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Abstract

Electrochemistry intersected nanoscience 25 years ago when it became possible to control the flow 

of electrons through single molecules and nanostructures. Many surprises and a wealth of 

understanding were generated by these experiments. Nongjian Tao was among the pioneering 

scientists who created the methods and technologies for advancing this new frontier. Achieving 

deeper understanding of charge transport in molecules and low-dimensional materials was the first 

priority of his experiments, but he also succeeded in discovering applications in chemical sensing 

and biosensing for these novel nanoscopic systems. In parallel with this work, the investigation of 

a range of phenomena using novel optical microscopic methods was a passion of Nongjian and his 

students. This article is a review and an appreciation of some of his many contributions with a 

view to the future.
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Professor Nongjian Tao (“NJ”, Figure 1) of Arizona State University (ASU) passed away on 

March 15, 2020 at the age of 56.1 He was an extraordinary scholar and scientist whose 

insightful and influential work encompassed a wide range of nanoscale phenomena in 

electrochemistry, surface science, chemical and biological analysis, electrical engineering, 

and quantum physics. In this scientific remembrance we recount some of his beautiful and 

impactful science.

This article is organized chronologically, representing the major areas in which his research 

group worked. His contributions in these areas overlapped in time, as he developed new 

research thrusts in his group, especially as his group expanded and diversified at ASU, so 

this chronology is approximate. In fact, NJ progressively added new research areas without 

abandoning many over his career. At Florida International University and ASU in the early 

1990s, he pioneered scanning tunneling microscopy (STM) and atomic force microscopy 

(AFM) investigations of molecular monolayers in electrochemical environments.2–9 This 

work led to a brief period, in the late 1990s and early 2000s, during which he investigated 

transport through single metal10–12 and polymer13–19 nanowires prepared between a surface 

and an STM or AFM tip in electrochemical environments.

Those experiments spawned two research directions that would define his career. The first 

was the development of an array of analytical methods that followed from advances in 

surface plasmon resonance (SPR) spectroscopy (1999–2010 and beyond)20,21,30–32,22–29 and 

the re-purposing of polymer nanojunctions for chemical analyses (in 2003).14,33–35 The 

second research direction was transport studies of single molecules using the STM-break 

junction (STM-BJ) methodology invented in his group (initiated in the 2003 time frame).
36–42

The STM-BJ methodology for investigating transport through single molecules was applied 

to DNA almost immediately after its discovery, in 2004.41,43–49 This period coincided with 

the publication of a number of studies from other research groups in which charge transport 

through DNA was probed.50–57 Subsequently, this subfield would become a productive one 

for his research group.
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Following contributions to SPR techniques earlier in his career, optical microscopy methods, 

often hyphenated with other methods, emerged as an emphasis of his program in recent 

years.31,58–66 One success involved the application of “differential detection”, used to 

enhance the sensitivity of force measurement in an AFM system, to surface plasmon 

spectroscopy.24,67–71 This invention led to his successful development of new and powerful 

functional imaging tools. NJ also devoted time and effort to the translation of his research to 

broad societal benefit, co-founding two companies with his former students and postdocs.

SCANNING TUNNELING MICROSCOPY AND ATOMIC FORCE MICROSCOPY 

OF MOLECULES IN ELECTROCHEMICAL ENVIRONMENTS

As a graduate student at ASU, NJ studied low-frequency modes in DNA and other 

condensed matter systems, completing his PhD in 1988.72–77 He went on to initiate studies 

of disordered systems as a postdoc in the lab of the late Professor Herman Cummins at 

CUNY. Heeding the pleas of his thesis advisor, he returned to ASU in 1990. The ASU lab 

had started a new research program, utilizing STM to image surfaces and molecules under 

aqueous solutions.3 It was here that NJ began his successful merger of electrochemistry and 

nanoscience, exploiting the development of large, flat single crystal gold surfaces that were 

readily cleaned with a hydrogen flame to yield near-perfect single-crystal voltammety.78 NJ 

used these surfaces in electrochemical STM to study surface reconstruction,79 potential-

induced phase transitions80, controlled deposition of lead81 and halides,82 and, returning to 

the theme of his PhD, an exquisite study of the phases of DNA bases adsorbed on Au(111) 

under potential control.83 He also helped to perfect AFM as an electrochemical tool.84,85 As 

a graduate student, NJ had used Brillioun scattering to map the microelastic properties of 

bone, a material whose properties are dominated by micro- and nanoscale heterogeneity.86 

He returned to this problem with one of the first AFM studies to map these elastic 

heterogeneities on the nanoscale.72

In 1992, NJ started his independent career at Florida International University (FIU). At that 

point, STM and AFM had been in use for several years as imaging tools to study surface 

morphology at the molecular and atomic scales, but efforts to understand the imaging of 

redox-active molecules in solution were still at an early stage, impeded by practical 

experimental problems. Operating an STM in an electrochemical environment with separate 

control of the surface potential versus a reference electrode presented practical problems 

because applied voltages in the STM could drive the reactions of redox species in the 

solution, producing spurious current that interfered with measurement of the tunneling 

current. Molecular Imaging Inc., cofounded by Stuart Lindsay, developed an 

“electrochemical STM” with an integral potentiostat that enabled the STM-sample potentials 

to be defined relative to the electrochemical potential of the sample, solving this problem. 

NJ, with others, learned how to insulate STM tips except at the apex of the tip to suppress 

reactions with electron donors and acceptors in solution.

Armed with these tools, NJ set about pioneering applications of STM and AFM to problems 

in electrochemistry. His 1996 STM investigation of chemisorbed porphyrins (Figure 2a) on 

graphite was seminal in terms of opening this field (Figure 2).87 In an earlier 1995 paper, he 
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had demonstrated that these porphyrins adsorbed flat, forming close packed and crystalline 

two-dimensional (2D) layers on a graphite surface that was readily imaged at molecular 

resolution.6 The 1996 paper documented the influence of the iron redox center and the 

electrochemical potential of the surface, which fixed the ratio of Fe(II)/Fe(III) within these 

monolayers on their apparent height, determined by the conductivity of individual molecules 

within these monolayers.87 At a constant tip-sample bias of −100 mV, iron protoporphyrin 

(FePP) molecules “light up” within mixed monolayers containing PP, producing larger 

apparent heights (Figure 2d). When the electrochemical potential of the surface is varied 

across the range about the reversible potential for FePP, E°, (Figure 2e), the apparent height 

shows a maximum at E° = −0.44 V versus the standard calomel electrode (SCE), the 

potential at which Fe states are resonant with the tip-sample potential (Figure 2f).87 These 

data provided early evidence for electrochemically controlled resonant tunneling in 

molecular systems,87 with more detail added by subsequent papers.2,6,7,88–95 These papers 

also established that such precise control of the electrochemical potential of the surface was 

compatible with atomic and molecular resolution imaging.

In some of the earliest in-situ investigations of the electrochemical reactivity of molecules, 

AFM and STM were used in combination and provided complimentary electronic and 

topographical information.2,7,95,96 For the electrochemical oxidation of guanine monolayers 

on graphite,96 AFM produced lower noise images, documenting the formation of nanometer-

scale voids in these monolayers during the oxidation process. The higher resolution of STM 

images provided an opportunity for changes in the ordering of individual molecules to be 

observed in some cases,96,97 but STM images acquired for guanine and adenine monolayers 

on graphite showed potential-dependent superpositions of the graphite lattice with that of the 

monolayer.7 Because an organic monolayer on an electrode surface is located within the 

electrical double layer, the influence of an electric field operating on the monolayer must 

also be considered.98 The thickness of the monolayer and the radius of the adsorbed ions can 

be as small as a few Ångstroms, thus, the electric field between these two charged layers—

the electrode surface and oppositely ions located at the inner Helmholtz plane—can be large 

and controllable over a broad range (e.g., −109 to 109 V/m) using the applied electrode 

potential. These observations provide the basis for the conclusion that the local distribution 

of electron densities inside of a molecule can be modified and controlled by the electric 

field.2,7 Because the local electron distribution of a molecule determines its reactivity, this 

discovery is significant in understanding or designing electric-field-induced redox reactions, 

and even chemical reactions.99–101 For in situ investigations focusing on the reactions of 

molecular monolayers, AFM operating in the recently developed tapping mode was used 

effectively, in preference to STM, a pervasive trend at this time.102–106

As the electrode potential changes, the surface charge density can be continuously changed, 

reaching values as high as 0.1 electron per surface atom. Another important contribution is 

the discovery of charge-induced order-disorder transition of an organic monolayer at a solid–

liquid interface.91 Using 2,2’-bipyridine (22’BPY) as an example, he found that the 

molecules stack into polymeric chains that are randomly oriented on the surface at low 

charge densities (Figure 3a).94 Increasing the charge density to a critical value, the 

polymeric chains are aligned along one of the Au(111) lattice directions in a fashion similar 

to the isotopic-nematic transitions of liquid crystals (Figure 3b,c).91,94 The surface-charge-
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induced order–disorder phase transition is reversible and this phenomenon is general, 

existing in other organic molecules such as 4,4’-bipyridine,94 1,10’-phenanthroline,93 and 

even anions105 as well as large biomolecules such as lipids.104

The surface-charge-induced reversible order–disorder phase transitions of lipid films, 

providing an explanation of the unusually high diffusion of myoglobin (Mb) in a solid-like 

lipid film.104 Similarly, the surface charge induced structural changes of monolayers of 

phosphate ions, helping understand the unusual electrochemical potential dependence of the 

electron transfer behavior of cytochrome c.105 Immobilizing metalloproteins with intact 

and/or optimized conformations on electrode surfaces is not only important for the study of 

biological processes, but also integral to the development biosensors and the investigation of 

biosynthetic processes. However, these molecules often denature upon adsorption onto a 

solid electrode. These studies were foundational for his development of practical sensors/

biosensors, as described below.

QUANTUM TRANSPORT IN ONE-DIMENSIONAL METAL AND CONDUCTIVE 

POLYMER NANOSTRUCTURES

In the late 1990s, metal quantum point contacts (QPCs) became tools for the investigation of 

the conductivity of single molecules. These QPCs exhibited quantized conductance in units 

of G0 (Eq. 1) were prepared using mechanically controlled break junctions107–112 and by 

forming QPCs at a metal surface by using the tip of a scanning tunneling microscope (STM) 

to contact a metal surface.12,113,114

G = n2e2/ℎ = n77.4 μS, n = 1, 2, 3… [1]

Li and Tao demonstrated the first electrochemical formation of a copper metal QPC in an 

STM in 1998 (Figure 4).115 In these experiments, a partially insulated STM tip was 

positioned a few nanometers above a Au(111) surface in an aqueous copper plating solution 

and copper metal was electrodeposited with the aid of reference and counter electrodes also 

immersed in this solution (Figure 4a). In this configuration, the deposition of copper and its 

dissolution from the nanowire could be controlled using the potential applied to the tip 

(Figure 4b). This configuration provided a means by which the diameter of the copper 

nanowire could be precisely controlled in situ. Measurements of the tip–sample current 

versus time recorded during Cu electrodeposition and subsequent dissolution produced 

conductivity steps either up (during deposition) or down (during dissolution) in multiples of 

G0 (Figure 4c).115 Conductance histograms for this system, compiled from hundreds of 

deposition, stripping, and re-deposition traces (Figure 4b) showed prominent peaks at G 
values predicted by Eq. (1). This 1998 experiment was the direct progenitor of the STM-

break junction method116 that would be applied in 2003 to measurements of the single-

molecule conductance.

Analogous experiments with poly(aniline) (PANI) nanowires were less readily interpreted.
15,17,18 Initially, a lithographically fabricated gold nanogap was used, but an STM tip–

sample gap was also studied because it facilitated investigations of the influence on 

conductance of stretching of the PANI nanowire.15,17,18 Whereas metal QPCs in the STM 
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showed discrete conductance steps spaced by G0 as the tip–sample distance was increased 

by a few Ångströms,12,113,114 decrementing the conductance of PANI nanojunctions 

required increasing the tip–sample spacing by many nanometers.19 Stepped conductance 

traces acquired while stretching PANI junctions showed steps corresponding to 10−7–10−8 S, 

orders of magnitude smaller than G0. These conductance steps were not attributed to 

conductance quantization.19 Instead, it was hypothesized that they were caused by 

transitions between polymer chain configurations for the multiple polymer chains present 

within the tip–sample gap.19 Conduction through PANI nanowires also varied as a function 

of its oxidation state. The conductivity of the PANI bridge “telegraphically” alternated 

between zero and one level for cases where a small amount of PANI was deposited, and 

between several current levels when larger amounts were deposited.117 The number of 

accessible conductivity states could be adjusted by equilibrating the PANI nanowire at 

various potentials. This discrete conduction behavior was attributed to fluctuations of the 

polymer between doped, conducting, and undoped insulating redox states.117 This initial 

series of experiments on PANI occurred in the 1998–2003 time period, immediately before 

Tao’s group re-focused on understanding the conductivity of smaller organic molecules.

Years later, Tao and colleagues revisited investigations of PANI nanowires in the STM.
14,115,118 The application of tensile stress to these junctions was observed to produce two 

behaviors: Initial stretching caused an increase in conductivity that was attributed to 

alignment of polymer chains; with continued stretching, a maximum conductivity was 

observed, followed by a staircase of declining conductance steps resembling those seen in 

the copper nanowire system.115 In 2007, Lindsay and Tao conducted a comprehensive 

investigation of electrodeposited PANI nanowires in planar, nanofabricated (static) metal 

gaps immersed in aqueous solution.14 In these experiments, negative differential resistance, 

a common feature of single-molecule conduction including studies of aniline oligomers,118 

was observed for PANI systems where a relatively small amount of the polymer had been 

electrodeposited.14

CHEMICAL AND BIOLOGICAL ANALYSIS

Among NJ’s first forays into chemical sensing was his development in 1999 of high-

resolution SPR.21,119 This advance was achieved by replacing the commonly used single 

photodiode with a quadrant photodiode chip, which permitted real-time subtraction of 

“background” and “active” surface regions and common mode noise reduction caused by 

light source fluctuations, mechanical vibrations, and thermal drift.21,119 This high-resolution 

SPR modality increased the refractive index sensitivity by orders of magnitude, affording a 

resolution of 10−8 refractive index units (RIU) and a response time of 1 μs.21,119 This level 

of refractive index sensitivity enabled new and heretofore impossible applications of the 

SPR. One of these applications involved the detection of adsorbed layers of toxic elements, 

such as lead119 and arsenic.120 In these examples, reference and sample areas of the sensor 

were coated with an unfunctionalized n-alkanethiol self-assembled monolayer (SAM), and a 

carboxylate (-COOH)-terminated SAM, respectively. Metal cations in a contacting solution 

phase were bound by the carboxylate-terminated thiol SAM, but not at the unsubstituted 

SAM.119,120 The limit of detection for this enhanced SPR technique for Pb2+ (40 ppt)119 and 

As (as HxAsO4
(3-x)-) was 10 ppb,120 as required by the United States Environmental 
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Protection Agency. This technique would form the basis in 2004 of the startup company 

Biosensing Instruments Inc. (vide infra).

At the same time, the Tao group began to investigate applications of conductive polymer 

nanojunctions to problems in chemical analysis. This new research direction was inspired 

both by his previous work on STM/conducting polymer conductivity measurements,
14,15,17,18,114,117 and by observations that the quantum conductance of these systems was 

influenced by molecular properties as well as the electronic structure of the solid state.16–18 

This research thrust was launched by a 2003 paper titled, “A Conducting Polymer 

Nanojunction Sensor for Glucose Detection,”121 in which a PANI/poly(acrylic acid) channel 

bridging two lithographically fabricated metal nanoelectrodes was doped with the enzyme 

glucose oxidase (GOx). The detection of glucose by this sensor occurs when GOx produces 

H2O2 in the presence of glucose, oxidizing the PANI and enhancing its electrical 

conductivity.121 The nanoscale dimensionality of the sensor made possible a rapid (200 ms) 

response time for glucose detection.121 This paper showed that nanojunctions, previously the 

domain of physicists, provided analytical chemists with a new and versatile tool for 

designing chemical sensors.

An unexpected advantage of such nanojunction nanosensors is their ability to operate in 

unprocessed, real samples. Inspired by Justin Gooding’s work on peptides,122 a conducting 

polymer nanojunction sensor for the detection of heavy metals in drinking water was 

developed,123 followed by a conducting polymer nanojunction breath sensor, that detected 

ammonia at parts-per-billion levels.124 Elsewhere, several groups reported on the amazing 

sensitivity and other overall properties of nanosensors.125–127 Taking inspiration from this 

work, in 2004, NJ and Larry Nagahara of Motorola Labs decided to explore the properties of 

low-dimensional carbon materials in sensors. The capability of Motorola to create silicon-

based chips with 1 or 2 single-wall carbon nanotubes (CNTs) in a micron-scale gap enabled 

modification of the CNTs, leading to the demonstration of ultra-low parts-per-trillion level 

sensing of heavy metal ions128 and pM level detection of viral RNA strands for Hepatitis C.
129 The sensitivity of the latter would eliminate the need for amplification by polymerase 

chain reaction, PCR, of RNA strands, a requirement of many current methods used for virus 

detection.

The versatility of PANI nanojunction sensors was demonstrated in 2007 with the operation 

of these sensors both in conductometric and amperometric modes (Figure 5a,b).34 

Conductometric detection is obtained by transducing the channel conductance, just as in 

chemical field-effect transistors (FETs). Amperometric detection exploits the direct 

oxidation/reduction of a target molecule at the PANI channel (Figure 5c). Nanojunction 

sensors can be operated in either of these modes, or in both simultaneously (Figure 5d). The 

attributes of these two modes were compared for the detection of the neurotransmitter 

dopamine.34 The work came to fruition with the selective detection of dopamine in the 

presence of 1000-fold excesses of an interferent, ascorbic acid.34,130,131 Versions of this 

technology were commercialized for the detection of exhaled nitric oxide,132–134 an airway 

inflammation biomarker, and for the ultrasensitive detection of explosives.135,136
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In 2000–2004, NJ’s team was also undertaking chemical analyses of gases using inexpensive 

quartz crystal resonator tuning forks, typically used in electronics and watches for timing. 

Tuning forks could be repurposed as sensitive mass measurement transducers for chemical 

sensing.137–141 Working with Motorola scientists Larry Nagahara and Ray Tsui, NJ’s team 

created an alcohol sensor embedded in a cell phone. In this device, a polymer nano/

microwire composite sensing material bridged between the prongs of the tuning fork. This 

system later evolved to become a wearable mobile sensor for measuring the mechanical 

properties of light-sensitive materials142 and for the spatial-temporal tracking of exposure to 

pollutants134,143–146 and particles.147 The latter systems were introduced to the public by Dr. 

Francis Collins, Director of the National Institutes of Health, in the 2015 (Mobile) mHealth 
Summit in Washington, D. C.

In 2009–2010, aware of the fabrication limitations of silicon-based sensors and the relatively 

high cost of maintenance of clean room operations, NJ sought a relatively inexpensive way 

to create sensors. Inspired by the work of Ken Suslick on colorimetric sensor arrays,148 NJ 

and Erica Forzani began the search for sensing applications with high market demand and 

created a sensor array for selective detection of oxygen and carbon dioxide in breath, 

enabling them to measure energy expenditure (kcal/day) via indirect calorimetry.149–151 This 

innovation later led to several practical applications to improve the efficacy of weight and 

disease management in overweight and diabetic patients152 as well as exercise practices,153 

and to spin off the second of NJ’s start-up companies, TF Health Co. (vide infra).

In 2008, NJ was named Director of the Center of Bioelectronics and Biosensors at The 

Biodesign Institute, Arizona State University, which has ~30 permanent researchers and over 

20 institutional collaborators, such as Banner Neurological Institute and The Mayo Clinic. 

Under his leadership, the Center’s scientific contributions expanded in new directions 

including the fields of chemical and physical sensors for noninvasive environmental 

sensing154–158 and medical applications.159,160

ELECTRICAL CONDUCTANCE OF SINGLE MOLECULES

A long-standing objective in the subfield of molecular electronics has been to develop 

molecular devices that will complement—and eventually even supersede—current 

semiconductor-based technologies.161–163 NJ Tao’s flagship research in molecular 

electronics, especially in molecular transport junctions (MTJs), established his as a leading 

group in this area. In 2003, Tao and one of his students invented the scanning tunneling 

microscope break junction (STM-BJ) method, possibly his most impactful contribution to 

molecular electronics.116 The STM-BJ method and its variants have been adopted as a 

standard measurement protocols for the investigation of electron transport in single 

molecules.

Although a number of methods had been developed to measure the charge transport through 

single molecules by 2003, the main problems with measurement were creating the 

electrode–molecule–electrode junction in a reproducible way and handling the inevitable 

variability in the properties of single molecules. The STM-BJ method starts with repeatedly 

driving a conducting STM tip into contact with and then pulling away from an Au (111) 
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surface coated with molecules containing anchoring groups that can bond to Au; the 

conductance curves of the whole processes are simultaneously recorded. As shown in Figure 

6a–A, at the start of the STM tip pulling, Au quantum contacts were formed, as evidenced 

by the conductance steps at multiple integers of the conductance quantum (Eq. 1). 

Remarkably, after the breaking of the of the quantum contacts, molecules were contacted 

with the tip and the substrate to form an Au-molecule(4,4’-bipyridine)–Au junction, as 

indicated by the conductance steps being 100 times smaller than the conductance quantum 

(Figure 6a–C). No conductance steps were observed in the molecule conductance window 

when no molecules were applied. In this method, the reliability issue was successfully 

resolved by forming and measuring the junctions thousands of times. The conductance 

histogram (Figure 6a–B,D,F) shows statistically significant results that capture the inherent 

variability of single-molecule measurements.

As soon as single molecule STM-BJ conductance data were available, it was apparent that 

Eq. [1] was insufficient to describe these data. A molecular junction is a hybrid system that 

exhibits a conductance, G, determined by both the molecule and the molecule–electrode 

contacts:

G = n2e2

ℎ
Γ2

Δ2 + Γ2 n = 1, 2, 3… [2]

where Γ and Δ= E – ε are the coupling between molecule and electrode, and the energy 

difference between the conduction orbital and the Fermi level of the metal electrodes 

respectively.162 To account for differences in the electrode–molecule contact and to confirm 

the formation of Au–amine and Au–thiol bonds, a follow-up study was carried out that 

simultaneously measured the conductance and breakdown forces of the molecule junctions.
39 The breakdown force of the Au–thiol contact was found to be ca. 1.5 nN (Figure 6b) 

whereas that of the Au–amine contact was ca. 0.7 nN, in agreement with theoretical 

calculations.

Soon after the discovery of STM-BJ, two seminal publications based on this technique were 

published from other research groups. The first, by Reddy et al., reported the measurement 

of single-molecule Seebeck coefficients Sjunction for 1,4-benzenedithiol (BDT), 4,4′-

dibenzenedithiol, and 4,4′-tribenzenedithiol, revealing a molecular length dependence on 

the value of Sjunction.164 The second, by Venkataraman et al., reported an investigation of 

seven biphenyl molecules with varying ring substitutions that imparted a twist angle to these 

molecules.165 The single molecule conductance of these molecules decreased as the twist 

angle increased,165 quantitively in accord with theory.166 These two investigations enabled 

by STM-BJ are cornerstones in the development of the field of molecular electronics.167,168 

Subsequent development of STM-BJ by the Tao group enabled the capture of fast events (~1 

ns) by using high-speed electronics (Figure 6c),12 observations of the effects of anchoring 

groups,169 the introduction of target-molecule-specific binding sites, assessments of the 

quantitative influence of molecular geometry,170 and the elucidation of the origin of some 

junction instabilities,40 making STM-BJ a comprehensive experimental platform in 

measuring various single-molecule transport properties.
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A review of NJ’s expansive contributions to molecular electronics is beyond the scope of 

this Perspective, but several especially impactful contributions are described. One of these is 

the gating of electron transport in molecular junctions using an electrochemical gate, which 

contributed to an understanding of electron transport mechanisms in molecular junctions and 

enabled device applications. In fact, a number of gating modalities were explored (Figure 7).

One such gating modality involved mechanical control of the STM tip–surface spacing. The 

influence of tip position on the apparent conductance was noticed by Haiss et al. who 

reported that the conductance of a molecule located in the gap between an STM tip and the 

surface oscillated between two discrete values as the molecule spontaneously connected and 

disconnected from the STM circuit.171,172 NJ termed this behavior “blinking.”173 Blinking 

did not occur when the tip–surface distance exceeded the length of the molecule under 

examination, and this parameter could also be used to control the angle of a molecule within 

the gap, thereby affecting the conductivity.171,172 With ac modulation on the tip–surface 

distance, NJ was able to distinguish in real time between an open gap, which produced large 

current modulations, and a molecular junction, which showed damped current modulations. 

Simultaneous measurement of the conductance of the gap was facilitated as well.173 A 

“blink and pull” method174 took this experiment one step further, by probing the ac 

conductance while the tip–sample distance was increased, causing the tilt of a single 

molecule to be reduced. This technique enabled precise measurement of conductance as a 

function of molecular tilt,174 exceeding what had been possible in previous studies. These 

papers established that precise mechanical control of single-molecule conductance was 

achievable and understandable at a fundamental level.173,174

Although rectification should not be termed “gating”, it is a phenomenon of interest in 

molecular electronics. Single-molecule rectifiers based upon asymmetric organic molecules 

were predicted in the 1974 paper by Aviram and Ratner.163 The concept was experimentally 

demonstrated for asymmetric single molecules in self-assembled monolayers by Luping Yu 

and coworkers.175 Isolated single molecular diodes were achieved in 2005 by Elbing et al.
176 using a mechanically controllable break junction. However, switching of the forward-

biased direction for the diode, dictated by the molecular orientation in the junction, was not 

possible in this case. Using an asymmetric diblock dipyrimidinyldiphenyl molecule, NJ 

demonstrated this capability in 2009 using the STM-BJ blinking methodology, which 

enabled an immobilized molecule to be expelled from the junction and a new molecule (or 

the same one) reattached with reversal of its polarity.177

Mechanical gating was also achieved by the application of tensile and compressive stressed 

to single molecules. This discovery in 2012 involved the modulation of the conductance of 

1,4’-benzenedithiol (BDT) molecules by applying either a tensile stress or a compressive 

stress to the molecule using the STM tip.178 The conductance of BDT was perturbed by up 

to an order of magnitude by these forces. Counter to intuition, in these experiments the BDT 

conductance was enhanced during stretching and depressed during compression. The 

HOMO of the BDT migrates toward the Fermi level of the Au electrodes during stretching, 

closer to resonance with the Fermi energy of the Au contacts.178
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Related to transport gating in molecular junctions is the issue of heating.179,180 NJ and his 

students studied this issue for 1,8’-octadecanedithiol using the STM-BJ technique.181,182 

These experiments afforded an estimate of the temperature increase induced by current flow 

of ~30 K for Vbias = 1.0 V, the highest bias for which these junctions were stable.182 

Subsequently, more detailed STM-BJ studies of C6, C8, and C10 alkanedithiols revealed 

that heating of these molecules increased with decreasing molecular length; these junctions 

showed complex bias dependences in which maximum heating of these molecular junctions 

was seen at Vbias ≈ 0.80 V, because at higher Vbias electron–electron cooling occurs in 

accord with the recently proposed hydrodynamic theory proposed by D’Agosta and Di 

Ventra.183

Electrochemical gating of molecular junctions was demonstrated by NJ and his group in 

2005, in a flurry of papers describing an electrochemically gated single-molecule FET,184 

electromechanically controlled conductance switching,185 and electromechanically 

controlled negative differential resistance-like (NDR-like) behavior.186 But there would be 

many more publications from NJ and his students exploring this phenomenon, reporting 

redox-gated electron transport in electrically wired ferrocene molecules,187 and 

electrochemical control of electron transport in graphene188 and in coronenes.189 

Furthermore, electrochemically gated single-molecular switches190 and ambipolar single-

molecule FETs191 were successfully demonstrated, pushing single-molecular device 

applications a step forward. Using temperature control as the thermal gating, Tao and his 

group also investigated electron transport in single redox molecules,192 the electron–phonon 

interactions in single-molecular junctions,193,194 tunneling-to-hopping transitions in single-

molecular junctions,195 low-bias rectification in a single-molecule diode,196 thermopower 

and transition voltages,197 and the nonexponential length dependence of conductance.198 

Lastly, the Tao group measured the electronic spin filtering capability of a single chiral 

helical peptide by using a ferromagnetic electrode source to inject spin‐polarized electrons.
199

What might NJ have done next in this area? Based upon the collective experience of the 

authors, most of whom worked with him over many years, one goal that he articulated was 

to extend the measurement platform to explore and to control chemical reactions at the 

single-molecule level, including the development of the ability to determine subtle molecular 

structural information, such as the determination of chirality for two stereoisomers. A 

second aspiration was to integrate optical imaging techniques with STM-BJ to explore the 

coupling between electronic transport and light in single-molecule junctions, work that 

would have impacted both molecular electronics and molecular plasmonics.

CHARGE TRANSPORT IN SINGLE DNA MOLECULES

Beyond its role as the carrier of genetic information, DNA has become an important material 

in nanoscience and nanotechnology.200 The properties of DNA, including self-assembly, 

programmable structural control, rich chemistry provided by the polymer backbone with 

varying side groups, and controllable helical structure, have led to a wide variety of 

innovations utilizing DNA as a structural, mechanical, lithographic, or biotechnology 

element.201–205 However, the utilization of DNA as a circuit element has proven difficult 

Forzani et al. Page 11

ACS Nano. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



due to its complex electronic structure and the strong interplay between the electronic and 

structural degrees of freedom. Much of our understanding about the utility of DNA as an 

electronic element has come from Tao’s work, and the work he inspired.

After the development of the STM-BJ methodology in 2003,206 NJ’s attention returned to a 

topic that had interested him since his Ph.D. studies: the properties and dynamics of DNA.
76,77,207 This time, however, he placed the emphasis on the electronic properties of DNA. 

This was an opportune time for such studies as there was significant conflict in the field 

about the inherent charge transport properties of DNA. Reports emerged that ran the gamut 

of possible electronic capabilities for DNA including insulating,208,209 semiconducting,210 

conducting,211 and proximity-induced superconductivity.212 The incongruity in conductance 

studies was mirrored by the significant disparity in charge-transfer properties seen in 

photochemical and electrochemical measurements.213–216

Tao’s background in electrochemical STM217 and the advent of the new break junction 

system206 gave a unique opportunity to begin addressing these issues: The DNA duplexes 

could be measured in aqueous environments that could help preserve the inherent DNA 

structure, which may be lost if measuring the DNA in ambient conditions or vacuum as had 

been done in some other experiments. Initial experiments on short DNA duplexes (< 18 bp) 

showed that G:C repeat sequences yielded a conductance proportional to the length of the 

sequence, indicating hopping, whereas A:T pairs inserted into the stack yielded a weak 

exponential, suggesting that the charges tunneled through the A:T barriers.218 This work 

placed conductance measurements for short sequences in line with photochemical 

measurements with similar outcomes.50,214,219,220 Interestingly, however, the temperature 

dependence could not be determined within the temperature window of the experiment 

(between the liquid freezing temperature and the DNA melting temperature), which left the 

opportunity open for more complex transport behavior.45,221

Over the next 15 years, a variety of work from Tao and many others placed intensive focus 

on understanding the native electronic behavior of DNA duplexes,222–229 RNA:DNA 

hybrids,230 and G-quadruplexes.231–233 NJ’s group focused on understanding the thermal, 

mechanical, and thermoelectric properties of these systems, and how these properties relate 

to the electronic structure.234–237 The thermoelectric measurements demonstrated 

conclusively that DNA transport was hole dominated: hopping-dominated in G:C rich 

systems, and tunneling dominated through short A:T bridges, but it again transitioned to 

hopping if the A:T bridge became long enough.237 The addition of the Seebeck coefficient 

to the conductance measurements for these systems provided a second methodology to 

verify previous results from conductance and the resulting implications about the transport. 

These measurements heralded new opportunities for quantifying contact properties and 

understanding alignment of energy levels between bases in the stack.

Tao’s group made important advances in understanding the contact and coupling properties 

within DNA and their influence on conductance by utilizing the pulling capabilities of the 

STM-BJ system on duplexes of various designs.234–236 These results demonstrated that 

when pulling on the molecule, conductance breaks down once the hydrogen bonds in the 

first one or two bases break, which means the forces must be carefully controlled in DNA to 
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observe conductance behavior. This result helps rationalize the wide variety of initial 

conductance values observed in DNA-based systems. An additional mechanical approach 

was to apply a small AC modulation to the tip (~1–2 Å) at a higher frequency (2 kHz).
173,234,238 This approach enables more direct information to be determined about the 

coupling between bases, especially purines, in the base-stack. This advance led to 

understanding of the effects of coupling between bases in the stack when placed in 

interstrand or intrastrand configurations, which has helped lead to designs for improving the 

conductance of DNA-based structures.

The experiments described above indicate that careful design of DNA sequence and 

structure could lead to unique effects, but they also indicate that obtaining significant 

changes in the overall conductance or modulating the transport properties of DNA will 

require additional changes to its chemical and electronic properties. In 2015, Tao’s group 

demonstrated that in G:C rich hopping systems, the coherence length of the charge carriers 

(holes) could extend beyond a single guanine base.239 This finding was followed with 

another study in collaboration with Beratan’s group that began to provide design rules for 

engineering the coherence and coupling between bases.240 These studies were quickly 

followed by other groups demonstrating longer coherence lengths in DNA, RNA, and 

peptide nucleic acid (PNA) systems than initially expected from length-dependent 

conductance measurements,44,230,241–243 which may in the long term provide a basis for the 

rational design of DNA-based devices.

Developing devices is one of the ultimate goals for DNA transport studies. For native 

structures, the devices will likely be sensor systems, and Tao’s group conducted initial 

studies to show the impact of single-base mismatches244 and epigenetic effects245 on 

conductance, which have been expanded on by other groups.246–248 Beyond these native 

structures and sequences, focus has been given to other device designs as well, such as the 

creation of a G-quadraplex-based current-splitting element,232 which may give way to 3-

terminal devices or advanced wiring concepts for electronic devices (Figure 8). Inclusion of 

non-native bases,249 intercalators,250 and metal ions251 could be used to create DNA-based 

wires,252 transistors,249 diodes,253 or photoactive elements.

Single-molecule transport experiments have dramatically advanced our understanding of 

charge transport in DNA. These data and the deeper understanding enabled by it have 

powered the nascent field of DNA-based device design, spawning proof-of-principle systems 

for sensing and electronic circuit elements, including current-splitting and potential 3-

terminal elements,232 diodes,254 and systems that support long-range transport over tens of 

nanometers.231 Moving forward, the initial experiments on the length coherence of carriers 

in systems may lead to new designs that harness the quantum properties of DNA’s electronic 

structure. These innovations could result in both new sensing paradigms where changes in 

sequence result in modifications of coherence and new devices that engineer interference 

effects or modifications to the electronic structure for device applications.

Much is yet to be learned, including developing methods to engineer and to control the 

coherence length in these materials, developing new avenues for integrating these devices 

into larger scale structures and the outside world, fundamental knowledge about how to align 

Forzani et al. Page 13

ACS Nano. Author manuscript; available in PMC 2021 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and to manipulate the energy levels in DNA in a robust and reliable way, and understanding 

how fluctuations and the inherent flexibility in these systems contribute to the electronic 

properties and how these properties can be utilized for improvement. The knowledge gained 

from Tao’s experimental insights over the years built an important foundation for exploring 

these areas, impacting not only the field of DNA-based electronics but research across 

nanosystems, where emerging technologies such as DNA-based memories and computing,
255 origami-enabled electronic design,256 and long-range transport in protein-based 

systems257 continue to gain momentum.

OPTICAL MICROSCOPY AND DETECTION TECHNOLOGIES

Optical microscopy is one of the most common and powerful tools used in materials and life 

sciences research labs. Advances in microscopic imaging technologies have played critical 

roles in biomedical research and clinical applications.258–260 A large portion of NJ Tao’s 

research career was devoted to the development of new functional imaging tools for 

chemical and biological applications. His group invented two groundbreaking microscopy 

technologies for functional imaging of chemical and biological targets.

The first imaging technology is a multifunctional plasmonic-based electrochemical 

impedance microscopy (P-EIM),23,261,262 integrating surface plasmon resonance 

microscopy (SPRM)28,263,264 and electrochemical impedance microscopy (EIM)25 into a 

conventional inverted microscope (Figure 9). Unlike conventional electrochemical 

impedance spectroscopy,265 which measures alternate current amplitudes, P-EIM exploits 

the more sensitive optical detection of surface plasmonic signals for metals on the surface 

charge density,25 thus enabling fast (sub-ms) and noninvasive imaging of impedance at near 

diffraction-limited resolution without an electrode array or a scanning probe. In addition, P-

EIM maps the local electrical polarizability and conductivity, which reflects local changes in 

the cellular structure and ionic distribution. Compared to conventional optical imaging 

techniques, the plasmonics-based approach can image not only the morphology, but also 

molecular binding events and local chemical information taking place at fast time scales. 

Important benefits of this approach include fast, noninvasive, and quantitative imaging of 

optical mass change, electrochemical current, and impedance of various samples, from small 

molecules to whole cells.

A variety of applications for the P-EIM technology have been demonstrated, including trace 

chemical analyses (Figure 10);23 catalytic reactions266–270 and thermal diffusion271 of 

nanomaterials; charge distributions in 2D materials;63 detection of single DNA,69 exosomes,
272 or single virus (Figure 11);28 tracking single organelle transportation in cells;273 time-

resolved digital immunoassay;274 nano-oscillators for detection of charge,275 molecules,276 

and biochemical reactions;277 ligand–membrane protein interactions in intact cells;
261,278–283 tracking bacterial metabolic changes for antimicrobial susceptibility tests;284 and 

mapping action potentials in single neurons (Figure 12).285 With further improvement of this 

technology, particularly in signal-to-noise ratio, P-EIM could lead to label-free functional 

detection of single proteins. This purpose was a goal of NJ’s since 2000, when he calculated 

that, with sufficient light, SPR was capable of detecting single protein molecules (as noted 

during discussions with Dr. Shaopeng Wang, then his postdoc at FIU).
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The second imaging technology developed in the Tao group is mechanically amplified 

detection of molecular interactions (MADMI).286,287 Measuring molecular binding to 

membrane proteins is critical for understanding cellular functions, validating biomarkers, 

and screening drugs.288,289 Despite its importance, measuring small molecule binding to 

membrane proteins in their native cellular environment remains a challenge.276,278,279 

However, MADMI can measure the mechanical deformation in cell membranes that 

accompanies the binding of molecules with the membrane proteins on the cell surface. The 

laws of thermodynamics predict that when molecules bind to a surface, the surface tension 

changes. According to thermodynamics, the surface concentration (Γ) of molecules bound 

on the membrane surface is given by:286

Γ = − dγ
RTd ln c , [3]

which applies to ideal solutions at a constant temperature and pressure, where γ is the 

surface tension, R is the gas constant, T is temperature, and c is the bulk analyte 

concentration. RTd(ln c) is the chemical potential of the molecules. From Eq. (3), molecular 

binding is proportional to the surface tension change. Because cells are soft, a small change 

in the surface tension can induce a substantial mechanical deformation of the cell, leading to 

signal amplification. Therefore, the interactions of molecules with membrane proteins on a 

cell can be measured by determining the mechanical deformation of the cell membrane. 

Because the signal does not scale with the size of analyte molecules, MADMI is particularly 

suitable for quantifying the binding kinetics between small molecule drugs and membrane 

protein targets in their native environment. Quantification of binding kinetics between 

protein, peptide, and small-molecule ligands on different classes of membrane proteins on 

adherent286 and floating cells287 has been demonstrated. Further development of MADMI 

for improved sensitivity, higher multiplexing capabilities, automated deformation-tracking 

algorithms, and testing in wider ranges of cells and ligands will lead to label-free biomarkers 

and drug-discovery tools for cell-based membrane protein binding kinetic studies.

To detect minute, nanometer-scale membrane deformations accurately, Tao’s lab developed 

a differential detection algorithm for tracking the edge movement of a cell using optical 

imaging (Figure 13). The method nulls common-mode noise in the optical system, thus 

achieving superior detection limits. This image-based differential tracking method not only 

works for detection of molecular interactions, but has also been adapted for broader 

applications, including tracking fast cellular membrane dynamics;290 tracking nanometer-

scale cellular membrane deformation associated with single vesicle release;291 determining 

electrochemical surface stress of single nanowires;292 performing charge-sensitive optical 

detection of molecular interactions;62,64 and measuring subnanometer mechanical motion 

accompanying action potential in neurons, where the detection limit was further improved 

via signal modulation and digital filtering.293 This differential tracking method is extremely 

general and is expected to have a range of applications in phenomena for which nanoscale 

mechanical deformations are important.
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TRANSLATING SCIENCE TO SOCIETAL BENEFIT BY COMMERCIALIZATION

NJ was a successful entrepreneur as well as a scientist. Upon his return to ASU from Florida 

International University in 2004, he founded Biosensing Instrument Inc. (BII) with Dr. 

Tianwei Jing and Professor Feimeng Zhou of California State University, Los Angeles. From 

its inception, NJ was actively engaged in BII, spearheading product design, identifying 

applications, and even providing customer support. After just one year of development 

effort, BII sold its first unit to the University of Texas at Austin for gas-phase applications. 

BII grew quickly and diversified its product line to include fully automated, multichannel 

SPR instruments and microscope-based variants, along with various analysis modules for 

diverse fields, including surface chemistry, single-cell analysis, and studies of cancer and 

neurological disorders, to integration with other analytical techniques for the detection of 

species of biological, pharmaceutical, and environmental importance. The companies’ 

record of innovation and commercialization has been recognized by two recent R&D 100 

Awards.

As NJ’s research group attained momentum in chemical and biological sensing in the 2003–

2008 time frame, the resulting technologies presented further opportunities for 

commercialization. In 2008, NJ and Erica Forzani co-founded TF Sensors LCC, which soon 

became TF Health Corp. with the aim of developing sensors for health monitoring. The 

addition of two scientists to the TF Health team, Drs. Francis Tsow and Xiaojun Xian 

enabled a series of product developments starting in 2011 with indoor air quality sensors 

compliant with the Centers for Disease Control and Prevention guidelines (Figure 14). In 

2012, a sensor for the analysis of exhaled nitric oxide in asthma patients was introduced. 

And in 2013, a wireless metabolism tracker, Breezing, was demonstrated (Figure 15). This 

product, highlighted by the BBC,294 Forbes,295 and Scientific American,296 was a 

commercial success and received numerous awards and recognitions, including the Materials 

Research Society’s iMatsci, Consumer Technology Association’s 2017 Baby Tech Awards 

finalist, the Flinn Foundation Entrepreneur Award, and Arizona Commerce Authority’s 

Challenge. Refinement of the Breezing platform has culminating in the demonstration of an 

innovative smart mask device (Breezing Pro) that provides data that dieticians can use to 

provide precise nutritional and exercise advice to their clients (for more details see: https://

breezing.com/resources/).

CONCLUSIONS AND OUTLOOK

Electrochemistry, molecular electronics, surface science, and chemical sensing were all 

impacted by the tremendous reach of NJ’s research over more than 30 years. In spite of its 

diversity, a common thread running through all of NJ’s science is an emphasis on applying 

simple physical principles, and asking simple questions based upon these principles, as a 

means for understanding complex phenomena. He applied this reductionist strategy 

successfully in all of the areas he investigated.

Now, with his prior work as a foundation, we are left to consider where each of these areas 

will progress: What are the frontiers in metabolic sensing, molecular electronics, DNA-

based electronic devices, and optical microscopy and detection that could be advanced, or 
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simplified using novel physical apparatuses? What questions could be answered by looking 

across these domains? In this Perspective, the goal has been to highlight some of the most 

exciting science in each of these areas. The new challenge is to apply the understanding 

generated by NJ’s work, along with that of many others over the past 25 years, to answer 

problems in fields other than molecular electronics, surface science, and electrochemistry. 

This challenge is in the hands of a new generation of scientists, including NJ’s many 

students and postdocs who trained with him and who will pursue this goal, with his 

inimitable style.
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Figure 1. 
Professor Nongjian Tao in his laboratory in 2008. Image credit: The Biodesign Institute at 

Arizona State University.
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Figure 2. 
a) Iron protoporphyrin (FePP, left) and protoporphyrin (PP, right) molecules. b) Schematic 

diagram of a scanning tunneling microscope (STM) with control of the electrochemical 

potential of the tip and surface for investigations of single-molecular electron transfer. c) 

Energy level diagrams of Fe(III)-protoporphyrin IX and protoporphyrin IX and their relation 

to the Fermi levels of the substrate and tip. d) STM images of FePP/PP mixed monolayers 

on graphite containing FePP and PP at the ratio of 0:1 (A), 1:4 (B), 4:1 (C), and 1:0 (D). 

(E)–(H) are the corresponding cyclic voltammograms, e) STM image of FePP molecule 

embedded in an ordered matrix of PP molecules when the substrate was held at −0.15 (A), 

−0.30 (B), −0.42 (C), −0.55 (D), and −0.65 V (E), versus SCE ref. electrode. (f) Apparent 

height of FePP relative to PP as a function of the substrate potential via Pt-Ir tip and W tip. 

Figures a–d reprinted with permission from ref87. Copyright 1996 American Physical 

Society.
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Figure 3. 
Potential-induced disorder–order transition in a 2,2’-bipyridine monolayer on reconstructed 

Au(111). Images a, b, and c were obtained at sample potentials of 0.11 V, 0.24 V, and 0.38 V 

versus SCE, respectively, in aqueous 0.10 M NaClO4. Lines in a and b indicate the direction 

of the reconstruction strips. Arrows in b point to the formation of the ordered phase as the 

potential is raised to 0.24 V. Reprinted from ref94. Copyright 1996 American Chemical 

Society.
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Figure 4. 
Quantum transport in metallic nanowires. a). Schematic drawing of the experimental setup. 

b,c) Plots of deposition/dissolution current versus the potential for an Au(111) substrate (b, 

left) and a segment of Pt0.8Ir0.2 wire (the tip material, b, right) are obtained by sweeping the 

potential linearly at a rate of 50 mV/s. Note that the actual deposition/dissolution current for 

the coated tip used in the experiment is too small to be measured, c) As Cu is deposited onto 

the tip, the growing front touches the substrate electrode, resulting in a stepwise increase in 

the conductance. The top curve is shifted upward by 5 G0 for clarity. The tip and the 

substrate potentials were held at 30 and 25 mV, respectively. d) Conductance histogram for 

Cu nanowires fabricated by electrochemical deposition and dissolution at room temperature. 

Reprinted with permission from ref115. Copyright 1998 American Institute of Physics.
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Figure 5. 
(a) Schematic illustration of a hybrid amperometric and conductometric sensor. WE1 and 

WE2 represent two working electrodes (source and drain electrodes) connected with a 

conducting polymer bridge. RE and CE are reference and counter electrodes, respectively. 

The electrochemical gate potential (Vg) E1 is applied between the drain electrode (WE1) and 

RE, and a bias voltage (Vbias) is applied between WE1 and WE2. (b) Optical and scanning 

electron microscope images of the device made of an array of polymer bridges on a silicon 

chip. (c) Cyclic voltammogram of 3.9 mM hydroquinone (HQ) on polyaniline-modified 

microelectrode at 60 mV/s. (d) ΔId and ΔI2,ec simultaneously recorded during the injections 

of supporting electrolyte (1–2) and 1.4 mM HQ (3) to a close (bridge) and open polymer 

bridge (open) amperometric and conductometric device. Vbias) 0.25 V and E2) 0.45 V. Inset 

of (d) illustrates the reaction mechanism in a close polymer bridge device. Reprinted from 

ref34. Copyright 2007 American Chemical Society.
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Figure 6. 
The scanning tunneling microscopy-break junction (STM-BJ) method. (a) STM-BJ using 

4’4’-bipyridine molecules. Reprinted with permission from ref 293. Copyright 2003 

American Association for the Advancement of Science. (b) Conductive atomic force 

microscopy measurement of Au-thiol binding in Au–octanedithiol–Au molecule junction. 

Reprinted from ref 38. Copyright 2003 American Chemical Society. (c) AC-modulation of 

molecular junctions. Reprinted from ref 12. Copyright 2011 American Chemical Society.
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Figure 7. 
Schematic illustration of controlling electron transfer in molecular junctions by mechanical, 

electrochemical, thermal, and magnetic gating.
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Figure 8. 
Design and testing of a G-quadraplex-based current splitter. (A) Schematic of the current-

splitting element placed between two electrodes. The G4 element (black) plus 3 DNA 

duplexes are held between an Au tip and an Au substrate in a break-junction configuration. 

(B) Conductance histograms of the quadruplex 3 with six layers of guanines. The different 

conductance histograms represent whether the strands are arranged in an antiparallel or 

parallel configuration and which of the three duplex terminals (T1, T2, T3) have thiols to 

bind to the electrodes. The conductance values (x-axis) are similar for all the DNA 

structures. For clarity, each histogram was shifted vertically to avoid overlap. Reprinted with 

permission from ref232. Copyright 2018 Springer Nature.
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Figure 9. 
Principles and applications of plasmonic-based electrochemical impedance microscopy (P-

EIM) microscopy. (A) Schematic of P-EIM imaging principle: Surface plasmon waves are 

created optically with a laser or light-emitting diode beam incident on the metal film via a 

prism or high-numerical-aperture objective at a resonant angle, and the reflected beam 

creates a surface plasmon resonance microscopy (SPRM) image. The resonant angle is 

sensitive to changes in refractive index near the metal surface, which is widely used to study 

molecular binding processes. In addition, the resonance angle is also sensitive to surface 

charge density, which produce the electrochemical impedance image when an AC voltage is 

applied to the surface. (B) optical, SPRM and P-EIM images of a protein microarray, viral 

nanoparticles (NPs), and a mammalian cell.
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Figure 10. 
Detection of TNT traces on a fingerprint using the electrochemical current imaging 

technique. (A) Surface plasmon resonance image of a fingerprint. (B1–B5) Five snapshots 

recorded while sweeping the potential negatively from 0 to −1.0 V at a rate of 0.05 V/s. The 

appearance of the “spots” is due to the reduction of TNT particulates. (C) Local 

voltammograms of the regions with (blue and red dots) and without (black dots) TNT 

particulates. The electrolyte is 0.5 M KCl. Reprinted with permission from ref23. Copyright 

2010 American Association for the Advancement of Science.
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Figure 11. 
(A) Surface plasmon resonance microscopy (SPRM) images of H1N1 influenza A virus and 

three different sized silica nanoparticles in phosphate-buffered saline (PBS) buffer. (Insets) 

Nanoparticle images generated by numerical simulation. (B and C) The SPR intensity 

profiles of selected particles along X and Y directions (indicated by dashed lines in A, 

respectively. (Insets) Corresponding profiles from simulated images. Reprinted with 

permission from ref28. Copyright 2010 Wang et al.
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Figure 12. 
Plasmonic imaging of action potential in single neurons. a) Bright-field and b) plasmonic 

images of a hippocampal neuron, where the dashed lines mark the edge of a neuron. c) Patch 

clamp recording of action potential and d) simultaneous plasmonic-based electrochemical 

impedance microscopy (P-EIM) recording of action potential of the whole cell (frame rate of 

10000 fps). To clearly illustrate the data, we normalized the intensity change DI with mean 

intensity I, and plotted the plasmonic intensity in negative intensity change for fair 

comparison. e–h) Snapshot P-EIM images of action potential at the moments marked by the 
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gray spots in (d). The P-EIM images were averaged over 90 cycles of repeated action 

potential firing at 23 Hz repeat rate to reduce random noise. Reprinted with permission from 

ref285.
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Figure 13: 
Tracking sub-nm membrane displacement accompanying action potential in single 

mammalian neurons. a) Experimental setup showing a hippocampal neuron cultured on a 

glass slide mounted on an inverted optical microscope, which is studied simultaneously with 

the patch clamp configuration for electrical recording of the action potential, and optical 

imaging of membrane displacement associated with the action potential. b) Imaging and 

quantification of membrane displacement with a differential detection algorithm that tracks 

the edge movement of a neuron. c) Bright-field image of a HEK293T cell and a micropipette 

used to change the membrane potential. d) Difference image of the entire cell showing cell 

edge displacement and local variability (intensities for the orange and purple bands) of the 

displacement. e) Membrane displacement map obtained from the differential detection 

algorithm. Scale bar in (c, d, e): 10 μm. Reprinted from ref293. Copyright 2018 American 

Chemical Society.
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Figure 14. 
Wireless wearable chemical sensor based on tuning fork sensors for selective and real-time 

detection of hydrocarbons (traffic pollutants) and acid vapors with sensitivity of ppb – ppm 

range, spatial resolution, and signal processing based on a cell phone app. The device was 

used to monitor the exposure of individuals to traffic pollutants.
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Figure 15. 
Evolution of products manufactured by: (A) Biosensing Instrument Inc. (https://

biosensingusa.com/), (B) TF Health Co., dba Breezing (https://breezing.com/).
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