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Abstract

No predictive biomarkers can robustly identify non-small cell lung cancer (NSCLC) patients who 

will benefit from immune checkpoint inhibitor (ICI) therapies. Here, in a machine learning setting, 

we compared changes (“delta”) in the radiomic texture (DelRADx) of computed tomography (CT) 

patterns both within and outside tumor nodules before and after 2–3 cycles of ICI therapy. We 
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found that DelRADx patterns could predict response to ICI therapy and overall survival (OS) for 

patients with NSCLC. We retrospectively analyzed data acquired from 139 NSCLC patients at two 

institutions, who were divided into a discovery set (D1 = 50) and two independent validation sets 

(D2 = 62, D3 = 27). Intranodular and perinodular texture descriptors were extracted and the 

relative differences were computed. A linear discriminant analysis (LDA) classifier was trained 

with 8 DelRADx features to predict RECIST (response evaluation criteria in solid tumors)-derived 

response. Association of delta-radiomic risk-score (DRS) with OS was determined. The 

association of DelRADx features with tumor-infiltrating lymphocyte (TIL) density on the 

diagnostic biopsies (n = 36) was also evaluated. The LDA classifier yielded an area under the 

curve (AUC) of 0.88 ± 0.08 in distinguishing responders from nonresponders in D1, 0.85 and 0.81 

in D2 and D3. DRS was associated with OS (hazard ratio: 1.64, 95% CI: 1.22 – 2.21, P = 0.0011, 

C-Index = 0.72). Peritumoral Gabor features were associated with the density of TILs on 

diagnostic biopsy samples. Our results show that DelRADx could be used to identify early 

functional responses in NSCLC patients.
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Introduction

Immune checkpoint inhibitors (ICIs) targeting the PD-1/ PD-L1 axis are the standard of care 

for treatment of patients with advanced non-small cell lung cancer (NSCLC) without 

targetable genetic alterations [1]. Susceptibilities in immune checkpoint pathways allow 

tumor cells to escape immune surveillance, leading to tumor propagation. Monoclonal 

antibodies targeting these pathways reinvigorate the host immunity against tumor cells and 

have revolutionized the treatment of a range of malignancies due to their favorable toxicity 

profiles and their ability to produce durable clinical responses [2]. However, the response 

rates to these drugs remain modest (27% in PD-L1+ NSCLC in the first line setting [3] and 

45% in PD-L1high subgroup [4], and 19% in the second line setting). In addition, optimal 

patient selection for therapy remains a challenge since most available biomarkers such as 

PD-L1 expression are insufficient to accurately classify patients. Historically, clinical 

efficacy of anti-cancer therapy has been evaluated by using Response Evaluation Criteria in 

Solid Tumors (RECIST) or World Health Organization (WHO) criteria which incorporate 

two dimensional measures of target lesions that are tracked over time [5]. These criteria have 

been used to define responses to therapy in a majority of the clinical trials that has led to 

subsequent drug approval for years [6, 7, 8]. As per RECIST, at least a 20% increase in the 

sum of the longest diameter of target lesions or development of new ones is considered 

disease progression. RECIST guidelines focus on changes in tumor size and do not take into 

account changes in tumor heterogeneity, which may be more indicative of tumor biology and 

evolution during therapy.

Radiomics is the science of quantifying patterns of tumor phenotypes on radiographic scans 

in a high throughput manner and analyzing them with bioinformatics tools to build clinically 
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relevant models that assess tumor and microenvironment heterogeneity. Indeed, radiomic 

features in regions around the tumor might reflect immune response in breast and lung 

cancers [9, 10, 11]. In addition to intranodular heterogeneity in PD-L1 status [12, 13, 14, 

15], micro-environmental factors in the peritumoral region may be contributing to treatment 

failure. For instance, angiogenesis, a pathological response to hypoxia, is routinely observed 

adjacent to the tumor. Impaired vasculature around the tumor can lead to regions of hypoxia 

in tumor microenvironment which diminish the efficacy of drugs [16, 17]. With this as a 

basis, we hypothesized that delta radiomic analysis (DelRADx) or changes in radiomic 

patterns from the intra and perinodular regions of the CT scan, could provide a more 

accurate characterization of tumor response to ICIs in advance of visually perceptible 

imaging changes.

In this study, we evaluate the performance of DelRADx from within and outside thoracic 

lesions, in predicting response to multiple ICIs in patients with advanced NSCLC. Previous 

studies have begun to look at the role of radiomics in the context of predicting response to 

immunotherapy [18]. Here we look at delta radiomic features (change in radiomic measures 

between pre- and post- therapy scans) to assess RECIST-derived response to ICIs and 

characterize survival differences. We evaluated the efficacy of DelRADx on a total of n = 
139 cases collected across two different institutions which included different ICI agents 

(nivolumab, atezolizumab, and pembrolizumab). In order to evaluate the morphologic basis 

of the DelRADx features, we also investigated associations between the predictive 

DelRADx features and computerized estimations of density of tumor infiltrating 

lymphocytes (TIL) on corresponding digitized pre-treatment diagnostic H&E biopsy scans 

(n = 36). We also compared the efficacy of DelRADx against that of PD-L1 expression in 

predicting OS and response to ICIs. Our study demonstrated that dynamic textural changes, 

both inside and outside the nodule between baseline and post-treatment CT scans of NSCLC 

patients following ICI therapy, correlate with clinical benefit. These sub-visual morphologic 

changes could potentially be used to identify early clinical response before objective 

reduction in tumor burden. Since these delta radiomic features are also associated with 

overall survival, they could be used to identify patients who are likely to derive clinical 

benefit from therapy beyond functional responses. This could be valuable in the clinical 

decision making process for patients with long term disease stabilization or those with 

delayed radiographic responses due to immunotherapy.

Materials and Methods

Datasets and Patient Selection

The study was conducted in full accordance with the US Common Rule and HIPAA 

regulations after approval from institutional IRB (IRB 02-13-42C) at Case Western Reserve 

University. The IRB waived the requirements for informed consent since the study was 

performed on retrospective, archived specimens. A total of n = 218 patients with advanced 

NSCLC treated with a PD1/PD-L1 ICI therapy (nivolumab/pembrolizumab/atezolizumab) 

from January 2012 to August 2017 in Cleveland Clinic Foundation (CCF) and University of 

Pennsylvania Health System (UPHS) were identified. Samples in which the board-certified 

radiologist (8 years of experience) could not isolate index lesions on CT scans or the CT 
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scans with poor image quality, not suitable for radiomic feature extraction, led to exclusion 

of 76 of the 188 patients from CCF and 3 of the 30 patients from UPHS. The study included 

the remaining 112 patients from CCF and 27 patients from UPHS, for a total of 139 patients. 

Digitized histology scans of baseline biopsies were available for 36 of cases from CCF. All 

patients underwent a baseline contrast CT imaging before starting treatment with ICI. All 

patients in the included study cohorts received ICI monotherapy. After 2 (for nivolumab) to 

3 cycles (for atezolizumab/pembrolizumab) of ICI, a follow-up CT scan was acquired. The 

timeline of ICI therapy administration and corresponding CT acquisition is shown in Fig. 1.

The entire cohort of 139 patients was divided into a discovery set D1 comprising 50 patients 

(25 responders and 25 nonresponders) from CCF. The remaining 62 cases (42 responders 

and 20 nonresponders) from CCF, not used in the discovery, set were used for independent 

validation (D2). 27 patients from UPHS (10 responders and 17 nonresponders) were used as 

the second independent validation set, D3. The patients were selected in a manner that 

ensured an equal number of responders and nonresponders in the discovery set.

Clinical endpoints

The primary endpoint of our study was response status (responder/nonresponder), as defined 

by RECIST v1.1. Patients who had progressive disease after treatment (PD, defined as at 

least 20% increase in the sum of largest diameters of target lesions with an absolute increase 

of ≥ 5 mm, counting any new lesions) were classified as ‘nonresponders’, and patients who 

had radiographic response, including complete response, partial response or stable disease 

and clinical improvement were classified as ‘responders’ [5]. The secondary endpoint was 

overall survival (OS) that was measured from the date from the post-treatment CT scan to 

the date of death, and censored at the date of last follow-up for survivors.

CT Acquisition and Segmentation

CT scans were acquired from all participants at baseline and immediately after 2–3 cycles 

(6–8 weeks) of ICI treatment. Scans were acquired using a multi-slice (Philips Healthcare, 

General Electric Health Care, Siemens Healthcare) CT system with a tube voltage of 100 to 

120 kVp, slice thickness (spacing) of 1 to 5 mm (mean = 2.82 mm, SD = 0.71 mm), and in-

plane resolution of 0.75 × 0.75 mm. CT images were acquired with patients at inspiration 

breath-hold after contrast injection. All scans were acquired using the facilities’ CT chest 

protocol and standard image reconstruction.

Target lung nodules on pre- and post-treatment CT scans were first annotated with 3D 

SLICER® software by a cardiothoracic radiologist (AG, 8 years’ experience). The 

segmented nodules were used to compute the intranodular texture and shape features. The 

imaging features were computed in 2D whereas shape features were calculated as described 

in [10]. Tumor measurements were then reviewed to assess responses of each target lesion. 

The same thresholds for response and progression for the total tumor burden were applied 

for the lesion-based assessment. The nodule mask was then dilated out to a 30 mm 

perinodular radius, which was divided into 15 annular rings of 2 mm each. The choice of 

perinodular compartment size was determined based on National Comprehensive Cancer 

Network guidelines [19] that suggests a resection margin of 2 cm or greater. During the 
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peritumoral texture analysis of the lung parenchyma, care was taken to remove air (< −900 

HU) and mediastinal muscle pixels (> −100 HU) in peripheral tumor. To avoid edge artifacts 

that might arise during feature extraction, the ‘dead’ pixels of the CT scan were substituted 

with the average pixel intensity from a 9 × 9 window surrounding the pixel of interest.

Radiomic Feature Extraction

After CT acquisition and segmentation, radiomic features were extracted using MATLAB 

2018b (Mathworks, Natick, MA, USA) with an in-house developed toolbox [9, 19]. 

Radiomic features were extracted from within and around the voxels of the segmented 

nodules from the CT scans. Ninety-nine texture features, from 4 feature groups (25 Laws 

Energy, 48 multi-scale multi-orientation Gabor, 13 Haralick, and 13 CoLlAGe features) 

were extracted from each region. Statistics (mean, median, SD, skewness, and kurtosis) for 

each feature were computed within the tumor and each perinodular annulus, resulting in 495 

statistical features per region. A total of 24 shape features were also automatically extracted 

from the annotated nodules and investigated in the study. All of these features have been 

used in previous radiomic studies for discriminating cancer phenotypes [20, 21, 22, 23]. The 

extracted radiomic feature intensities were then normalized to adjust values to a notionally 

common scale between −1 and 1. In order to find which features were most distinct between 

responders and nonresponders, the percent change of feature statistics between baseline and 

post- 6–8 week scans was calculated to yield the DelRADx feature set.

Feature Selection

To construct generalizable classifiers, the features identified as predictive must be consistent 

across sites and scanners. In order to identify which of the predictive features identified 

during the feature selection step were also stable and reproducible, we evaluated the 

DelRADx features in the context of the test-retest RIDER lung CT dataset [24]. The RIDER 

dataset includes 31 patients, each patient having been scanned twice on a CT scanner with 

an interval of approximately 15 minutes. For each radiomic feature identified via feature 

selection, the intra-class correlation coefficient (ICC) was calculated to quantify 

reproducibility between the test-retest scans. Since ICC describes similarity of units in the 

same group; features with high ICC values are thus more reproducible and potentially more 

robust to variations in CT scanners and acquisition parameters. We used an ICC cutoff > 0.8 

to identify stable and reproducible features. Within all stable features, Wilcoxon rank sum 

(WLCX) feature selection method was used to select predictive features.

Statistical Analysis

Classification—A Linear Discriminant analysis (LDA) classifier was employed in 

conjunction with the stable and discriminating DelRADx features identified during the 

feature selection step. Within the discovery set D1, the classifier was trained with top 

selected features on 70% of data and validated on the remaining 30%. The procedure was 

iterated over 100 runs. The performance of the DelRADx feature classifier was assessed 

from the receiver operating characteristic curve as area under the curve (AUC). In addition, 

we employed unsupervised clustering to measure the efficacy of the identified DelRADx 

features. A heat map clustergram was used to display unsupervised hierarchal clustering 
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using the intranodular and perinodular DelRADx feature sets. A consensus clustering 

approach (Kmax clusters = 10, Pearson distance, Hierarchical clustering) was also used to 

determine the number and affiliation of possible clusters within the patients in the discovery 

set. To do this, the similarity between different nodules based on distance in the space of the 

top ranked features was first determined. Nodules belonging to different clusters will have 

lower correlation whereas nodules within a cluster are likely to have high intraclass 

correlation.

There may possibly be a difference in tumor texture phenotype in patients who get 2 cycles 

as compared to 3 cycles of therapy. To ascertain if there was a significant difference between 

two groups, an LDA classifier trained on the discovery set was evaluated in two validation 

sets, corresponding to patients who got 2 cycles (N1) and 3 cycles of therapy (N2), 

respectively. The number of correct and incorrect classification decisions was calculated and 

Fisher exact test [27] was performed to assess for any significant differences.

Because CT studies have a range of slice thicknesses (from 1 to 5 mm), the impact of slice 

thickness on the performance of the classifier was also evaluated.

Survival Analysis

The Kaplan–Meier survival analysis and log-rank statistical tests [28] were performed to 

assess the univariable discriminative ability of the features. The prognostic value of 

DelRADx features on OS and independent “added-value” of the imaging features over the 

traditional clinical factors was estimated by using the DelRADx risk score (DRS) signature. 

To build the multivariable DRS, Cox regression model was trained on D1 for the selected 

imaging variables (top eight) and the prediction by this model was validated on D2 and D3. 

Backward elimination feature selection was performed on selected prognostic features in 

multivariable analysis. Intermediate models were tested by repeated random sub-sampling 

based cross validation with 100 iterations on the discovery set. Once the mean concordance 

index (C-index) of the shrinking model dropped, a linear combination of the selected 

features with their corresponding coefficients was calculated as the final DRS model for 

predicting OS. The patients were stratified based on median DRS into high and low risk 

groups. A multivariable Cox proportional hazards model was employed to evaluate the 

ability of the DRS in predicting OS (by using survfit and coxph functions, respectively, in R, 

version 3.1.3). In addition, relative hazard ratios (HR) with 95% CIs were calculated using 

the Wald test and the G-rho rank test, respectively.

Morphologic Association with Predictive Radiomic Features

A set of context-based features that attempt to model the tumor environment and the 

relationships between lymphocytes and their surrounding cells (lymphocytes and non-

lymphocytes) were explicitly defined. A watershed-based algorithm [25] was first applied to 

segment nuclei on the image. Considering that lymphocyte nuclei are generally 

distinguished from other cell nuclei by their smaller size, more rounded shape, and darker 

homogeneous staining, we classified the segmented nuclei into either lymphocytes or non-

lymphocytes (mainly, tumor cells) using nuclei texture, shape, and color features [26]. 

Subsequently, density-related features were extracted that characterized the lymphocyte 
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distribution in local neighborhoods. The density features included ratio between the number 

of TILs and the tissue area, ratio between the area covered by TILs to the total area of the 

corresponding region of interest, ratio between the number of TILs and the number of non-

TILs within a region of interest, and a grouping value indicating how close the TILs are to 

each other (computed as the sum of the inverse distances between TILs). Consequently, 76 

features quantifying density or compactness of TILs were extracted from the surgical 

specimens. To investigate the DelRADx-TIL associations, a pair-wise Spearman correlation 

was performed between each of the top DelRADx and TIL compactness measures.

Results

Clinico-pathologic features of the Patient Cohorts

The Eastern Cooperative Oncology Group (ECOG) performance status and TNM stage per 

the American Joint Committee on Cancer (AJCC) staging system [29, 30] were used in this 

study. Clinical tumor histology (adenocarcinoma or squamous cell carcinoma) was also 

performed according to Union for International Cancer Control (UICC) 7th classification. 

Detailed demographics and clinical characteristics for the 112 patients from CCF and 27 

cases from UPHS are summarized in Tables 1A and B, respectively.

DelRADx discrimination of responders from nonresponders after ICI therapy

The top 8 selected intranodular and annular perinodular DelRADx texture features are listed 

in Table 2. Figs. 2A and B illustrate the discriminability of the intranodular Haralick entropy 

DelRADx feature for representative nonresponder and responder patients before and after 

two cycles of ICI therapy. We observed an elevated expression of Haralick entropy post-

therapy in the nonresponder as compared to the responder. Figs. 2C and D illustrate the 

discriminability of a perinodular low frequency Gabor filter DelRADx feature (24–26mm) 

for one nonresponder and one responder patient, before and after two cycles of ICI therapy. 

In the post-therapy scan, the responder showed greater feature expression than the 

nonresponder. This trend is also reflected in the box and whisker plots of the skewness of 

Haralick entropy, illustrated in Fig. 3A.

We also used clustering approaches to illustrate the discriminability of the identified 

features. Fig. 3B shows the feature expression based clustergram using the most 

discriminating intranodular and perinodular DelRADx features. As illustrated in Fig. 3B, a 

number of the texture features show differential expression between responders and 

nonresponders. Fig. 3C illustrates the consensus clustering plot of features identified to be 

both stable and discriminating of response to ICI on the discovery set. Clustering performed 

using only intranodular texture features yielded 73% responders and 62% nonresponders in 

the two dominant clusters which was less accurate in comparison to the corresponding 

clusters obtained via a combination of intranodular and perinodular texture features. The two 

clusters, using the combination of intranodular and perinodular texture features, had a 

preponderance of responders (75%) and nonresponders (84%), respectively, and had 

noticeably stronger consensus within clusters, as compared to the clusters using just 

intranodular texture features. The combination of top identified DelRADx features yielded 

an AUC of 0.88 ± 0.09 (n = 50) in the discovery set, D1. On the validation sets D2 and D3, 
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the DelRADx classifier yielded an AUC of 0.85 (n = 62) and 0.81 (n = 27), respectively. The 

corresponding response prediction accuracy for the DelRADx classifier was 88%, 80%, and 

69%, for patients treated with nivolumab, atezolizumab, and pembrolizumab in D2, and 

75%, 70%, and 75% for patients in D3, respectively.

Supplementary Table S1 shows the performance of the model in terms of AUC mapped out 

as a function of slice thickness. As may be observed, the AUC of classifier for the radiomic 

features decreased slightly with increasing slice thickness.

DelRADx features were associated with overall survival

The median OS post therapy for D1 was 16 months (range: 1–45 months). Supplementary 

Table S2 shows the univariable Cox regression analysis on D1 with the top eight DelRADx 

features and six clinico-pathologic variables. The univariable cox regression model based on 

the intranodular Haralick entropy texture feature gave the highest HR amongst all other 

features in the discovery set (HR for survival in patients with decrease in Haralick entropy 

after therapy: 1.54, 95% CI: 1.19 – 2.27, P = 0.0023, C-index = 0.57). There was a 

statistically significant difference in survival curves for patients (in the D2 and D3 validation 

sets) who had Haralick entropy values below the median, as compared to those above the 

median (D2: p = 0.0027, D3: P = 0.0018). Also, in D2, there was no significant difference in 

OS with age, gender, race, smoking status, histology or EGFR mutation (age: P = 0.55, 

gender: P = 0.35, race: P = 0.81, smoking: P = 0.53, histology: P = 0.26 and EGFR 

mutation: P =1).

The DRS was associated with OS in the discovery set, D1 (HR: 1.64, 95% CI: 1.22 – 2.21, P 
= 0.0011, C-Index = 0.72) and yielded similar results in D2 (HR = 1.66, 95% CI = 1.25 – 

2.0; P = 0.0074, C-Index = 0.69) and D3 (HR = 1.71, 95% CI = 1.36 – 2.11; P = 0.010, C-

Index = 0.68), respectively. Supplementary Table S3 shows multivariable Cox regression 

analysis for OS in discovery set D1 and in test sets D2 and D3.

The corresponding Kaplan Meier survival curves showed a significant difference in OS 

between patients with low and high DRS (D2: P = 0.00039, D3: P = 0.00056). KM survival 

curves for D2 and D3 are shown in Figs. 4A and B, respectively.

Stratified PD-L1 expression before therapy as a predictor of OS

PD-L1 expression score was only available for 25 patients in our study cohort from CCF. We 

performed a subset analysis to compare the performance of our radiomic model against that 

of PD-L1 expression in predicting OS and response to ICIs. In the 25 patients included in 

this analysis, median OS post therapy was 12.5 months (range: 2–19 months). The patients 

were divided into high PD-L1 and low PD-L1 score categories based on the different cutoff 

criteria (PD-L1<1% and >1%; PD-L1<10% and >10%; PD-L1<50% and >50%) shown in 

Supplementary Table S4.

PD-L1 expression based on the third criteria (PD-L1<50% and >50%) could discriminate 

patients into two groups with different OS (P = 0.031), but no statistically significant 

difference in HR was observed (HR for survival in patients with low PD-L1 score: 0.35, 
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95% CI: 0.12 – 1.1, P = 0.065, C-index = 0.57). PD-L1 expression was also not correlated 

with response to treatment using Spearman correlation analysis.

When the perinodular Gabor DelRADx feature (f = 0, θ = π/8) was combined with PD-L1 

score in a Cox model, the resulting PD-L1_Rad score was significantly associated with OS 

(HR = 0.26, 95% CI: 0.1 – 0.8, P = 0.021, C-Index = 0.80). The corresponding KM survival 

curves showed a significant difference in OS between patients with low and high PD-

L1_Rad score (log-rank test, P = 0.0046, n = 25). The KM survival curves for this subset 

analysis are shown in Supplementary Fig. S1.

Predictive value for OS of volumetric changes of tumor during therapy

The median tumor volume in D1 was 4.65 ml (range: 0.137–166.83 ml) before ICI 

administration, and 5.58 ml (range: 0.07–370.41 ml) after 2/3 cycles of ICI. An LDA 

classifier trained with tumor volume change in discovery set (D1) could discriminate 

responders from nonresponders with an AUC of 0.70 and 0.78 in D2 and D3 respectively. 

The volume change was associated with OS in D1 (HR for survival in patients with less 

shrinkage in tumor volume after therapy: 0.58, 95% CI: 0.41 – 0.81, P = 0.0018, C-index = 

0.63), with similar statistics observed in D2 (HR = 0.55, 95% CI = 0.48 – 0.78; P = 0.011, C-

Index = 0.61) and D3 (HR = 0.57, 95% CI = 0.41 – 0.88; P = 0.025, C-Index = 0.60), 

respectively.

A multivariable Cox regression model using changes in tumor volume and DelRADx 

signature indicated that DelRADx signature is the only independent biomarker associated 

with OS in D1 (DRS: HR: 1.68, 95% CI: 1.23 – 1.98, P = 0.0001; volumetric changes: HR: 

0.6, 95% CI: 0.24 – 1.63, P = 0.35; C-Index = 0.84), D2 (DRS: HR: 1.67, 95% CI: 1.12 – 

1.76, P = 0.0031; volumetric changes: HR: 0.51, 95% CI: 0.31 – 1.52, P = 0.21; C-Index = 

0.75), and D3 (DRS: HR: 1.74, 95% CI: 1.54 – 2.16, P = 0.0075; volumetric changes: HR: 

0.58, 95% CI: 0.34 – 1.68, P = 0.43; C-Index = 0.73), respectively.

The KM curve based on percentage change in tumor volume in D2 and D3 showed that 

patients with high percentage shrinkage in tumor volume have a higher survival probability 

compared to patients with lower percentage shrinkage in tumor volume. This difference was 

statistically significant (p = 0.0022 for patients in D2 and 0.015 in D3). Figs. 4A and B show 

the KM curves for this model in D2 and D3, respectively. High and low percentage shrinkage 

in tumor volume was defined based on the median percentage change in tumor volume.

Morphologic Association of DelRADx features with TIL density measures

To investigate associations between the DelRADx features and density of tumor infiltrating 

lymphocytes (TILs), we explored a subset of 36 cases from CCF. Towards this end we 

employed automated nuclei detection [31] followed by density estimation of TILs in 

diagnostic digitized H&E images. To quantify density or compactness of TILs, 76 features 

were extracted from biopsied tissue specimens. A pair-wise Spearman correlation was 

performed between each radiomic and TIL compactness measure. The 10 DelRADx features 

that could best separate IO responders from nonresponders were used for unsupervised 

hierarchical clustering. The TIL-density feature demonstrating the highest correlation with 
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the radiomic features was overlaid on the cluster-plot as a high/low expression based on its 

median value.

TIL density (TIL convex hull area/total convex hull area) was found to be significantly (ρ = 

−0.5, P < 0.05) correlated with a peritumoral Gabor filter DelRADx feature from the first 

annular ring outside the nodule. Supplementary Fig. S2A shows examples of digitized 

histology samples from responder and nonresponder cases, and illustrates the abundance of 

TILs (pink dots) in the responder, as compared to the nonresponder patient. The two 

hierarchical clusters that emerged using the CT radiomic features were associated with 

differential TIL density expressions. One cluster had a majority of responder cases (90%), 

whereas the other had a majority of nonresponders (69%) (Supplementary Fig. S2B). The 

nonresponder cluster had lower compactness (high TIL convex hull area/total convex hull 

area), as compared to the second cluster.

Comparison of DelRADx with baseline radiomic features

An LDA classifier trained with a combination of 2 baseline Intranodular, 6 annular ring 

baseline perinodular texture, and one shape feature in the discovery set yielded an AUC of 

0.81 ± 0.05 and corresponding AUCs of 0.79 and 0.74 for the patients within D2 and D3 

validation sets, respectively. An LDA classifier trained with baseline tumor volume in the 

discovery set could discriminate responders from nonresponders with an AUC of 0.64 and 

0.63 in D2 and D3 respectively. However, the baseline tumor volume was not associated with 

OS in the discovery (HR = 1.17, 95% CI: 0.82 – 1.68, P = 0.42, C-Index = 0.56) nor the 

validation sets. The risk score generated by backward elimination on predictive baseline 

texture features was associated with OS in the discovery set (HR: 1.25, 95% CI: 1.13 – 2.56, 

P = 0.025, C-Index = 0.69) and yielded similar results in D2 (HR = 1.18, 95% CI = 1.1 – 

2.05; P = 0.044, C-Index = 0.66). However, it was not significant in D3 (HR = 1.25, 95% CI 

= 0.86 – 1.94; P = 0.21, C-Index = 0.57). Supplementary Table S5 shows the differences in 

predicting response to treatment after 2 vs 3 cycles of ICI. The Fisher exact test yielded a p-

value of 0.21 between correct and incorrect decisions by classifier, suggesting no significant 

differences between the two groups.

Discussion

Immune checkpoint inhibitors (ICIs) have changed the landscape of treatment for patients 

with advanced non-small cell lung cancer (NSCLC) without any targetable mutations [32]. 

Despite advances in immuno-oncology, response rates to ICI agents are modest. A problem 

in immuno-oncology is the lack of objective response assessment tools to characterize 

responses to immunotherapy. In this study, we used routinely obtained CT scans to build 

DelRADx, a measure of radiomic features that quantifies image changes in the tumor and 

peritumoral regions between the baseline and the post-therapy scans. We tested DelRADx 

for its value in predicting response to ICI therapy.

The most discriminating texture features for prediction of response to ICI therapy were (i) 

DelRADx Haralick features [33], which reflect the changes in co-occurrence intensity 

statistics, (ii) DelRADx Gabor features [34], which capture changes in multi-frequency 

gradient orientation patterns, (iii) DelRADx Laws features [35], which capture changes in 
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wavy, ripple, and spot-like patterns, and (iv) DelRADx CoLlAGe features [36], which 

capture local changes in structural orientation. The Haralick entropy increment after therapy 

possibly arises from regions of hypoxia and acidosis [16, 17]. Acidity and hypoxia can block 

T-cell activation and are a barrier to the efficacy of immunotherapy drugs [37, 38, 39]. A 

previous study [40] has shown that Haralick features are highly associated with tumor 

hypoxia on FLAIR and Gd-T1w MR sequences in Glioblastoma multiforme. We observed 

an increase in expression of peritumoral DelRADx Gabor features after therapy. This might 

be reflective of higher numbers of tumor-associated inflammatory cells (TAIC) in the 

peritumoral compartment, similar to our previous findings in [41].

Increase in peritumoral DelRADx Laws (R5 × R5) features was associated with a decrease 

in OS. These features potentially capture peritumoral vascular invasion and 

neovascularization around the tumor, which manifest as changes in ripple patterns. This was 

consistent with our previous findings in NSCLC patients treated with chemotherapy, where 

time-to-progression in patients with elevated peritumoral Laws texture features is lower than 

those with decreased peritumoral Laws features [10]. Previous studies have also shown the 

role of blood vessels, lymphatic vessels and angiogenesis in immunotherapy response [42, 

43].

We observed an association between PD-L1 expression and OS, when PD-L1 expression 

was stratified by 50% criteria (P = 0.031). Previous studies have shown that in patients with 

advanced NSCLC and PD-L1 expression on at least 50% of tumor cells, PD-1/PD-L1 

targeting therapy is associated with longer progression-free and OS [44, 45, 46, 47, 48, 49, 

50]. However, across a range of clinical trials, the performance of PD-L1 expression as a 

biomarker has been found to be suboptimal [51, 52, 53]: in clinical practice, variations in 

thresholds of expression, scoring systems, and the intrinsically variable nature of PD-L1 

expression have conspired to reduce the value of PD-L1 as a biomarker. In fact, although 

only about a quarter of patients with high PD-L1 scores respond to ICI (in the first line), 

about the same proportion of patients have shown measurable response even with low PD-

L1 expression [44, 46, 54].

Our results identified perinodular Gabor DelRADx combined with PD-L1 score as a better 

biomarker for OS than PD-L1 score alone. Previous study by Mazzaschi et al. [55] showed 

that PD-L1 amounts were not prognostic in resected NSCLC patients. However, patients 

with higher CD8+ lymphocytes lacking PD-1 inhibitory receptor had a longer OS. Our 

finding corroborates this result since perinodular Gabor DelRADx features associated with 

TIL density around the tumor were also prognostic of OS.

Finally, we evaluated the radio-pathomic association of TILs with predictive DelRADx 

features. Density of TILs is correlated with disease progression, survival outcomes, and 

response to therapy in a wide range of malignancies [56, 57, 58]. The presence of an 

immune infiltration is more likely to manifest via unique textural patterns outside the tumor 

[59]. In our study, TIL density was found to be correlated with a peritumoral Gabor feature 

from the first annular ring. Previous studies have reported an overexpression of TILs in 

patients who have responded to immunotherapy [60, 61, 62]. Gabor features from outside 

the nodule had a higher expression in adenocarcinomas as compared to granulomas: H&E 
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images showed densely packed tumor-infiltrating lymphocytes and tumor-associated 

macrophages [20]. Most tumors trigger an immune response modulated by TILs. Indeed, 

Gabor features from the 0- to 3-mm peritumoral region in breast cancer DCE-MRI were 

associated with the density of tumor-infiltrating lymphocytes [41].

Previous studies have also used radiomics to predict response to ICIs [15, 24, 63, 64]. 

Response to immunotherapy was negatively correlated with tumor convexity and positively 

correlated with edge-to-core size ratio on CT scans of NSCLC patients [65]. In a study by 

Tang et al. [64], favorable outcome group of immune response characterized by low CT 

intensity and high heterogeneity exhibited low PDL1 and high CD3 infiltration, suggestive 

of a favorable immune activated state. Patients with immune-activated tumors had the 

highest 5-yr OS rate, and the patients with immune-inhibited tumors had the lowest. 

Radiomic signature of CD8+ cells has been shown to predict the immune phenotype of solid 

tumors and clinical outcomes for patients with cancer who had been treated with anti-PD-1 

and PD-L1 therapies [66].

Our study differed from those previous studies in a few ways. First, in addition to radiomic 

features from within the confines of the nodules, we interrogated the radiomic features 

extracted from the annular perinodular regions. Our group has previously shown the utility 

of perinodular radiomic features for lung nodule diagnosis [20], predicting response to 

chemotherapy [10, 11, 67], and predicting OS on baseline CT in immunotherapy [68]. 

Second, we validated our results in two independent test sets, accrued from different sites 

across different immunotherapy agents. The machine classier trained with signatures 

obtained from cases treated with nivolumab yielded promising results when validated on 

cases treated with different ICI agents. Third, our study attempted to define the tissue 

morphology underpinning the radiomic features that were identified to be associated with 

response to ICI therapy. Specifically, we studied the association between the identified 

predictive radiomic descriptors and TIL density obtained from diagnostic biopsies. We 

provided a morphological rationale by determining the association of the radiomic attributes 

with distribution of TILs and corresponding PD-L1 expression.

We acknowledge that our study did have its limitations. The sizes of our cohorts, both for 

discovery and validation, were relatively small though comparable to cohort sizes from other 

published studies [69, 70]. Secondly, radiomic feature expressions might be sensitive to 

lesion annotation accuracy. In this study, nodule annotation was done by one single reader. 

However, because we used first-order statistics of the features within regions of interest, and 

not the pixel-wise feature values, we do not anticipate this impacting our findings, though 

further evaluation is need to ensure this. We did not consider the influence of convolution 

kernels, reconstruction algorithms, and slice thickness on the extracted radiomic features. 

Despite the limitations, our results across two sites and multiple ICI agents demonstrate the 

predictive value of the DelRADx features in assessing treatment response and the utility of 

perinodular regions in characterizing tumor microenvironment.

In conclusion, we presented an approach, DelRADx, that quantifies dynamic changes in 

certain textural radiomic attributes between baseline and post-treatment CT scans following 

ICI therapy in patients with advanced NSCLC. DelRADx features were (1) predictive of 
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response to ICI therapy, (2) prognostic of improved overall survival, and (3) associated with 

TIL density on corresponding diagnostic biopsy samples. Incorporating DelRADx into 

personalized decision making for patients with advanced NSCLC could help characterize 

distinct phenotypes of the disease and serve as a non-invasive approach to identify 

candidates who will benefit the most from immunotherapy while sparing others of harmful 

side effects. Additional validation of DelRADx features is warranted to accurately define 

their role as predictive and prognostic biomarkers in patients treated with immunotherapy.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Immune checkpoint inhibitor treatment timeline and flowchart of proposed delta-radiomics 

machine learning framework. Note that for some agents, there were 3 cycles instead of 2.
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Figure 2. 
(A) Segmented tumor regions and heat map of intratumoral Haralick (entropy) feature in the 

pre- and post-treatment CT scans of a nonresponder. (B) Segmented tumor regions and heat 

map of intratumoral Haralick (entropy) feature in the pre- and post-treatment CT scans of a 

responder. (C) Segmented tumor regions and heat map of perinodular low frequency Gabor 

Filter in the pre- and post- treatment CT scans of a nonresponder. (D) Segmented tumor 

regions and heat map of perinodular low frequency Gabor Filter in the pre- and post- 

treatment CT scans of a responder.
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Figure 3. 
(A) Box and whisker plots for the top eight features that best distinguish IO responders from 

nonresponders, as identified using WLCX feature selection scheme. (B) Unsupervised 

hierarchical clustering of intranodular and perinodular delta radiomic features. X axis 

represents top selected features. Y axis represents the training set of patients (n=50). The 

number on X-axis corresponds to each feature in Table 2. A number of identified features 

showed differential expression between the responders and nonresponders for the patients in 

discovery set. (C) Left: Consensus clustering using combined intranodular texture and shape 

features. Right: Consensus clustering using combined shape, intranodular and perinodular 

texture features.
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Figure 4. 
(A) Kaplan-Meier survival curves on the independent validation set D2 for different clinical 

variables and risk score. (B) Kaplan-Meier survival curves on the independent validation set 

D3 for different clinical variables and risk score.
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Table 1A:

Demographics and clinical characteristics for the 112 cases from CCF, categorized by responders and 

nonresponders.

Characteristics All patients
(n = 112)

Responders
(n = 67)

Non-responders
(n = 45) P

Sex
Male 58 (52%) 31 27

0.57
Female 54 (48%) 36 18

Age Median (range) 65 (42–83) 65 (42–81) 65 (46–83) 0.27

Race
White 92 (82%) 55 37

0.99
Black 20 (18%) 12 8

Smoking
Never 16 (14%) 7 9

0.18
Former or current 96 (86%) 60 36

Histology

Adenocarcinoma 80 (71%) 51 29

0.39Squamous cell carcinoma 24 (22%) 12 12

Others 8 (7%) 4 4

EGFR Mutation
Yes 7 5 2

0.7
No 105 62 43

ALK Mutation Wild type

TNM Staging Distant metastasis (M1)
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Table 1B:

Demographics and clinical characteristics for the 27 cases from UPHS, categorized by responders and 

nonresponders.

Characteristics All patients
(n = 27)

Responders
(n = 9)

Non-responders
(n = 18) P

Sex
Male 9 (33%) 2 7

0.67
Female 18 (67%) 7 11

Age Median (range) 63 (42–83) 60 (42–80) 64 (52–83)

Race Data Not Available.

Smoking
Never 6 (22%) 2 4

0.99
Former or current 21 (78%) 7 14

Histology
Adenocarcinoma 21 (78%) 7 14

0.99
Squamous cell carcinoma 6 (22%) 2 4

EGFR Mutation No EGFR mutation

ALK Mutation Wild type

TNM Staging Distant metastasis (M1)
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Table 2:

The most stable and discriminative DelRADx features.

Feature Family Descriptor Statistic Location P

1 Laws W5 × L5 Mean Intranodular 0.00072

2 Haralick Correlation Skewness Intranodular 0.00072

3 Gabor f = 2, θ = 5π/8 Kurtosis Intranodular 0.00098

4 Haralick Entropy Mean Intranodular 0.00098

5 Gabor f = 2, θ = 5π/8 Mean Intranodular 0.00098

6 CoLlAGe Sum of Var Kurtosis Perinodular 16–18 mm 0.00044

7 Gabor f = 0, θ = π/8 SD Perinodular 24–26 mm 0.00084

8 Laws R5 × R5 Skewness Perinodular 28–30 mm 0.00072
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