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Abstract

Background: Acute myeloid leukemia (AML) is a heterogeneous disease that frequently relapses after standard
chemotherapy. Therefore, there is a need for the development of novel chemotherapeutic agents that could treat
AML effectively. Radotinib, an oral BCR-ABL tyrosine kinase inhibitor, was developed as a drug for the treatment of
chronic myeloid leukemia. Previously, we reported that radotinib exerts increased cytotoxic effects towards AML
cells. However, little is known about the effects of combining radotinib with Ara-C, a conventional
chemotherapeutic agent for AML, with respect to cell death in AML cells. Therefore, we investigated combination
effects of radotinib and Ara-C on AML in this study.

Methods: Synergistic anti-cancer effects of radotinib and Ara-C in AML cells including HL60, HEL92.1.7, THP-1 and
bone marrow cells from AML patients have been examined. Diverse cell biological assays such as cell viability assay,
Annexin V-positive cells, caspase-3 activity, cell cycle distribution, and related signaling pathway have been
performed.

Results: The combination of radotinib and Ara-C was found to induce AML cell apoptosis, which involved the
mitochondrial pathway. In brief, combined radotinib and Ara-C significantly induced Annexin V-positive cells,
cytosolic cytochrome C, and the pro-apoptotic protein Bax in AML cells including HL60, HEL92.1.7, and THP-1. In
addition, mitochondrial membrane potential and Bcl-xl protein were markedly decreased by radotinib and Ara-C.
Moreover, this combination induced caspase-3 activity. Cleaved caspase-3, 7, and 9 levels were also increased by
combined radotinib and Ara-C. Additionally, radotinib and Ara-C co-treatment induced G0/G1 arrest via the
induction of CDKIs such as p21 and p27 and the inhibition of CDK2 and cyclin E. Thus, radotinib/Ara-C induces
mitochondrial-dependent apoptosis and G0/G1 arrest via the regulation of the CDKI–CDK–cyclin cascade in AML
cells. In addition, our results showed that combined treatment with radotinib and Ara-C inhibits AML cell growth,
including tumor volumes and weights in vivo. Also, the combination of radotinib and Ara-C can sensitize cells to
chemotherapeutic agents such as daunorubicin or idarubicin in AML cells.

Conclusions: Therefore, our results can be concluded that radotinib in combination with Ara-C possesses a strong
anti-AML activity.
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Background
Acute myeloid leukemia (AML) is characterized by the
rapid growth of abnormal white blood cells that
accumulate in the bone marrow and/or peripheral blood
[1, 2]. It is a heterogeneous disease, characterized by nu-
merous cytogenetic and molecular alterations [3]. There-
fore, AML is still one of the most difficult malignancies
to cure. Moreover, many patients with AML die from
disease recurrence and therapy options in both the
relapsed and refractory settings of this disease are re-
stricted [4]. In addition, there are unmet needs in AML
treatment because the current standard treatment is
based on old chemotherapeutic regimens. Therefore, the
development of novel chemotherapeutic agents that can
treat AML effectively is required.
Cytarabine (1-β-D-arabinofuranosylcytosine, cytosine

arabinoside, Ara-C) has been used as a mainstream ther-
apy for AML for over 40 years [5, 6]. It slows down
DNA synthesis in the S-phase of the cell cycle, and its
action is mainly related to DNA fragmentation and
chain termination [7, 8]. Generally, it is prescribed alone
or in combination with other drugs. Induction therapy
consisting of Ara-C in combination with anthracyclines
leads to responses in approximately 60% of adult AML
patients [9]. However, the development of resistance and
high rates of relapse is a significant obstacle to the suc-
cessful treatment of AML [10]. Therefore, it is essential
to develop potential therapeutic regimens that include
new drugs that can maximize the effectiveness of Ara-C.
Radotinib, an oral BCR-ABL tyrosine kinase inhibitor,

was developed as a drug for the management of chronic
phase-chronic myeloid leukemia (CML-CP) in South
Korea [11, 12]. It is an effective inhibitor of naive and
kinase-domain mutant BCR-ABL1 [12]. More recently, a
phase III clinical trial on the efficacy and safety of rado-
tinib showed the generation of complete cytogenetic
responses and major molecular responses in patients
newly evaluated with Philadelphia chromosome-positive
CML-CP [13]. Radotinib also shows neuroprotective ef-
fects in a Parkinson’s disease mouse model [14]. More re-
cently, radotinib was found to activate NK cell cytotoxicity
against various Fas-expressing solid cancer cells [15].
We previously demonstrated that radotinib exhibits

increased cytotoxicity against diverse AML cells [16]. In
addition, it inhibits AML cell proliferation by inducing
CDK inhibitors including p21 and p27 [17]. Moreover,
radotinib induces apoptosis in differentiated cells from
AML blasts [16]. Furthermore, targeting c-KIT (CD117)
with radotinib promotes cell death in c-KIT-positive
AML [18, 19]. However, little is known about the effects
of a combination of radotinib and Ara-C with respect to
cell death and cell cycle distribution in AML cells. Here,
we show that combination therapy, comprising radotinib
and Ara-C, induces AML cell apoptosis, which involves

the mitochondrial- and caspase-dependent pathway.
Further, we attempt to show that radotinib treatment
with Ara-C-based regimens could be clinically evaluated
for AML patients.

Methods
Reagents
Radotinib was generously gifted by Ilyang Pharmaceut-
ical Co., Ltd., (Seoul, South Korea). Its purity was found
to be 99.9% by HPLC analysis [16]. The cell culture
plates were obtained from SPL Life Sciences (Pocheon,
South Korea). All reagents were obtained from Sigma-
Aldrich (St. Louis, MO, USA) unless otherwise indicated.
The Apoptosis Detection Kit I was purchased from BD
Biosciences (San Jose, CA, USA). The CellTiter 96
AQueous One Solution Cell Proliferation Assay was pur-
chased from Promega (Madison, WI, USA). NE-PER
Nuclear and Cytoplasmic Extraction Reagents were
obtained from Thermo Scientific (Rockford, IL, USA).
All antibodies for western blot were purchased from Cell
Signaling Technology (Beverly, MA, USA).

Patient samples
All patients were newly diagnosed with AML (n = 5) at
Ulsan University Hospital, Ulsan, South Korea, as de-
scribed in Supplementary Table 1. Bone marrow samples
were collected before administering the first round of
chemotherapy.

Isolation of patient cells and culture
The patient cells were isolated by the density gradient
method, as previously described [18]. In brief, bone
marrow cells (BMCs) were isolated via density gradient
centrifugation at 400×g using Lymphoprep (Axis-Shield,
Oslo, Norway). They were washed with phosphate-
buffered saline (PBS) and cultured in RPMI1640 with
10% FBS and 1% penicillin-streptomycin in a 5% CO2

humidified atmosphere at 37 °C.

Cell culture
The human AML cell lines HL60, HEL92.1.7, and THP-
1 in this study were grown as suspension cultures in
RPMI-1640 medium with 10% FBS and a 1% penicillin-
streptomycin solution (final concentration: 100 units/ml
and 100 μg/ml, respectively) in a 5% CO2 humidified
atmosphere at 37 °C, as previously described [16]. In
addition, the human small cell lung cancer (SCLC) cell
line H209 were cultured as described previous herein.

Cell viability assay
The effect of each drug on cell growth both as a single
agent and in combination was determined by cell viabil-
ity assay. Cells were seeded (density, 2 × 104 cells/well)
in 96-well plates containing 200 μl medium per well and
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were incubated with 5 μM radotinib and/or 50 nM Ara-
C for 48 h at 37 °C. CellTiter 96 solution (20 μl; Pro-
mega, Madison, WI, USA) was added directly to each
well, and the plates were incubated for 4 h in a humidi-
fied atmosphere of 5% CO2 at 37 °C. Absorbance was
measured at 490 nm using a SpectraMax iD3 Microplate
Reader (Molecular Devices, San Jose, CA, USA). Results
are expressed as percent change from baseline condi-
tions determined using four to five culture wells for each
experimental condition. The following equation was
used: death (% of control) = 100 − cell viability [(OD tar-
get group / OD of 0 μM radotinib group) × 100]. In some
experiments HL60 cells were treated with various con-
centrations of radotinib (0, 10, 30, 40 and 50 μM) and
Ara-C (0, 40, 80, 120 and 160 nM) for 48 h. Additionally,
cells were treated with a combined low dosage of idaru-
bicin and daunorubicin.

Detection of Annexin V-positive cells
HL60 and HEL92.1.7 cells (1 × 105 cells/ml) were seeded
in 24-well plates and treated with 5 μM radotinib and/or
50 nM Ara-C for 48 h at 37 °C. The cells were harvested
and washed twice with FACS buffer (PBS containing
0.2% bovine serum albumin and 0.1% NaN3). Then, the
cells were stained with Annexin V-FITC from the Apop-
tosis Detection Kit I according to the manufacturer’s in-
structions. Cells were analyzed using the FACSCalibur
flow cytometer and CellQuest Pro software.

Measurement of caspase-3 activity
Cells were examined using the CaspGLOW™ Fluorescein
Active Caspase-3 Staining Kit according to the manufac-
turer’s instructions (Thermo Fisher Scientific, MA, USA).

Cell cycle analysis
HL60, HEL92.1.7 and THP-1 cells were treated with
5 μM radotinib and/or 50 nM Ara-C for 48 h at 37 °C.
They were then washed twice with PBS and fixed with
70% ethanol overnight at − 20 °C, followed by washing
again with PBS and incubation with 0.5 ml PI/RNase
stain buffer for 15min at room temperature. The samples
were then analyzed using a FACSCalibur flow cytometer
and CellQuest Pro software (BD Biosciences).

Analysis of mitochondrial membrane potential
HL60 and HEL92.1.7 cells were incubated with 5 μM
radotinib and/or 50 nM Ara-C for 48 h at 37 °C, har-
vested, and washed twice with PBS buffer. Mitochondrial
membrane potential (MMP, ΔΨm) was evaluated by
staining the cells with DiOC6(3) for 30 min. After incu-
bation, the cells were harvested and washed. Percentages
of DiOC6(3)-positive cells were determined using a flow
cytometer and CellQuest Pro software.

Preparation of cytosolic extractions for cytochrome C
analysis
HEL92.1.7 cells were treated with 5 μM radotinib and/or
50 nM Ara-C for 48 h at 37 °C. Cells were washed with
ice-cold PBS, resuspended in cold lysis buffer, and incu-
bated on ice for 30 min. Next, the cytosolic fractions of
cells were separated using the NE-PER Nuclear and
Cytoplasmic Extraction Reagents according to the man-
ufacturer’s instructions (Thermo Fisher Scientific, MA,
USA). The release of cytochrome C was analyzed by im-
munoblotting with an anti-cytochrome C mAb.

Western blotting analysis
Cells were incubated with each drug and their combin-
ation for 48 h at 37 °C. They were then washed three
times with ice-cold PBS and harvested. Western blotting
was performed as previously described [17, 18].

Xenograft animal model
Specific-pathogen-free five-week-old athymic nude male
mice were purchased from Koatech (Pyeongtaek, Korea)
and kept in a clean environment of the Ulsan University
of Korea (Korea, Ulsan). All mice were housed in stand-
ard conditions (12-h light/dark cycle) under constant
temperature (22–24 °C) and humidity (50–60%), given
free access to food and water, and handled in accordance
with the Institutional Animal Care and Use Committee
(IACUC) of the University of Ulsan (Ulsan, Korea,
Approval No. 0117–07). For anesthesia, mice were
injected intraperitoneally with tribromoethanol (250
mg/kg). Mice were sacrificed using carbon dioxide
(CO2) gas per IACUC protocol.
All mice were naïve to previous experimental manipu-

lations. Each mouse was considered as one experimental
unit, and mice were housed in 3–5 mice per cage. To
minimize experimental bias, mice were randomized into
all prospective treatment cages for in vivo preclinical ex-
periments. The inoculations of tumor cells ex vivo were
also blinded. The number of cohorts/mice used in each
experiment is described in Supplementary Table 2. The
xenograft animal model was generated as previously de-
scribed [18]. Briefly, HEL92.1.7 tumors were established
by subcutaneous injection of 1 × 107 cells into the right
flank of five-week-old athymic nude male mice (n = 5
per group). To aid precise inoculations, mice were
anaesthetized. Once tumors were established, mice were
treated with vehicle (0.5% carboxymethylcellulose/DW),
50 mg/kg po radotinib daily, 50 mg/kg ip Ara-C daily
every 5/7 day or their combination for up to 24 day. The
maximal length and width of the tumor were measured
once per week using digital calipers, and the tumor vol-
ume (V) was calculated using the following formula: V =
(length × width2) × 0.5. The mice were sacrificed on days
30–34 following tumor cell implantation. If the size of
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the subcutaneous tumor exceeded 1000 mm in volume,
the animals were excluded from the study and the stand-
ard was established for euthanasia before a predeter-
mined time point. All tumors met the criteria, and there
were no exclusions. The body weights of the tumor-
bearing mice did not change significantly during the dur-
ation of study. The tumors were excised and weighed, and
each tumor tissue was homogenized for the preparation of
cell samples for several analyses including western blotting
for specific molecular markers.

TUNEL assay for measurement of DNA double-strand
breaks in tumor tissue
Tumors were frozen in optimal cutting temperature
(OCT) compound, and stored at − 80 °C until use. The
frozen tissue samples were sectioned by a microtome-
cryostat (CM1950, Leica Biosystems, IL, USA). Samples
were fixed in 4% paraformaldehyde for 10 min, washed
in PBS and then treated with 0.1% Triton X-100 in PBS
for 10 min. Then, tumor tissue samples were evaluated
for apoptosis using the TUNEL Assay Kit according to
the manufacturer’s instructions (Abcam, Cambridge,
United Kingdom). Cells were analyzed with a Fluores-
cence microscope (Olympus, NY, USA).

Staining of proliferating cell nuclear antigen (PCNA)
positive cells in tumor tissue
Under the above experimental conditions, tumor tissue
was stained with anti-PCNA monoclonal antibody
(mAb) or isotype control mAb at 4 °C for 30 min. The
samples were then analyzed with a Fluorescence micro-
scope (Olympus, NY, USA).

Statistical analysis
Data are presented as means ± the standard error of the
mean (SEM) based on at least three independent experi-
ments. All values were evaluated by a one-way analysis
of variance followed by Tukey post-hoc test, as imple-
mented by GraphPad Prism 7.0 (GraphPad Software,
Inc., La Jolla, USA). Differences were considered signifi-
cant when P < 0.05.

Results
Radotinib enhances Ara-C-induced AML cell death in AML
cell lines and primary patient samples
HL60 cells were treated with various concentrations of
radotinib (0, 10, 30, 40 and 50 μM) and Ara-C (0, 40, 80,
120 and 160 nM) for 48 h. Radotinib and Ara-C signifi-
cantly inhibited the viability of the HL60 cells in a dose-
dependent manner (Supplementary Figure 1A and 1B).
Interestingly, however, although 5 μM of radotinib and
50 nM of Ara-C alone had little effect on the viability of
these cells (over 89 and 81% cell viability, respectively),
in combination these concentrations of radotinib and

Ara-C produced a significant inhibitory effect of cell via-
bility at 48 h and 72 h (42% at 48 h, 36% at 72 h; see Sup-
plementary Figure 1C and Fig. 1a). Combination effect
was better at 48 h than 72 h. Accordingly, we used these
conditions for the remainder of the experiments.
We examined the cell viability of diverse AML cells in-

cluding HL60, HEL 92.1.7, THP-1, and BMCs from
AML patients (n = 5). Combined treatment with radoti-
nib and Ara-C exerted synergistic effects on AML cell
death (Fig. 1a-d). In addition, the human SCLC cell line
H209 were tested for cell viability after radotinib and
Ara-C treatment. Here, these agents did not have a syn-
ergistic effect on cell viability, as expected (Fig. 1e).
Therefore, radotinib enhances Ara-C-induced AML, but
not MM and SCLC, cell death (Fig. 1).

Combined treatment with radotinib and Ara-C has
synergistic effects on HL60 and HEL92.1.7 cell apoptosis
via activation of the mitochondrial- and caspase-
dependent apoptosis pathway
We first observed that combined treatment with radoti-
nib and Ara-C had a synergistic effect on AML cell
death. We then performed Annexin V staining to see
what pathways regulate this cell death using HL60 and
HEL 92.1.7 cells. As a result, we showed that combined
treatment with 5 μM radotinib and 50 nM Ara-C exerts
a synergistic effect on HL60 and HEL92.1.7 cell apop-
tosis (Fig. 2a-c).
Next, we measured the effects of radotinib and Ara-C

on the mitochondrial-dependent apoptotic pathway.
Cells were collected and MMP was measured by flow cy-
tometry using DiOC6(3) dye. As shown in Fig. 3a and b,
the DiOC6(3)-positive cells were markedly decreased by
combined treatment with radotinib and Ara-C stimula-
tion in AML cells including HL60 and HEL92.1.7 cells.
Further, as shown in Fig. 3c, cytosolic cytochrome C was
drastically increased in radotinib and Ara-C-treated
HEL92.1.7 cells. In addition, combined radotinib and
Ara-C also increased the pro-apoptotic protein Bax in
AML cells such as HL60, HEL92.1.7, and THP-1. As ex-
pected, this treatment also decreased Bcl-xl expression
in diverse AML cells (Fig. 3d). To inhibit MMP disrup-
tion, bongkrekic acid (BA, 50 μM) was added to HL60
cells for 2 h prior to combined treatment of radotinib
and Ara-C. After 48 h, the cells were analyzed by im-
munoblotting using an anti-Bax mAb. The BA efficiently
blocked the radotinib/Ara-C-induced Bax expression in
HL60 cells (relative band density: with 5 μM radotinib
and 50 nM Ara-C, 100%; with 50 μM BA preinculation,
4.6%), as shown in Fig. 3e. Thus, these data indicate that
radotinib/Ara-C-induces cell death via a mitochondrial-
dependent apoptosis pathway (Fig. 3).
We further confirmed that caspase-3 activity was en-

hanced by treatment with radotinib and Ara-C in HL60
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and HEL92.1.7 cells (Fig. 4a and b). At the same time,
we observed that cleaved caspase-3, 7, and 9 increased
with radotinib/Ara-C administration in both cell types
(Fig. 4c-e). To inhibit caspase activation, pan caspase in-
hibitor, Z-VAD-FMK (10 μM) was added to HL60 cells
for 30 min prior to combined treatment of radotinib and
Ara-C. After 48 h, the cells were analyzed by capase-3

activity using the CaspGLOW™ Fluorescein Active
Caspase-3 Staining Kit. The Z-VAD-FMK efficiently
blocked the radotinib/Ara-C-induced capase-3 activity in
HL60 cells (relative intensity: with 5 μM radotinib and
50 nM Ara-C, 100%; with 10 μM Z-VAD-FMK preincu-
lation, 4%), as shown in Fig. 4f. The cells were also col-
lected and treated under the same conditions described

Fig. 1 Combination of radotinib and Ara-C enhances acute myeloid leukemia (AML) cell death. Cells were treated with 5 μM radotinib and/or 50
nM Ara-C for 48 h. The cytotoxicity was then evaluated by an MTS assay. a HL60 cells. b HEL92.1.7 cells. c THP-1 cells. d Bone marrow cells (BMCs)
from AML patients (n = 5). e H209 cells. Representative data are shown from at least three independent experiments. These data represent the
means ± SEM. Significantly different from control (*) or combination of radotinib and Ara-C (#); ***, ###: P < 0.001. R, radotinib; A, Ara-C; R + A,
combination of radotinib and Ara-C
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in Fig. 4f. The cells were analyzed by immunoblotting
using an anti-cleaved PARP-1 (cPARP-1) mAb and an
anti-cleaved caspase-3 mAb. The Z-VAD-FMK effi-
ciently reversed the radotinib/Ara-C-induced cPARP-1
and cleaved caspase-3 expression in HL60 cells (relative
band density of cPARP-1: with 5 μM radotinib and 50
nM Ara-C, 100%; with 10 μM Z-VAD-FMK preincula-
tion, 6%, and relative band density of cleaved caspase-3:
with 5 μM radotinib and 50 nM Ara-C, 100%; with
10 μM Z-VAD-FMK preinculation, 2.7%), as shown in as
shown in Fig. 4g. Therefore, these data indicate that
radotinib/Ara C induces cell death via a caspase-
dependent pathway. In addition, the bongkrekic acid
powerfully blocked the radotinib/Ara-C-induced cPARP-
1 and cleaved caspase-3 expression in HL60 cells (rela-
tive band density of cPARP-1: with 5 μM radotinib and
50 nM Ara-C, 100%; with 50 μM BA preinculation, 3.7%,
and relative band density of cleaved caspase-3: with
5 μM radotinib and 50 nM Ara-C, 100%; with 50 μM BA
preinculation, 3.2%), as shown in as shown in Fig. 4h.
Therefore, these data indicate that radotinib/Ara C in-
duces cell death via a mitochondrial-dependent pathway.

Generally, it is well-known that the caspase-dependent
apoptosis pathway is downstream of the mitochondrial
pathway [20]. Therefore, combined treatment with rado-
tinib and Ara-C has a synergistic effect on AML cell
death via the activation of mitochondrial-dependent
apoptosis.

Combined treatment with radotinib and Ara-C has a
synergistic effect on G0/G1 phase arrest in HL60 and
HEL92.1.7 cells via the induction of p21 and p27
We also monitored the cell cycle distribution after rado-
tinib and Ara-C treatment in HL60, HEL92.1.7 and
THP-1 cells. First, combination treatment with radotinib
and Ara-C caused G0/G1 phase cell cycle arrest in AML
cells such as HL60 and HEL92.1.7 cells (Fig. 5a). More-
over, we examined the effects of combined radotinib and
Ara-C on cell cycle regulatory proteins including not
only CDK2 and cyclin E but also p21 and p27. As a re-
sult, the expression of CDK2 and cyclin E was remark-
ably decreased in the radotinib and Ara-C combination
group (Fig. 5b). Moreover, as shown in Fig. 5c, the ex-
pression levels of p21 and p27 in cells co-treated with

Fig. 2 Combination of radotinib and Ara-C increases Annexin V-positive HL60 and HEL92.1.7 cells. Cells were treated with 5 μM radotinib and/or 50
nM Ara-C for 48 h. Cells were stained with annexin V-FITC followed by flow cytometric analysis. a Annexin V staining of HL60 cells. b Data show the
percentage of Annexin V-positive cells (apoptotic cells) in (a). c Data show the percentage of Annexin V-positive HEL92.1.7 cells. Representative data
are shown for at least three independent experiments. These data represent the means ± SEM. Significantly different from control (*) or combination
of radotinib and Ara-C (#); *: P < 0.05; **: P < 0.01; ***, ###: P < 0.001. R, radotinib; A, Ara-C; R + A, combination of radotinib and Ara-C
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Fig. 3 (See legend on next page.)
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radotinib and Ara-C were higher than those in single
treatment group, as expected. These results suggest that
combined treatment with radotinib and Ara-C increases
expression of the inhibitory proteins p21 and p27 and
decreases the expression of CDK2 and cyclin E in both
cell types, maintaining those cells in the G0/G1 phase.
Therefore, the combination of radotinib and Ara-C in-
duces G0/G1 arrest in HL60 and HEL92.1.7 AML cells
via regulation of the CDKI–CDK–cyclin cascade (Fig. 5).
Especially, the induction of CDK inhibitors, namely p21
and p27, contributed to the G0/G1 arrest of HL60 and
HEL92.1.7 cells. Consequently, these results indicate that
the combination of radotinib and Ara-C has a synergistic
effect on G0/G1-phase arrest in HL60 and HEL92.1.7
cells via the induction of CDK inhibitors including p21
and p27.
Furthermore, we examined cell cycle markers in-

cluding p21 and p27 using pan caspase inhibitor, Z-
VAD-FMK and MMP disruption inhibitor, and
bongkrekic acid to clarify the relationship between
cell cycle and cell death. In briefly, the cells were also
collected and treated under the same conditions de-
scribed in Fig. 4g and h. The cells were analyzed by
immunoblotting using an anti-p21 mAb and an anti-
p27 mAb. The Z-VAD-FMK significantly blocked the
radotinib/Ara-C-induced p21 and p27 expression in
HL60 cells (relative band density of p21: with 5 μM
radotinib and 50 nM Ara-C, 100%; with 10 μM Z-
VAD-FMK preinculation, 2.6%, and relative band
density of p27: with 5 μM radotinib and 50 nM Ara-
C, 100%; with 10 μM Z-VAD-FMK preinculation,
4.7%), as shown in as shown in Fig. 5d. In addition,
the bongkrekic acid strongly blocked the radotinib/
Ara-C-induced (relative band density of p21: with 5 μM
radotinib and 50 nM Ara-C, 100%; with 50 μM BA prein-
culation, 11.4%, and relative band density of p27: with
5 μM radotinib and 50 nM Ara-C, 100%; with 50 μM BA
preinculation, 1.2%), as shown in as shown in Fig. 5e.
Thus, these data showed that radotinib/Ara C-induced
cell cycle markers, p21 and p27, were closely related to

AML cell death. It also indicates that mitochondrial-
dependent apoptosis and G0/G1 phase cell cycle arrest
contribute to radotinib/Ara-C mediated anti-AML
activity.

Combined treatment with radotinib and Ara-C inhibits
AML cell growth in vivo
To examine the effect of combined treatment with
radotinib and Ara-C on AML cell death in vivo, we
implanted HEL92.1.7 cells into nude mice. Through
previous preliminary studies, radotinib and Ara C were
administered by concentration, and then the tumor vol-
ume was used in combination with each concentration
that decreased by 5–8% compared to the control group
(data not shown). As shown in Fig. 6a-b, combined
treatment with radotinib and Ara-C inhibited AML cell
growth, including tumor volume and weight in vivo. In
addition, the body weights of the tumor-bearing mice
did not change significantly during the duration of study
(Fig. 6c). The expression of Bcl-xl, Cyclin E, and PCNA
with combined radotinib and Ara-C treatment was
significantly decreased in tumor tissues isolated from the
mice, as shown in Fig. 6d-e. Further, the expression of
Bax and p21, as a well-known CDK inhibitor, was
significantly increased in tumor tissues with combined
treatment comprising radotinib and Ara-C. In addition,
the expression of TUNEL-positive cells was significantly
amplified, while the expression of PCNA-positive cells
was dramatically reduced in the tumor tissue with com-
bined treatment of radotinib and Ara-C (Fig. 6f-g). In
particular, the combination of the two drugs was shown
to lead to the profound inhibition of acute myeloid
leukemia tumor growth (Fig. 6).

Radotinib and Ara-C sensitize AML cells to
chemotherapeutic agents including daunorubicin or
idarubicin
Finally, we performed cell viability tests to determine the
efficacy of a combination of radotinib and various anti-
cancer drugs commonly used for AML therapy.

(See figure on previous page.)
Fig. 3 Radotinib/Ara-C-induced apoptosis involves the mitochondrial pathway. A combination of radotinib and Ara-C inhibited the mitochondrial
membrane potential of HL60 (a) and HEL92.1.7 cells (b). The cells were also collected and treated under the same conditions described in Fig. 2.
The mitochondrial membrane potential was measured by flow cytometry using DiOC6(3) dye. c The effects of radotinib/Ara-C on cytosolic
cytochrome C. HEL92.1.7 cells were incubated with 5 μM radotinib and/or 50 nM Ara-C for 48 h. The cytosolic fractions were then separated, after
which each sample was analyzed for the expression of cytochrome C. The membrane was stripped and re-probed with an anti-β-actin mAb to
confirm equal loading. d The effects of radotinib/Ara-C on Bax and Bcl-xl expression. Diverse AML cells including HL60, HEL92.1.7, and THP-1 cells
were treated with 5 μM radotinib and/or 50 nM Ara-C for 48 h at 37 °C. Then, cells were washed twice PBS buffer and stained with an anti-Bax
and anti-Bcl-xl mAb. e HL60 cells were incubated with 5 μM radotinib and 50 nM Ara-C in the presence or absence of bongkrekic acid (BA,
50 μM) for 48 h and then harvested. Cells were analyzed by immunoblotting using an anti-Bax mAb. The membrane was stripped and re-probed
with an anti-β-actin mAb to confirm equal loading. These data represent the means ± SEM. Significantly different from control (*) or combination
of radotinib and Ara-C (#); ***, ###: P < 0.001. R, radotinib; A, Ara-C; R + A, combination of radotinib and Ara-C; BA, bongkrekic acid
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Daunorubicin (DNR) is a chemotherapy medication used
to treat cancer. It is specifically used for AML, acute
lymphoblastic leukemia, CML [21]. Moreover, idarubi-
cin (Idar) is an anthracycline antileukemic drug. It
inserts itself into DNA and prevents DNA unwinding
by interfering with the enzyme topoisomerase II [22].
It is also an analog of daunorubicin. As shown in
Figs. 1, 2, 3, 4 and 5, radotinib enhanced sensitivity
to the chemotherapeutic agent Ara-C in AML cells.
Moreover, triple combination with radotinib, Ara-C,
and DNR or Idar significantly inhibited the viability
of AML cells (Supplementary Fig. 2). Therefore, these
results indicate that a combination of radotinib and
Ara-C can sensitize cells to chemotherapeutic agents
such as DNR or Idar in AML cells, as well as HL60
and HEL92.1.7 cells.

Discussion
Generally, apoptosis is a form of programmed cell
death that occurs in multicellular organisms. More-
over, it is a key regulator of physiological growth con-
trol and the regulation of tissue homeostasis for the
elimination of damaged, old, or infected cells [23, 24].
It is well known that activating the apoptosis pathway
in various cancers can make cancer treatments suc-
cessful, whereas inhibiting the activation of apoptosis
leads to cancer resistance, which in turn makes can-
cer treatment difficult [23, 25]. Especially, targeting
apoptosis proteins in hematologic malignancies has
been shown to be very useful [24, 26].
The induction of apoptosis is a cell suicide mechan-

ism and an ideal way to treat cancer including AML
[27]. Basically, killing tumor cells with anticancer
therapies commonly used for the treatment of cancer,
such as chemotherapy, gamma-irradiation, and im-
munotherapy, among others, is mainly mediated by
triggering apoptosis, wherein these modalities activate
the cell’s intrinsic cell death process [28]. The activa-
tion of caspases is often impaired in human cancers
and contributes to cancer formation, progression, and

therapy resistance [27]. Therefore, understanding the
molecular mechanisms that regulate caspase activation
in cancer cells is very important. Thus, the modulation
of caspase activation including apoptosis represents a
promising approach for the development of new thera-
peutic opportunities to induce cancer cell death.
The combination of BCR-ABL inhibitors such as

dasatinib and imatinib, with other used chemothera-
peutic agents for AML is not new. According to Dos
Santos et al., it has already been shown that the com-
bination of dasatinib with daunorubicin or Ara-C also
resulted in significantly increased AML CD34+ cell
death [29]. And chemotherapy plus dasatinib provided
excellent outcomes for both younger and older patients
with or without KIT mutation [30]. Also, the Ara-C
and imatinib showed synergistic effects in vitro [31].
According to a phase 1 study of imatinib mesylate in
combination with cytarabine and daunorubicin, espe-
cially for c-kit positive recurrent acute myeloid
leukemia, cytotoxic therapy that includes imatinib mes-
ylate for relapsed AML was effective [32]. In addition,
the combination of DNR and the novel BCR-ABL in-
hibitor ponatinib showed the AML cell death [33]. We
have previously shown that radotinib significantly in-
creases cytotoxicity or apoptosis in AML and CML cells
[17]. Radotinib also acts as a CDK inhibitor, which
strongly inhibits AML cell proliferation [17]. Alterna-
tively, it functions as an AURKA inhibitor, which sup-
presses the expression of AURKA and related proteins
including Bora, polo-like kinase 1, and TPX2 [34].
Moreover, radotinib induces apoptosis directly in cells
differentiated from AML blasts [16]. In addition, we
previously confirmed that c-KIT (CD117) could be tar-
geted by radotinib, acting as a c-KIT inhibitor or
HSP90 inhibitor in c-KIT-positive AML cells [18, 19].
Previous studies have shown that radotinib promotes
AML cell death through various cellular mechanisms.
However, little is known about the effects of the com-
bination of radotinib and Ara-C on cell death and cell
cycle distribution in AML cells.

(See figure on previous page.)
Fig. 4 Radotinib/Ara-C induces caspase-dependent apoptosis and activates caspase-3 activity in HL60 and HEL92.1.7 cells. The cells were also
collected and treated under the same conditions described in Fig. 2. a Caspase-3 activity induced by radotinib and Ara-C stimulation in HL60
cells. b Caspase-3 activity induced by radotinib and Ara-C stimulation in HEL92.1.7 cells. c-e The expression of cleaved caspase-3, cleaved caspase-
7, and cleaved caspase-9 was analyzed by SDS-PAGE, followed by western blotting using specific antibodies. f HL60 cells were incubated with
5 μM radotinib and 50 nM Ara-C in the presence or absence of Z-VAD-FMK (10 μM) for 48 h and then harvested. Cells were analyzed by capase-3
activity. g HL60 cells were also collected and treated under the same conditions described in Fig. 4f. Cells were analyzed by immunoblotting
using an anti-cPARP-1 mAb and an anti-cleaved caspase-3 mAb. h HL60 cells were also collected and treated under the same conditions
described in Fig. 3e. Cells were analyzed by immunoblotting using an anti-cPARP-1 mAb and an anti-cleaved caspase-3 mAb. The experiments
were repeated three times and the data show representative results. The membrane was stripped and re-probed with an anti-β-actin mAb to
confirm equal loading. These data represent the means ± SEM. Significantly different from control (*) or combination of radotinib and Ara-C (#);
***, ###: P < 0.001. R, radotinib; A, Ara-C; R + A, combination of radotinib and Ara-C; BA, bongkrekic acid
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AML is a heterogeneous group of rapidly growing
cancers of myeloid progenitor cells [2, 35]. Ara-C has
remained the backbone of chemotherapy for adult
AML patients for decades [6]. Especially, high dose
Ara-C is a part of an induction regimen as a first-line
therapy for AML [36]. However, the resistance of
AML cells to Ara-C chemotherapy is one of the most
important reasons for relapse or chemo-refractoriness
in AML patients [37]. For that reason, combination
therapy has become the standard therapy for the
treatment of several different cancers [38]. Therefore,
it is of utmost importance to discover or develop
drugs to maximize the effects of Ara-C. Clinicians, as
well as scientists involved in basic research, interested
in the treatment of AML, have focused on developing
or discovering drugs that can be used in combination
with Ara-C. Much attention has been given to the
combination of two or more drugs, including Ara-C.
Such examples include a combination of Ara-C and
differentiating agents, a combination of Ara-C and
DNA hypomethylating agents, and a combination of
Ara-C and HSP90 inhibitors. Briefly, low-dose Ara-C
combined with differentiating drugs or DNA hypo-
methylating agents comprises a potential regimen to
treat AML patients who are unfit for high-intensity
chemotherapy [39]. Phase I and pharmacological stud-
ies of Ara-C and tanespimycin, known as an HSP90
inhibitor, have been performed on relapsed and re-
fractory acute leukemia [40, 41], and in particular, for
patients with AML (except M3) or acute lymphocytic
leukemia. Therefore, the combination of Ara-C and
other drugs has been shown to be quite effective in
treating acute leukemia. In this regard, our results
pertaining to the combined use of Ara-C and radoti-
nib suggest the successful development of a potential
novel chemotherapeutic method for the treatment of
AML. To our knowledge, this is the first discovery
and study of this particular combination of drugs for
AML therapy.
According to our results, radotinib enhanced Ara-C-

induced AML cell death in diverse cell lines and
BMCs from AML patients (Fig. 1). Moreover, com-
bined treatment with radotinib and Ara-C had a syn-
ergistic effect on HL60 cell viability (combination

index: 0.525, Supplementary Fig. 3). Further, radotinib
and Ara-C significantly induced apoptosis in HL60
and HEL92.1.7 cells via the activation of the mito-
chondrial- and caspase-dependent apoptosis pathway
(Figs. 2, 3 and 4). Moreover, combined treatment with
both drugs exerted a synergistic effect on G0/G1 phase
arrest of AML cells via the induction of p21 and p27,
as shown in Fig. 5. Specifically, radotinib/Ara-C-in-
duced bax expression was blocked by bongkrekic acid
(Fig. 3e), and capase-3 activity was blocked by Z-
VAD-FMK (Fig. 4f). Also we showed that Z-VAD-
FMK and bongkrekic acid reversed the radotinib/Ara-
C-induced effects including apoptotic proteins
(cleaved PARP-1 and cleaved caspase-3; Fig. 4g and h),
cell cycle markers (p21 and p27; Fig. 5d and e). These
results showed mitochondrial-dependent apoptosis
and G0/G1 phase cell cycle arrest were contributed to
radotinib/Ara-C mediated anti-AML activity (Figs. 4
and 5). In addition, the suppressive effect of a combin-
ation of radotinib and Ara-C, on AML cell growth,
was also demonstrated using in vivo xenograft models
(Fig. 6). In addition, radotinib and Ara-C sensitized
AML cells to daunorubicin- or idarubicin-induced cell
death (Supplementary Fig. 2). It can, thus, be con-
cluded that radotinib enhances Ara-C-induced AML
cell death via mitochondrial-dependent apoptosis and
that radotinib in combination with Ara-C possesses a
strong anti-AML activity. Moreover, these results sug-
gest that a clinical evaluation of radotinib with Ara-C-
based regimens for AML patients is warranted.
Cytarabine (Ara-C) has been used as a majority ther-

apy for AML for a long time [5, 8]. However, the devel-
opment of resistance and high rates of relapse is a
significant obstacle to the successful treatment of AML
[5, 42]. In particular, we understand that the failure of
treatment of AML is very closely related to the resist-
ance to the Ara-C. Given our past diverse results, there
are a lot of potential for radotinib to play a role in Ara-
C-resistant AML cells. And we think research from this
point of view is a great idea. Therefore, we are also in
the process of starting a mechanism study of the Ara-C
resistance. And we plan to actively conduct research on
the mechanism study of the Ara-C resistance this in the
future.

(See figure on previous page.)
Fig. 5 Radotinib/Ara-C induces G0/G1 phase cell cycle arrest by regulating the CDKI–CDK–cyclin cascade in HL60, HEL92.1.7 and THP-1 cells. a Cell
cycle distribution at 48 h after radotinib/Ara-C treatment. b The expression of CDK2 and cyclin E after radotinib/Ara-C treatment. c The expression
of CDK inhibitors such as p21 and p27 by western blot analysis following radotinib/Ara-C treatment. d, e HL60 cells were also collected and
treated under the same conditions described in Fig. 4f and g. Cells were analyzed by immunoblotting using an anti-p21 mAb and an anti-p27
mAb. The experiments were repeated three times and the data show representative results. β-Actin was used to confirm equal loading. The
results are representative of three independent experiments. R, radotinib; A, Ara-C; R + A, combination of radotinib and Ara-C; BA, bongkrekic acid
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Conclusions
Therefore, our results can be concluded that radotinib
in combination with Ara-C possesses a strong anti-AML
activity. These results warrant the clinical evaluation of
radotinib with Ara-C-based regimens in AML patients.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-020-07701-8.

Additional file 1: Supplementary Table 1. Information of AML
patients.

Additional file 2: Supplementary Figure 1. Combination of radotinib
and Ara-C inhibits HL60 cell proliferation. Cells were stimulated with vari-
ous concentrations of 0, 10, 30, 40 and 50 μM radotinib and 0, 40, 80, 120
and 160 nM Ara-C for 48 h. The cytotoxicity was then evaluated by a cell
viability assay. (A) Dose-dependent responses of radotinib on cell viability.
(B) Dose-dependent responses of Ara-C on cell viability. (C) Treatment of
radotinib and/or Ara-C at 48 h. Representative data are shown for at least
three independent experiments. These data represent the means ± SEM.
Significantly different from the control (*) or combination of radotinib
and Ara-C (#); *: P, 0.05; ***, ###: P, 0.001. C: DMSO-control, R: radotinib, A:
Ara-C.

Additional file 3: Supplementary Figure 2. Radotinib and Ara-C
sensitize the chemotherapeutic agents including daunorubicin (DNR) or
idarubicin (Idar) in AML cells. (A) HL60 cells were cultured with 3 μM
radotinib, 10 nM Ara-C and 50 nM DNR for 48 h. The cell viability was
then evaluated by an MTS assay. Triple combination of radotinib, Ara-C
and DNR on cell viability is more potent. (B) HEL92.1.7 cells were cultured
with 5 μM radotinib, 10 nM Ara-C and 75 nM DNR for 48 h. Triple combin-
ation of radotinib, Ara-C and DNR on cell viability is more potent (C)
HEL92.1.7 cells were cultured with 5 μM radotinib, 10 nM Ara-C and 2 nM
idarubicin for 48 h. Triple combination of radotinib, Ara-C and idarubicin
on cell viability is more powerful. These data represent the means ± SEM.
Significantly different from control (*) or triple combination of radotinib,
Ara-C and DNR/or idarubicin (#); ***, ###: P < 0.001.

Additional file 4: Supplementary Figure 3. Isobologram analysis of
radotinib and Ara-C combination on AML cell death. Cell viability assay
by radotinib and Ara-C was analyzed in HL60 cells. Cells were seeded
(density, 2 × 104 cells/well) in 96-well plates containing 200 μl medium
per well and were incubated with diverse concentration of radotinib
and/or Ara-C for 48 h at 37 °C. CellTiter 96 solution (20 μl; Promega, Madi-
son, WI, USA) was added directly to each well, and the plates were incu-
bated for 4 h in a humidified atmosphere of 5% CO2 at 37 °C. Absorbance
was measured at 490 nm by using SpectraMax iD3 Microplate Reader
(Molecular Devices, San Jose, CA, USA). We found the strong synergism
on radotinib and Ara-C combination on AML cell death. Fifty % of inhib-
ition concentration (IC50) on AML cell death in HL60 cells: Radotinib only,

Fig. 6 Radotinib and Ara-C inhibit tumor growth in a xenograft
animal model using HEL92.1.7 cells. a Tumor volume (mm3) after
radotinib and Ara-C treatment (n = 5 for each group). When the
tumors were ~ 150mm3 in size at ~ 7 days post-implantation, 0.2 ml
radotinib (50 mg/kg body weight, PO) and Ara-C (50 mg/kg body
weight, IP) were injected orally and intraperitoneally five times per
week. Tumor sizes were measured once per week using digital
calipers, and tumor volumes were calculated using the formula
(length × width2) × 0.5. b Tumor weight (g) on day 24. c The body
weight of mice. d, e The expression of diverse proteins including
Bcl-xl, Cyclin E, PCNA, Bax, and p21 in the tumor. f The expression of
TUNEL-positive cells in the tumor tissue. g The expression of PCNA-
positive cells in the tumor tissue. These data represent the means ±
SEM. Significantly different from the control (*); ***, P < 0.001
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200 μM; Ara-C only, 140 nM; combination of radotinib and Ara-C = 5 μM +
70 nM. Combination Index: 0.52).

Additional file 5: Supplementary Figure 4. Original western blots
used for Fig. 3c, d and e. The blots were developed using the
ChemiDoc™ Touch Imaging System, and analyzed with the Image Lab™
Software. The red boxes indicate the cropped regions used in the
representative figures.

Additional file 6: Supplementary Figure 5. Original western blots
used for Fig. 4c, g and h. The blots were developed using the
ChemiDoc™ Touch Imaging System, and analyzed with the Image Lab™
Software. The red boxes indicate the cropped regions used in the
representative figures.

Additional file 7: Supplementary Figure 6. Original western blots
used for Fig. 5b, c, d and e. The blots were developed using the
ChemiDoc™ Touch Imaging System, and analyzed with the Image Lab™
Software. The red boxes indicate the cropped regions used in the
representative figures.

Additional file 8: Supplementary Figure 7. Original western blots
used for Fig. 6d and e. The blots were developed using the ChemiDoc™
Touch Imaging System, and analyzed with the Image Lab™ Software. The
red boxes indicate the cropped regions used in the representative
figures.

Additional file 9: Supplementary Table 2. Supplementary Methods.
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AML: Acute myeloid leukemia; CML-CP: Chronic phase-chronic myeloid
leukemia (CML-CP); BM: Bone marrow; BMCs: Bone marrow cells;
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