
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Table 3 

Summary of the pharmacological considerations in studies with NO prodrugs/donor compounds in preclinical animal models. 

Prodrug and Main Metabolite Administration 

Route and Dose 

NO Detection 

Method 

Efficacy Ref 

Intraoral (drinking 

water), 10 μg/mL 

Griess assay on 

serum from 

treated mice 

Elevated iNOS mRNA in heart 

tissue, decreased CVB3 viral 

titer, reduced heart fibrosis by 

day 14 

[137] 

Direct intraoral 

administration, 

1.5 mg/day 

Griess assay on 

serum from 

treated mice 

Elevated iNOS mRNA in heart 

tissue, decreased CVB3 viral 

titer, reduced heart fibrosis by 

day 28 

[137] 

Nitric Oxide Donor Compound Administration 

Route and Dose 

NO Detection 

Method 

Efficacy Ref 

Intraperitoneally, 

0.336 mg/day 

Griess assay on 

serum from 

treated mice 

Improved spleen and thymus 

indices, decrease in PCV2 DNA 

copies in tissue autopsies 

[68] 
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ial properties paired with their tunable anti-inflammatory ef- 

ect. Comparable broad-spectrum antiviral agents generally focus 

n modulating host defense and targeting viral infectivity via one 

r more avenues including: viral attachment, membrane fusion and 

ndocytosis, viral replication, viral assembly and budding, or vi- 

al envelope integrity [142] . Common broad-spectrum antivirals in- 

lude alpha interferon, ribavirin, various peptide fusion inhibitors, 

ntiviral peptides, nucleoside enantiomers, and other synthetic 

onstructs. Direct comparisons in therapeutic efficacy of broad- 

pectrum antivirals to NO-based prodrugs and donors is compli- 

ated by NO’s case-specific role in viral pathogenesis. For many 

espiratory specific strains such as syncytial virus, increased NO 

ocalization decreases replication, while for other strains such as 

epatitis C it mediates viral persistence and pathogenic activity 

143 , 144] . 

Few studies have considered the antiviral potency and corre- 

ponding cytocompatibility of NO prodrugs or donor compounds 

ith respect to existing broad-spectrum alternatives. NO prodrug 

atalogs based on nucleoside analogues (see Table 4 ) have been 

tudied extensively against other nucleosides and antivirals such 

s acyclovir which treat herpes and vesicular stomatitis viral infec- 

ions [74 , 145–148] . Adding NO prodrug components to nucleosides 

enerally lowered the IC50 – the concentration of agent required 

or 50% inhibition of the virus culture in vitro , and led to variable

ncreases in cytocompatibility. Similarly, NO donors such as SNAP 

ave seen extensive evaluation in vitro at treatment ranges from 

0 0–40 0 μM with reports of negligible cytotoxicity against cox- 

ackievirus, HSV 1, SARS, influenza virus, and vesicular stomatitis 

irus [64 , 70 , 120 , 122 , 149] . However, the current lack of IC50 data

or many NO donors presents significant challenges in the clini- 

al translation of NO-based therapies in addition to other overar- 
9 
hing issues such as drug solubility, stability, and trafficking in vivo 

150 , 151] . 

. Future prospects 

Based on NO’s non-specific antiviral and antimicrobial proper- 

ies, highly tunable NO-based therapeutics and materials provide 

romising potential in both directly combatting viruses and mit- 

gating secondary infections associated with viral infections (see 

ig. 4 ). Although gNO treatment has shown some antiviral efficacy 

n rescue trials and other preclinical in vivo models, its widespread 

se may be constrained by logistical and financial restrictions, as 

t has been considered one of the most expensive therapeutics 

n neonatal medicine. Additionally, gNO applications are mostly 

imited to respiratory viral infections. The use of NO-donor com- 

ounds, alone or in scaffolds, can address these shortcomings with 

rolonged and site-specific NO release for broader applications. 

urthermore, incorporation of prolonged NO release outside of di- 

ect therapies could inhibit viral transmission and address compli- 

ations in treatments. In this section, we discuss the potential of 

hese compounds as direct antiviral agents and in preventative and 

ndirect antiviral strategies. 

.1. Direct antiviral therapies 

Sustained NO release from NO donor compounds or scaffolds 

an improve the logistics of gNO therapies for respiratory infec- 

ions. In addition to NO releasing strategies, NO generating scaf- 

olds that use catalytic metal ions or metal organic frameworks 

o generate NO from endogenous or supplemented RSNOs have 

hown promising kinetics in physiological conditions [152] . In 
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Table 4 

Comparison studies of some NO prodrugs to existing antiviral therapeutics. 

Nitric Oxide Prodrug Reference Antiviral Agent Test Strain NO Prodrug 

IC 50 (μM) 

Reference 

Agent IC 50 

(μM) 

Ref 

HSV Type 1 120 0.013 [74] 

HSV Type 2 120 210 [74] 

Vaccinia Virus 120 6.1 [74] 

Vesicular 

Stomatitis Virus 

1459 2788 [145 , 146] 

Vesicular 

Stomatitis Virus 

8949 2775 [148] 
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linical evaluations, numerous scaffolds cont aining RSNO moieties 

or enhanced NO delivery have already shown their effectiveness 

gainst microbial respiratory infections. For example, NO-releasing 

iodegradable alginates developed by Vast Therapeutics Inc. have 

roven effective in combatting lung bacterial infections in a cystic 

brosis-like environment, showing NO’s potential in mucosal envi- 

onments [153] . However, the antiviral effects of designs such as 

hese remain unexplored to date. Given the substantial influence 

O can have in ARDS and pneumonias, such constructs alone or 

n combination with other antiviral agents could provide enhanced 

ulmonary oxygenation and reduce infiltrates. 

In addition to respiratory viral infections, the incorporation 

f NO drugs into established or new nasal/inhaled formulations 

urrently under investigation has great potential to add or en- 

ance targeted antiviral activity in decongestants and other com- 

only used therapeutics. Rapid mucociliary clearance is a com- 

on issue with nasal drug delivery systems, but significant re- 

earch has shown the promise of mucoadherant polymers and 

anoparticles as improved templates [154–156] . The inclusion of 

O donors and/or catalytically generating compounds into these 

ystems or other biodegradable systems is an emerging field and 

ot well explored to date, but given that NO drugs have suc- 

essfully been attached to or contained in many scaffolds and 

anoparticles for other applications, the field appears promising 

132] . 
10 
.2. Passive antiviral and secondary bacterial infection prevention 

.2.1. Mechanical ventilation 

In addition to direct antiviral therapies, the incorporation of NO 

nto medical devices for the prevention of secondary infections 

elated to viral infection is an equally important endeavor. Nu- 

erous NO-releasing and generating materials have been explored 

or antimicrobial and hemocompatible applications (e.g. vascular 

atheters and ECMO) [157] . Many of these materials exhibit en- 

ouraging properties, good biocompatibility, and are undergoing 

ommercialization [158–160] . While developing a better under- 

tanding of the antiviral properties of these materials should be 

xplored, translating their use for improving viral infection treat- 

ent options is just as critical. As previously mentioned, treat- 

ng complications from respiratory viral infections such as SARS- 

oV and influenza notably requires mechanical ventilation and 

CMO [161 , 162] . However, these therapies are often associated 

ith further issues. Endotracheal intubation encumbers normal de- 

ense mechanisms of mucociliary clearance and introduces a for- 

ign surface vulnerable to bacterial infiltration and biofilm forma- 

ion on the endotracheal tube surface, ultimately resulting in high 

ates of ventilator associated pneumonia (VAP) [163] . NO-releasing 

ndotracheal tubes have recently been shown to reduce bacte- 

ial infections in vitro and show promise for VAP reduction as a 

omplication of infections [164] . Additionally, they may serve as a 
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Fig. 4. Summary of current and prospective NO-based strategies for active elimination of viruses and further prevention of viral infection ranging from gaseous NO (gNO) 

to small molecule NO donor compounds and material strategies. Active NO release from or onto surfaces may reduce viral contamination, as illustrated by active (orange) 

virions becoming inert (gray) after exposure to NO. 

s

c

s

s

b

w

c

6

i

t

h

v

b

d

t

t

t

a

E

i

p

l

o

s

s

d

a

a

i

r

h

f

w

h

a

O

i

m

c

b

i

d

t

t

t

c

f

a

t

7

S

i

s

b

i

t

g

v

E

c

a

v

6

c

trategy to help manage concurrent viral infections as well as mi- 

robial infections. Other strategies explored to prevent VAP involve 

ubglottic secretion suction, prophylactic antibiotic regimens, and 

urface modifications, including silver, gentamicin, and hydrogel- 

ased coatings [158 , 159] . The combination of these surface designs 

ith NO may result in a synergistic increase in antimicrobial effi- 

acy with enhanced antiviral effects. 

.2.2. ECMO 

In severe respiratory infections where mechanical ventilation 

s insufficient, ECMO is often used as a last resort. In addition to 

he potential for microbial and viral surface contamination, ECMO 

as broader fouling concerns with blood clot formation in the ex 

ivo circuit. Therefore, ECMO has simultaneous risks for both em- 

olism and bacterial/viral sepsis [165] . The fouling process is me- 

iated by the adsorption of blood plasma and bacterial proteins to 

he surfaces of the blood-contacting circuit, which sets off simul- 

aneous processes of platelet/bacteria surface adhesion and even- 

ual clot/biofilm formation. Any analogous process of viral protein 

dsorption onto the blood-contacting polymer substrates within 

CMO circuits remains unexplored to date. However, the greater 

ssue at hand with ECMO is its use to treat SARS in COVID-19 

atients – when mechanical ventilation is often inadequate, in 

ight of additional concerns about viral sepsis and advanced states 

f hypercoagulation [166–169] . Traditionally, ECMO patients are 

ystemically heparinized to prevent inline clotting. However, this 

trategy is problematic for patients with histories of cardiovascular 

isease, diabetes mellitus, and hypertension that are treated with 

ngiotensin-converting enzyme (ACE) inhibitors because: 1) hep- 

rin is contraindicated due to the increased risks for hemorrhag- 

ng, thrombocytopenia, and hyperkalemia; 2) ACE2 is a functional 

eceptor for SARS-CoV [170 , 171] ; and 3) high molecular weight 

eparins have been shown to act as non-specific binding sites 

or SARS-CoV [172] . Even with emerging investigational coatings 

ith immobilized heparin there exists the concurrent risks of en- 
11 
anced viral fouling, further propagation of the viral disease state, 

nd cardiovascular complications for this class of SARS patients. 

ther commercially available or otherwise investigational antifoul- 

ng coatings include phosphorylcholine, amphiphilic polymers, im- 

obilized albumin, zwitterions, and other “slippery” non-adhesive 

oatings [173] . However, none of these strategies contain active 

road-spectrum antimicrobial potential, disperse mature biofilms, 

nhibit the coagulation cascade, or otherwise act as a direct virici- 

al agent [165] . 

With their notable antimicrobial/antiviral properties and anti- 

hrombotic effects, NO strategies alone or in combination with 

hese other approaches have the best potential to augment an- 

ifouling and antiviral properties when incorporated into ECMO cir- 

uits (see Fig. 5 ). In particular, combinations of NO release and sur- 

ace grafting of zwitterionic polymer brushes have shown excellent 

ntimicrobial ( > 3-log reduction of viable bacteria in vitro ) and an- 

ithrombotic efficacy (significant reduction in clot formation in a 

-day in vivo rabbit model of extracorporeal circulation) [174 , 175] . 

imilarly, catalytic NO-generating materials have also been tested 

n an in vivo extracorporeal circulation rabbit model and have 

hown reduction in platelet adhesion, but their applications may 

e limited by bioavailability of endogenous donors, catalyst stabil- 

ty, and toxicity of leachates [165 , 176] . Materials using combina- 

ions of antifouling strategies that incorporate NO release and/or 

eneration appear to be the most promising way forward to pre- 

ent complications and simultaneously have antiviral effects in 

CMO treatments (see Fig. 5 ). However, until such materials are 

ommercially available NO sweep gas streams may prove useful 

s an alternative sterilization strategy for eradicating microbes and 

iruses [66 , 98] . 

.3. Clinical environments and beyond 

NO-releasing surfaces and materials also have implicit appli- 

ation potential in passively preventing hospital-associated viral 
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Fig. 5. Synergistic strategies combining nitric oxide release with a passive surface modification can enhance the antifouling surface properties and biocompatibility of medical 

device surfaces for a variety of antimicrobial and hemocompatible applications. These strategies combine tunable biocidal release rates of NO from a surface embedded donor 

compound with antifouling surface conjugates to reduce rates of surface protein adsorption. These approaches have not been investigated against viral surface contamination 

and could become prospects for antiviral surface development in mechanical ventilation and ECMO. 
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ransmission. The shelf-stability and extended NO surface flux from 

hese materials enables versatile application both in and outside of 

linical environments to control infection rates, especially in out- 

reaks as rampant as COVID-19 [177] . Self-sterilizing surfaces with 

O release would have a wide range of effects against most bac- 

eria, fungi, and select viruses. Applying NO-releasing technology 

o facemasks could enable self-sterilization, increasing safety and 

ecreasing disposal concerns. NO-releasing coatings could also be 

eneficial on many surfaces otherwise susceptible to high contami- 

ation rates, such as frequently touched objects in medical settings 

e.g. doorknobs, elevator buttons, etc.), as NO can concurrently in- 

ibit viral replication and kill microbial pathogens to thereby re- 

uce the spread of infections. 

. Conclusions 

Thirty years of research have led to NO emerging as an im- 

ortant therapeutic option for treating virus-based illnesses and 

as led to successful or otherwise ongoing commercialization of 

everal gNO and NO-releasing therapies for respiratory viral in- 

ections, skin infections, and other medical conditions concurrent 

o viral infection. Significant progress has been made in under- 

tanding the limits of the antiviral capacity of NO both in host 

ells and as a passive mechanism for reducing free viral loads. 

his work is of critical importance to developing gNO and other 

O donor therapies to aid in systemic clearance of viral infections 

hile also providing insight into the basic biology of NO in the 

mmune response. While gNO has begun to demonstrate its ex- 

ellent potential as a broad antiviral agent, NO-releasing materi- 
12 
ls can have the additional benefits of prolonged release and vast 

elivery/application options both directly and indirectly addressing 

ssociated complications of viral infections. Future research should 

herefore focus on further developing gNO and NO-releasing de- 

ivery platforms for medical procedures related to hospitalization 

or viral infection, such as mechanical ventilation, therapeutic pul- 

onary delivery, ECMO, endotracheal intubation, and other blood- 

ontacting interventions. Furthermore, NO releasing composite ma- 

erials functionalized with additional antifouling strategies remain 

o be investigated in a clinical context for viral contamination and 

ould develop into a new generation of materials for actively in- 

ibiting viral replication and preventing further contamination of 

edical devices and surfaces. Ongoing and future development of 

O chemistries and materials will expedite the clinical translation 

rocess and bring new avenues of therapeutic antiviral strategies 

o patient care. 
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