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ABSTRACT Walnut pellicle color is a key quality attribute that drives consumer preference and walnut sales.
For the first time a high-throughput, computer vision-based phenotyping platform using a custom algorithm
to quantitatively score each walnut pellicle in L� a� b� color space was deployed at large-scale. This was
compared to traditional qualitative scoring by eye and was used to dissect the genetics of pellicle
pigmentation. Progeny from both a bi-parental population of 168 trees (‘Chandler’ · ‘Idaho’) and a
genome-wide association (GWAS) with 528 trees of the UC Davis Walnut Improvement Program were
analyzed. Color phenotypes were found to have overlapping regions in the ‘Chandler’ genetic map on Chr01
suggesting complex genetic control. In the GWAS population, multiple, small effect QTL across Chr01,
Chr07, Chr08, Chr09, Chr10, Chr12 and Chr13 were discovered. Marker trait associations were co-localized
with QTL mapping on Chr01, Chr10, Chr14, and Chr16. Putative candidate genes controlling walnut pellicle
pigmentation were postulated.
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English walnut (Juglans regia L.) is an economically important edible
seed that is diploid 2x = 32 with 16 chromosomes and a genome size
of approximately 600 Mbp. In the U.S., the English walnut industry
generates 1.5 billion dollars annually with over 99% of production
occurring in California (CA Dept Food Ag 2018). Interestingly,
consumer preference is for a lighter color seed coat, or pellicle,
thereby commanding higher prices in the U.S market.

The seed coat, pellicle and/or testa covers the zygotic embryo
(seed) and is formed from maternally derived tissue arising from the
inner and outer ovular integuments (Mohamed-Yasseen et al. 1994).
Each seed coat layer contributes to various metabolic functions which

include: producing, transporting, and accumulating metabolites; pho-
tosynthetic assimilates for zygote development; defense; and physical
structure (Smýkal et al. 2014).

Walnut (Juglans regia L.) pellicle pigmentation can vary signifi-
cantly between cultivars and developmental stages, and is influenced by
environmental stressors. Flavonoids or phenolic compounds synthe-
sized through the phenylpropanoid pathway are localized in seed coats
to defend the embryo against biotic stressors (Dixon et al. 2013), and
generally contain yellow pigments.

Currently, pellicle color is scored qualitatively on an ordinal scale of
1 – 4 (extra light, light, light amber, amber), and subjectively by eye
using a color chart published by the California Dried Fruit Association
(DFA) (Figure 1A). Color perception by the human eye is complex and
has been researched since at least 1878 when Hering, a physiologist
proposed the opponent color theory as function of both psycho-
logical and neurological processes and Hunter in 1979 explained
that receptors in human eye perceive color in pairs (Lee 2008). In
particular, L� is the scale of light to dark, a� is the scale of green to
red, and b� is the scale of blue to yellow (Hunter and Harold 1987)
(Figure 1B). The Lab color scale is arguably one of the most perpetually
uniform color spaces and best approximates color difference as perceived
by the human eye.
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Human perception of color is largely influenced by the number
and types of photoreceptors an individual possesses. Differences in
the photoreceptors between individuals contributes to variability in
the perception of a given color. This forms the basis of subjectivity of
human quality assessments within a color perception dataset. As
such, color(s) quantified by human perception can be an unreliable
source for obtaining quality data (Brosnan and Sun 2004), however
since the trait is influenced by consumer acceptance, human percep-
tion cannot be ignored completely. Computer vision systems (CVS)
have been proposed as a large-scale replacement to quality assess-
ments by human users. A CVS is any platform that acquires and
processes images with computer software by using a algorithm for
calibration and color extraction. The CVS interprets color in Hunter’s
L� a� b� space (Figure 2) by using a method adopted by Leon
2006 where pixels in RGB from an image are fit in a linear model
and transformed to Lab scores. This is vastly more high-throughput

and consistent than a human user qualitative score. Computer vision
systems have been used in a variety of crops for quality grading in
carrot (Deng et al. 2017), detection of mechanical damage in blue-
berry (Wang et al. 2018), table grape rachis browning (Bahar et al.
2017), and sweet lemon mechanical damage destruction (Firouzjaei
et al. 2018).

Using traditional scoring, walnut pellicle color is labor intensive to
measure, strongly influenced by environmental variation, and is a
polygenic trait (Marrano et al. 2019). Combining quantitative phe-
notypic measurements of a CVS with genotyping data will facilitate
identification of genetic loci that explain trait variation. Causal single
nucleotide polymorphisms (SNPs) can be validated with marker-
assisted breeding or genomic prediction models. This makes it
possible to identify desirable parents and select preferred progeny
at the young seedling stage rather than at sexual maturity 4-5 years
post-germination. Substantially reducing the seedling-selection

Figure 1 Qualitative vs.Quantitative scoring of walnut pellicle. A. Qualitative scoring according to the DFAmethod. ELIT= Extra light, LITE = light,
LAMB = light amber, AMBR = amber. B. Hunter L� a� b� color scales in a three-dimension representation based on color opponent theory.
L�measures the degree of black to white where a low number (0-50) indicates dark, and a high number (51-100) indicates a lighter color, a�measures
the degree of red (positive number) to green (negative number), and b�measures the degree of yellow (positive number) to blue (negative number).
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time will hasten the development of new cultivars, decrease costs
in allocation of resources, and accelerate the genetic gain.

The first objective of this study was to measure walnut pellicle
color quantitatively using a CVS developed by (Donis-González et al.
2020) that discriminates color in the L� a� b� channels. The second
objective was to use quantitative-trait loci (QTL) mapping and genome-
wide association study (GWAS) to detect marker trait associations
combined with SNP genotyping.

MATERIALS AND METHODS

Walnut source and experimental design
The experiment was performed with Juglans regia seedling trees
ranging from age 4 – 12 which were derived from multiple crosses
within the UC Davis Walnut Improvement Program.

The genome wide association design consisted of seedling trees
from 31 full-sib families with an average of 16 per family. These trees
ranged in age from 4 – 9 years, and included 20 founder trees, and
one cultivar ‘Robert Livermore’ released by UC Davis for a total of
528 trees. A bi-parental F1 population ‘Chandler’ · ‘Idaho’ (n = 168)
was used for QTL mapping with a range in tree age of 8 – 12. Trees
in this study were planted across eight blocks; five of them were
across the same field location and all trees were spaced six feet
apart and irrigated with micro-sprinklers. Blocks consisted of trees
planted in row plots with multiple family crosses made in one year.
A full-sib family had between 10 and 50 individuals with 31 unique
parents. Most male parents were only used once, with a few male
parents used 2-4 times, one male was used for 13 different crosses,
and two males were used reciprocally as females.

At least 30 nuts per tree were hand harvested as each tree reached
fruit maturity (hull-split) during August and September of 2015,
2016, and 2017. These were hung in polypropylene mesh bags, air-
dried for two weeks, and then stored at -4� until measurements were
taken. Walnut kernels were placed on commercial scoring trays
obtained from the Dried Fruit Association of California which
contain 100 wells each. Each tray held ten kernels from each of
10 distinct trees, and 10 kernels were evaluated. When kernels were
being evaluated for color, they were kept at 0� for short-term storage,
and kernels were kept at - 4� for long term storage.

Measuring pellicle color
Qualitative color scoring by eye was done by examining each kernel
for its separation into color category 1 - 4, according to the Dried Fruit
Association (DFA) scoring sheet (Figure 1A), (Safe Food Alliance,
Sacramento, CA, (DFA of California 2017), in accordance with the
USDA Standards for Grades of Shelled Walnuts as designated by the
California Walnut Board under Title 7 of the United States Code
(U.S.C.) (7 C.F.R. x 51.2277-2296).

The DFA color scores are
ELIT = Extra light, 1a; LITE = light, 2b; LAMB = light amber, 3c;
AMBR = Amber, 4d (Figure 1A.)

aExtra light permits a 15% tolerance for kernels darker than “Extra
Light”.

bLight permits a 15% tolerance for kernels darker than “Light”.
cLight Amber permits a 15% tolerance for kernels darker than “Light

Amber”.
dAmber permits a 10% tolerance for kernels darker than “Amber”.

Darker than “Amber” is black.

Pellicle color of each kernel was scored by visual inspection
according to the DFA color chart for 10 kernels per tree and the
mean DFA was calculated. This was repeated for each harvest year.

The computer vision system was developed with a Basler 5.5
megapixel camera (Ahrensburg, Germany) which mounts over an
enclosed dome encircled with four (D65) light emitted diodes (LED)
tubes of 18W (Phillips, Amsterdam, Netherlands) which provided
consistent illumination. Custom algorithms were developed for cal-
ibration and image acquisition of the computer vision system (File S1,
File S2). Briefly, The calibration macro written in FIJI 1.52 software
(Schindelin et al. 2012) divided a white balance WB image into three
color channels RGB, and subtracted the maximum value of each
channel according to a color checker standard. The CIE color analysis
macro written in FIJI 1.52 software (Schindelin et al. 2012), enabled
acquired images of walnut pellicles in 100 welled trays, in a JPEG
format, to perform batch runs with output measurements of color in
L� (lightness), a� (red/green color), and b� (yellow/blue color). The
data produced contains each color scores for every pellicle measured.
Details on system and method was modified from (Donis-González
et al. 2020) to enable segmentation of both light and dark kernels
from tray background, run much faster at less than 30 sec per image,
and run silently in computer background without a region of interest
(ROI) manager pop-up (Figure 2, File S3).

Analysis of phenotypic variation
Multi-year phenotypic data collected for DFA scores and the CVS
scores were analyzed with ANOVA using R packages ‘car’, ‘agricolae’,
‘lme4’ with equation (1) for the model,

Yijkl ¼ mþ fl þ gi þ yk þ fyð Þik þ aijk þ eijkl (1)

where Y is the color measurement taken on the i-th genotype, with j
number of measurements in the k-th year with l number of families;m
is a constant value (overall mean), fl is the effect on the color
measurement of the l-th family, gi is the effect on color measurement
of the i-th genotype, yk is the effect on color measurement of the k-th
year, (fy)lk is the interaction between family and year, aijk is the effect

Figure 2 Computer Vision System processing schematic. Computer vision system consists of a box frame with an attached camera fixed over an
illumination dome enclosed on all four sides. Performed steps are 1)image acquisition of WB-white balance and color checker 2)calibration macro
3)image acquisition of pellicles 4) processing macro which segments kernels from background and extracts quantitative color scores.
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of age on color measurement for the i-th genotype, j number of
measurements in the k-th year, and eijkl is the random error term
with mean 0 and variance s2

e.
For the ‘Chandler’ · ‘Idaho’ population, the adjusted means were

calculated in R package ‘lsmeans’ to account for the year differences
and one value per individual tree was used in the QTL analysis with
the equation (2) for linear model,

Yijk ¼ mþ ai þ bk þ ðabÞik þ eijk (2)

where y is the color measurement taken on the i-th genotype, with j
number of measurements in the k-th year, ai is the effect on color
measurement of the i-th genotype, bk is the effect on color mea-
surement of the k-th year, (ab)ik is the interaction between geno-
type and year, and eijk is the random error term with mean 0 and
variance s2

e. For the larger dataset of the 31 full-sib families, breeding
values (BV) per individuals were estimated using ASReml-R v4
(Butler et al. 2017) in order to remove environmental effects of years
and blocks on the phenotypes. In particular, the mixed model for
equation (3),

y ¼ Xt þ Zuþ e (3)

where y denotes the (n · 1) vector of observations, t is a (p · 1)
vector of fixed treatment effects (block and year), X is an (n · p)
design matrix, u is the (q · 1) vector of random effects (pedigree), Z
is an (n · q) design matrix, e is the (n · 1) vector of residual error.
The pedigree utilized in the model was reconstructed to identify
corrected kinship relationships from the original UC Davis Walnut
Improvement Program pedigree using the Axiom J. regia 700K SNP
array (Marrano et al. 2018). Narrow sense heritability per trait was
estimated with equation (4),

h2 ¼ s2
A

s2
P
¼ s2

A

s2
A

� �þ s2
R

� � (4)

where the additive genetic variation s2
A is divided by the total

phenotypic variation s2
P (additive + environmental variation or

residual).

QTL mapping
Quantitative-trait loci mapping was performed using the genetic
maps (File S5) of the bi-parental population ‘Chandler’ · ‘Idaho’
described in (Sideli et al. 2020). In particular, the ‘Chandler’ genetic
map spanned 998.31 cM with 1,165 markers in total, while the
‘Idaho’ map contained 1,753 markers for a total length of 1,693.88
cM. All measurements of pellicle color were evaluated in R/QTL
software v1.44.9 (Broman et al. 2003). Phenotypic measurements
from each year and the adjusted mean of the two years were first
assessed using simple interval mapping in a single QTL model with
scanone and ‘Haley Knott’ regression (Haley and Knott 1992).
Significance thresholds were defined using 1,000 permutations for
estimating critical values of alpha = 0.05 (Churchill and Doerge
1994). When multiple QTL were detected per trait, their precise
location was adjusted and tested using ANOVA by considering
both QTL locations. Briefly, utilizing the function sim.geno, mul-
tiple imputations were performed to fill in missing genotype data
with a step of 1 (cM) and 100 imputations. A multiple QTL model
was then fitted with the function fitQTL where both trait QTL
identified in scanone were added in the model. The function
refineQTL was applied and adjusted if the new positions in the
ANOVA the model had a greater fit (LOD and p-values). The

Bayesian credible interval for 5% error rate was implemented as
the confidence QTL interval.

Genome-wide association analysis
The whole population was genotyped using the Axiom J. regia 700K
SNP array as described in (Marrano et al. 2018). Association mapping
was performed using the high-quality Poly High Resolution SNPs
(335K; for details see (Marrano et al. 2018). Quality filtering was
performed in PLINK 1.9 (Purcell et al. 2007); individuals with less than
90% genotypic data were filtered, along with SNPs having aminor allele
frequency less than 5%, resulting in a total of 217K SNPs to apply for
analysis. The maximum genotypic call error rate was set at 5%, and
SNPs were retained if their genotype frequencies corresponded with
Hardy Weinberg expectations (p-value ,0.001).

Principal components of SNP markers were obtained by running
the mixed linear model (MLM) algorithm in GAPIT. The first com-
ponent explained 9.39% variation, the second PC explained 6.97%
variation, the third PC explained 5.31%, the fourth PC explained 3.41%,
and the fifth PC explained 2.63%. The number of principal components
(PCs) to include as covariates in the models was defined based on the
screeplot (Figure S2).

Genome-wide associations were conducted using the Fixed and
Random Model Circulating Probability Unification (FarmCPU) al-
gorithm (Liu et al. 2016) and the multi-locus mixed linear model
(MLMM) algorithm (Segura et al. 2012) in the R package genomic
association and prediction integrated tool (GAPIT v3) (Wang and
Zhang 2018). The MLMM is a multi-locus mixed linear model
(MLM) (Yu et al. 2006) where both Q (population structure) + K
(kinship matrix) are fitted to the model as random effects, so that
type 1 errors are reduced from spurious associations due to re-
latedness and population structure. A VanRaden kinship matrix
(VanRaden 2008), and PC‘s were calculated in GAPIT and added as
covariates in the model. FarmCPU is also a multi-locus model
developed to control false positives by utilizing markers as cova-
riates in a stepwise MLM to remove markers that are confounding
with kinship (Lui et al. 2016). This model was set to perform
10 iterations, with four to six PC’s added as covariates, depending
upon the goodness of fit in the QQ-plots for each color phenotype,
a minor allele frequency threshold of 5%, and the default parameters
for bin size. A 5%Bonferroni threshold (2.29 · 1027) was used to assess
significance, and Q-Q plots and Manhattan plots were inspected for
evidence of inflation. A multiple corrections test (Gao et al. 2008)
was applied in order to assess SNPs with a less stringent threshold
(4.70 · 1026).

Mapping of candidate genes
Since large LD blocks were observed in the GWAS population, due to
high relatedness of individuals, a 100 kbwindow around significant loci
were scanned to identify putative candidate genes. This was determined
by examining LD decay plots and there was a large drop in R2 between
100-120 kb. Within these genic regions the predicted mapped genes
and functional annotation as described in (Marrano et al. 2020) were
utilized from the new chromosome-level assembly of the ‘Chandler’
reference genome v2.0, found at https://www.ncbi.nlm.nih.gov/assembly/
GCA_001411555.2 and annotations foundat https://hardwoodgenomics.org/
Genome-assembly/2539069?tripal_pane=group_downloads.

Data availability
All data required to replicate the analyses are available as supplements
cited in-text or in Supplemental data files 1-7. Computer vision
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system methods and macros are available in supplemental (File S1,
File S2, File S3) respectively. Output tables from ANOVA in the
GWAS population provided in File S4. ‘Chandler’ and ‘Idaho’
genetic maps with phenotypic data are available in supplemental
(File S5). Estimated breeding value phenotypes and principal
components used in GWAS analysis are available in supplemental
(File S6, File S7). Supplemental data file S8 contains raw color score
data for both the GWAS population and ‘Chandler’ x ‘Idaho’
population. Supplemental material available at figshare: https://
doi.org/10.25387/g3.12276539.

RESULTS

Phenotypic variation in pellicle color
In general, ‘Chandler’ produces kernels with an extra-light pellicle
color, while Idaho’s kernels are light amber (Figure S1); these
differences are consistently observed in both the DFA and CVS

analyses. For the ANOVA linear models significant (P , 0.0)
factors were family, year of harvest, family · year interaction,
individual, and age; however age was not a significant factor in
the linear models for DFA and L� phenotypes (File S8). For the
calculation of adjusted means with ‘Chandler’ · ‘Idaho’ dataset,
all terms and their interactions were significant (P , 0.0001)
(File S4).

The phenotypic distribution of color scores in this study revealed
that the highest frequency of DFA color score is found in the category
‘2’, while the CVS color scores are on a continuous scale (Figure 3).
Phenotypic values for L� and b� are highly correlated, 0.80, while a�

and DFA� score show a moderate correlation of 0.62 (Figure 3).

Heritability and breeding value estimates
Pellicle color measurements acquired using the new image-based
phenotyping method yielded values of the narrow-sense heritability

Figure 3 Correlation of traits for walnut pel-
licle color. Correlation of phenotypic scores
(L� a� b� and DFA) based on adjusted means
for harvest 2015, 2016 for 528 individual trees.
The scale ranging from -1 – +1 indicates level
of correlation.

n■ Table 1 Results from QTL mapping for 168 individuals in the ‘Chandler’ 3 ‘Idaho’ mapping population for different color phenotypes.
Interval was determined by Bayes 95% Credible Interval, Pvalues converted from LOD score cutoff determined from 1000 permutations of
phenotypic data, R2 is the variance explained for QTL; if two years of data then R2 taken on multi-year data. Year of detection includes a
single year of detection, or in both years 2016/2017

Trait Population Chr Pos (cM) Interval Physical Position (bp) Pvalue R2 Year of detection

L� Chandler 1 9.58 5.00 - 18.00 4620011 4.8726 0.107 17
L� Chandler 1 10.18 2.98 - 22.59 4756788 9.0726 0.116 16, 17
L� Chandler 16 27.27 16.24 - 36.89 20234419 2.5825 0.090 17
L� Idaho 10 59.11 41.25 - 65.66 14732679 3.5325 0.090 16, 17
L� Idaho 14 34.02 27.00 - 42.00 6515088 1.1124 0.076 17
a� Chandler 1 9.60 5.39 - 18.00 4532719 3.6326 0.103 16, 17
a� Chandler 7 1.19 0 - 70.00 993462 9.2926 0.105 16
a� Chandler 16 27.27 16.24 - 36.89 20234419 1.1624 0.066 17
a� Idaho 10 59.11 41.25 - 65.66 14732679 9.1425 0.090 17
a� Idaho 14 35.21 27.00 - 42.00 6764116 4.2925 0.087 16, 17
b� Chandler 1 9.57 2.98 - 22.59 4620011 6.2927 0.130 17
b� Idaho 1 48.12 35.10 – 53.00 13073793 7.1625 0.082 16, 17
DFA Chandler 1 9.96 0 - 10.00 4223640 1.8825 0.096 16, 17
DFA Chandler 4 13.69 8.93 - 25.00 17907379 8.0925 0.087 16, 17
DFA Idaho 10 88.89 73.00 - 104.00 31577799 5.3325 0.086 17
DFA Idaho 14 38.00 28.00 - 41.76 6764116 3.6325 0.092 17
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Figure 4 Manhattan plots from QTL mapping
of ‘Chandler’ · ‘Idaho’ population. A. SNPs seg-
regating in the ‘Chandler’ population. QTL iden-
tified on Chr01 for L�, a�, DFA, scores detected
two-year dataset, while b� only detected in 2017,
and on Chr04 for the DFA score in both years. B.
‘Idaho’dataset contains QTL identified on Chr10
for L�, a�, andDFAaveraged scores over 2016 and
2017, and QTL on Chr14 for the DFA score in
2017.
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Figure 5 Manhattan plots from genome-wide association analysis with CVS phenotypes. A1. L� results with MLMM model A2. L� results with
FarmCPU model. A3.L� QQ-plots for both models. B1. a� results with MLMM model B2. L� results with FarmCPU model. B3. a� QQ-plots for both
models. C1.b� results with MLMM model B2. b� results with FarmCPU model. B3.b� QQ-plots for both models. SNPs that did not anchor to any
chromosome during the assembly were left as undefined in the orange after Chr16.
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similar to the DFA scoring system (h2 DFA = 0.566 0.05, h2 L� = 0.58
6 0.15, h2 a

� = 0.60 6 0.04, h2 b
� = 0.53 6 0.07). ‘Scharsch

Franquette’, a selection made in California which is genetically
identical to ‘Franquette’, a French variety, is a founder of the UC
Davis Walnut Improvement Program, displayed the highest breed-
ing value (47.35) for the lightness L� score. Families that possessed
multiple individuals with top L� score breeding values included
10-024 (03-001-977 · ‘Ivanhoe’), 11-030 (04-003-107 · ‘Ivanhoe’)
and 09-25 (95-026-16 · 94-019-85) along with founder ‘Waterloo’,
and ‘Chandler’ (Table S1).

QTL mapping
Color scores often had overlapping regions of significant marker
trait associations (Table 1, Figure 4). For the ‘Chandler’ map, QTL
explaining L� and a� score phenotypes were identified on Chr01
and Chr16, where only on Chr01 was a stable QTL for both
2016 and 2017 thereby explaining 11.62% of variance for L� and
10.53% for a� (Figure 4, Figure S3). Additional QTL’s for a� score
phenotype in the ‘Chandler’ map were detected on Chr07 in the
year 2016 only (Figure S4). For the DFA score in the ‘Chandler’
map, QTL were located on Chr01, in an overlapping interval with
L� and a� (Figure 4), and Chr04 (Figure S5). In ‘Idaho’ map, a QTL

for both L� and a� score phenotypes was detected on Chr10 in both
2016 and 2017 explaining 9% of the variance for those traits. A
second QTL on Chr10 was identified for the DFA score (Figure 4).
In addition, a QTL for DFA scores was detected on Chr14 in
correspondence with the QTL identified for the L� and the a� pheno-
types (Figure S6). For the b� score, two QTL were identified on
Chr01 in both populations ‘Chandler’ and ‘Idaho’, and they over-
lapped for some of their length (‘Chandler’QTL interval 2,966,643 –
9,763,773 bp; ‘Idaho’ QTL interval 8,826,101 – 14,691,279 bp)
(Figure 4, Figure S7).

Genome-wide association mapping
Principal component analysis revealed four to six principal com-
ponents which explained SNP variation for the 31 full-sib families in
the Walnut Improvement Program, excluding ‘Chandler’ · ‘Idaho’
(Figure S2). See Figure 5 for an overview of Manhattan plots for
CVS phenotypes. The most significant marker trait association for
the L� score was on Chr01 with a MAF of 0.20 (Table 2). There were
significant SNPs detected for both L� and b� scores that were
identical (Chr01 and Chr12). For the a� score, the most significant
marker trait association was found on Chr08, while significant trait-
loci correlation were also identified on Chr10, Chr11, Chr14, Chr15,

n■ Table 2 Most significant marker-trait associations from genome-wide association scan of (n = 528)

Trait Chr Position (bp) Pvalue aMAF bR2 Effect (est)

L� 1 24588560 2.05215 0.20 0.05 21.02
L� 4 3580183 5.4828 0.16 0.02 0.73
L� 5 7700218 2.73211 0.10 0.07 21.08
L� 8 28491012 2.49211 0.07 0.04 21.28
L� 9 14110666 8.1128 0.47 0.07 0.63
L� 12 1886325 5.1826 0.14 0.05 0.66
L� 12 3406040 2.6626 0.47 0.06 0.88
L� 15 15274698 9.08210 0.09 0.02 1.05
a� 1 37670750 7.4127 0.11 0.05 20.30
a� 8 24731099 5.2228 0.09 0.07 20.81
a� 8 18643646 1.64214 0.10 0.04 20.28
a� 10 34936156 7.6629 0.45 0.04 20.25
a� 11 36386668 5.4426 0.05 0.03 0.23
a� 14 3094777 5.7027 0.28 0.04 20.26
a� 15 16729948 3.2829 0.07 0.01 0.45
a� 16 26668826 2.3925 0.09 0.04 0.26
b� 1 24588560 1.15212 0.20 0.05 21.02
b� 1 35482903 1.8327 0.41 0.04 0.46
b� 7 5027345 7.5626 0.06 0.05 20.24
b� 7 43498845 2.6126 0.09 0.06 0.44
b� 8 24680376 5.8826 0.30 0.06 0.31
b� 9 11456318 7.4427 0.24 0.06 20.29
b� 10 12202442 1.0328 0.43 0.04 0.38
b� 11 5382614 1.6225 0.16 0.02 20.35
b� 12 3406040 6.2728 0.47 0.06 0.88
b� 13 26311574 6.2326 0.09 0.01 20.24
b� 13 34566210 2.7327 0.06 0.05 0.63
b� 14 3126302 6.4829 0.29 0.04 0.53
DFA 6 13137859 8.9929 0.36 0.006 0.26
DFA 7 51065074 4.70211 0.14 0.08 20.13
DFA 8 28588006 4.2526 0.07 0.02 0.17
DFA 9 14771377 1.6226 0.43 0.03 0.05
DFA 12 25920027 4.2627 0.49 0.05 20.07
DFA 13 38230982 1.1129 0.49 0.01 0.07
DFA 16 26455353 3.4727 0.14 0.04 0.09
a
MAF minor allele frequency.

b
R2 variance explained by significant SNP, P.value significance from Bonferroni taken from L� =model with 4 PCs, a� =model with 4 PCs, b� =model with 6 PCs, DFA =
model from 5 PCs.
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Chr16 with different models. For the b� score, both the MLMM
and FarmCPU models detected significant associations on Chr07
and Chr08. Additional associations for the b� score were found on
Chr09 and Chr10, with many other small QTL just below thresh-
old (Chr01, Ch04, Chr11, Chr12). For the DFA scores, a signif-
icant marker trait association on Chr08 was detected with both
MLMM and FCPU models (Figure S8). Significant associations
were identified in similar chromosomal regions for both the CVS
and DFA scores, even though many of them did not reach the
significance level of 2.29 · 1027 (i.e., Chr 01, Chr09 and Chr13,
Chr16) (Figure S8).

The SNP associated with the DFA scores were in moderate LD
with SNP associated with the L� scores on Chr01 (r2 = 0.37) and with
SNP associated with the a� score on Chr16 (r2= 0.63). Pairwise LD
measures between these SNPs associated with DFA and L� scores and
SNPs associated with DFA and a� scores are visualized to show close
proximity to each other 16.29 kb and 213 kb respectively (Figure 6).

Co-localization of marker trait associations in QTL
mapping and GWAS
In many cases there were overlapping regions between marker
trait associations detected in both QTL mapping and GWAS
(Figure 7). For Chr01, both QTL intervals in association with
L� score and DFA score detected in ‘Chandler’ map (220,484 -
9,763,773 bp) and (1,495,995 – 4,819,547 bp) respectively, and
SNPs identified from GWAS within those intervals (5,824,300 bp)
and (2,674,553 bp) respectively overlapped. Chromosome 10 dis-
played two co-localized regions for both associations found for
L� and DFA score in the ‘Idaho’ map and the GWAS; L� score
phenotype associated with SNP at (14,011,277 bp) fell within
(9,513,973 – 15,033,186 bp) QTL region, and DFA score associated
with SNP at (26,815,371 bp) lied within the (26,206,323 –
35,601,472 bp) interval. Due to a 10cM marker gap on Chr14
in ‘Idaho’map, the nearest SNP to the a� QTL interval began at
(4,615,740 bp), which was 1.5 Mbp away from the significant SNP
identified with the GWAS at (3,094,777 bp). Lastly, on Chr16 the

SNP (26,668,826 bp) associated with the a� score lies 4.47 Mbp
(22,190,531 bp) away from the end of the QTL interval identified
in ‘Chandler’ map.

Similarly, (Marrano et al. 2019)) performed a GWAS analysis on
584 walnut trees of the UC Davis Walnut Improvement Program
utilizing 30 years of historical data based upon the DFA scoring
method. There were two marker trait associations; Chr07 and Chr09
which co-located with three marker trait associations in this study for
DFA and L� scores, and were in moderate LD (r2 = 0.54, 0.64, 0.50)
respectively (Table S2).

Complete L�, a�, b� information for putative
gene functions
Six hundred, twenty-nine (629) putative candidate genes were iden-
tified within 100 kb windows surrounding the significant SNPs (Table
S3). These putative candidate genes are predicted to have functions
related to abiotic stress, pathogen resistance, hormone signaling and
the biosynthesis of pigmented metabolites (Table S3, Table 3, Figure
8). Three putative gene functions were identified in association with
SNPs on Chr01. The first of these gene functions is the transcription
factorMYB113 which is associated with the L� score. The second gene
function appears to encode cinnamoyl alcohol dehydrogenase (CAD),
which is associated with the b� score. Lastly, the third gene function
which lies on Chr01 encodes tryptophan synthase (TRP), which is
also associated with the b� score. One gene function (transcription
factor MYB1) associated with the DFA score was identified on Chr07.
For the a� score, on Chr10 flavonol synthase/flavanone 3-hydroxylase
(FLS) was identified to be associated with a SNP, as well as on Chr11
chorismate mutase (CM). Two putative gene functions were identi-
fied on Chr12; the first of these genes was associated with both an
L� and b� score, and encoded 4-coumarate—CoA ligase while the
second gene encoded flavonoid 39-monoxygenase, was associated
with a DNA score. Four gene functions were identified to be
associated with SNPs on Chr13; the first gene function is anthranilate
phosphoribosyltransferase (PAT) which was associated with a b�

score, the second gene function was also associated with a b� score

Figure 6 Pairwise LD between associated SNPs for DFA and CVS color phenotypes. A. Chr01 SNP AX.17087682 associated with DFA phenotype,
and the SNP AX.170876805 associated with L� phenotype have a physical distance of 16.29 kb and LD measure of r2 = 0.36. B. Chr16 SNP
AX.171152745 associated with DFA phenotype and SNP a� AX.171508460 have a physical distance of 214 kb and LD measures r2 = 0.62.
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and encoded caffeic acid 3-O-methyltransferase (COMT), and the
final two gene functions on Chr13 both encoded FLS genes, were both
associated with L� scores (Table 3).

DISCUSSION
The use of semi-automated and high throughput phenotyping of walnut
pellicles uncovered novel SNPs associated with color in walnut pellicles.
The CVS was able to deconstruct the three main color components
contributing to trait variation which can be used as a fast and reliable
method for data collection and processing walnut pellicles.

By combining two complementary approaches, QTL mapping
and genome-wide association, we performed genetic analysis for

pigmentation in walnut pellicles clearly indicating a quantitative
nature of the trait by observing a few large effect loci, and many
small effects loci contributing to trait variation. In our QTL mapping
study with a population size of about 200, only Chr01 and Chr07
harbored QTL explaining greater than or equal to 10% total variance,
while most QTL found explained between 6–9% of the variance, and
the average genetic variance explained by SNP was 5%. In our GWAS,
with a population size of about 530, there were several small and one
or two large effect QTL for each color phenotype.

For the QTL mapping analysis, the ‘Idaho’ genetic map which was
constructed in (Sideli et al. 2020) was found to have nearly a twofold
increase range in map size of ‘Chandler’ genetic map. Shorter genetic

Figure 7 Co-localization of QTL mapping and genome-
wide association results. Associations for the L�, DFA and
a� phenotypes on Chr01, 10, 14, 16 displayed with
corresponding colored boxes or lines.
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maps of female parent in walnut and other species has also been
observed (Luo et al. 2015; Kefayati et al. 2019; Marrano et al. 2019)
thereby suggesting a lower recombination rate in the female parent of
walnut. ‘Chandler’ was also found to have many homozygous regions
which further supports lower recombination (Marrano et al. 2020).
On Chr01 of ‘Chandler’ genetic map, multiple QTL were identified in
the same genomic region for all color phenotypes. This can suggest
that the color determination is detecting the same differences con-
tributing to pigmentation due the correlation between color scores; L�

(lightness) was found to be in high association with the b� (amount of
yellow), and a� (amount of red) in moderate association with DFA.
The DFA scoring phenotype has low resolution power resulting in a
QTL curve that is less significant than the other three color pheno-
types. Consequently, it is less sensitive because it lacks the ability to
discriminate specific color components L�, a�, b� simply because it
encompasses all three measurements. The fact that the L� and a� were
found to have overlapping regions of association is due to the fact that
in the biosynthetic pathway, flavonol synthase/ (FLS/F3H) is bi-
functional to perform different reactions forming flavonols (FLS) or
proanthocyanins/anthocyanins (F3H) (Luka�cin et al. 2003), all which
are pigmented in a different way suggesting a complex regulation
for production of flavonols. Further exploration is needed to rule out
possible pleiotropy.

For the GWAS analysis we tested two models, FarmCPU and
MLMM, in order to account for population structure and/or kinship
in our population as to reduce any false positive or false negative
associations. As applied in the FarmCPU model, PCs will help
account for population structure, while for MLMM model, both
PCs and a kinshipmatrix is applied to account for levels of relatedness
among individuals (Yu et al. 2006). The FarmCPU method has a
higher detection for marker trait associations and the MLMM is
known to miss associations if they are related with population
structure (Cui et al. 2018). In our study we detected QTL that
overlapped with methods (QTL mapping and GWAS) and models,
and each method was able to detect additional QTL with large effects.
Here, FarmCPU method was more sensitive in that it detected more
marker-trait associations with greater effects than the MLMM
method. However, a plausible explanation is that some of these
associations can be related to population relatedness, since they were
not detected by the MLMM, which explicitly accounts for levels of
relatedness using the Q and K matricies as covariates.

Several candidate genes acting in pathways linked with the pro-
duction of pigmented metabolites in the flavonoid biosynthetic
pathway were identified by association with SNPs generated by
the GWAS and QTL analysis. Two putative genes in early flavonoid

biosynthesis, CM and FLS/F3H were associated with the a� score (9.5,
9.4 respectively), indicating that these genes may contribute to a slight
reddish/brown pigmentation. CM is involved in the biosynthesis of
phenylalanine and tyrosine as well as their derivatives, the phenyl-
propanoids, lignins, flavonoids and anthocyanins, most of which are
pigmented (Cotton and Gibson 1965; Cotton and Gibson 1968).
FLS/F3H is a bifunctional enzyme (Luka�cin et al. 2003); F3H generates
the dihydroflavonols which are precursors to anthocyanins and red-
brown proanthocyanidins (Britsch et al. 1981; Holton et al. 1993).
Similarly, the putative genes PAT, TS, 4CL, CAD and COMT were
associated with the b� score (26.5, 27.1, 27.6, 27.5, 27.4, respectively),
suggesting that these genes promote yellow color. PAT and TS both
act in the biosynthesis of tryptophan, a light yellow AAA and its
yellow/orange derivative tryptamine (Lovenberg et al. 1962; Baxter
and Slaytor 1972; Gibson et al. 1972). 4CL yields a precursor for
brown pigmented lignins and the rest of the flavonoid biosynthesis
pathway (Lindl et al. 1973; Gross and Zenk 1974). COMT and
CAD both act in modifying lignin precursors (Poulton et al. 1976;
Wyrambik and Grisebach 1979; Sarni et al. 1984; Gowri et al. 1991).
As previously described 4CL and FLS/F3H, also correspond to
association with the L� score (41.5, 42.0 respectively), suggesting
that these genes are associated with a pigmentation of the pellicle;
bifunctional FLS/F3H- FLS desaturates dihydroflavonols to yield
yellow/brown flavonols (Forkmann et al. 1980; Charrier et al.
1995). Finally, the putative gene F39H was associated with the
DFA score (2.2), indicating a possible diversity of colored pigments.
F39H hydroxylates flavanones, dihydroflavonols, flavones and flavo-
nols to increase the diversity of each of the aforementioned categories
of yellow flavonoids (Forkmann et al. 1980; Brugliera et al. 1999).

The results from this study will enable molecular breeders to
develop kompetitive allele specific pcr (KASP) markers from the most
significant SNPs, assisting in efficient selection at the seedling stage
rather than the selection process over a 5-10 years period requiring
trees to reach sexualmaturity. Early selection of progenywill dramatically
increase the efficiency in developing new cultivars. Due to the fact
that walnut growers are compensated based on human grader’s
perception of color, an improvement to the CVS algorithm would
include human input factors such as discrimination for veining,
speckling or size can be considered.

For further investigation, the creation and evaluation of genomic
prediction models will enable the integration of all the small QTL
effects to predict progeny with lighter pellicles, as the industry
demands. To solidify results pertaining to the putative candidate
genes for flavonoid production, an experiment setup to clone each
gene and express them in bacteria would verify gene function and

n■ Table 3 Gene products for putative candidate genes contributing to pellicle color

Chr Position Gene start Gene stop Gene ID Transcript ID Putative gene name Trait

Chr01 5824300 5746605 5753513 Jr01_08300 XP_018816729.1 Transcription factor MYB113 L�

Chr01 13073793 13032403 13039428 Jr01_15230 XP_018824948.1 Cinnamoyl alcohol dehydrogenase (CAD) b�

Chr01 42151069 42158912 42166648 Jr01_31290 XP_018827345.1 Tryptophan synthase (TS) b�

Chr07 51065074 50989265 50992246 Jr07_37390 XP_018821900.1 Transcription factor MYB1 DFA
Chr10 34936156 34824830 34829124 Jr10_23440 XP_018808783.1 Flavonol synthase/flavanone 3-hydroxylase (FLS/F39H) a�

Chr11 36386668 36459446 36461883 Jr11_30250 XP_018833669.1 Chorismate mutase 2 (CM) a�

Chr12 3406040 3421907 3426094 Jr12_02860 XP_018830336.1 4-coumarate–CoA ligase 1 (4CL) L�, b�

Chr12 25747726 25971475 25974144 Jr12_17130 XP_018860732.1 Flavonoid 39-monooxygenase (F3H) DFA
Chr13 26311574 26345153 26350078 Jr13_21620 XP_018819013.1 Anthranilate phosphoribosyltransferase (PAT) b�

Chr13 34566210 34564434 34567086 Jr13_26200 XP_018817142.1 Caffeic acid 3-O-methyltransferase (COMT) b�

Chr13 35292203 35225821 35228439 Jr13_26690 XP_018817156.1 Flavonol synthase/flavanone 3-hydroxylase (FLS/F39H) L�

Chr13 35292203 35246890 35252142 Jr13_26700 XP_018820940.1 Flavonol synthase/flavanone 3-hydroxylase (FLS/F39H) L�
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Figure 8 Flavonoid biosynthesis overview. Shown is a summary of flavonoid biosynthesis, including the shikimate, aromatic amino acid,
phenylpropanoid and flavonoid biosynthesis pathways. Gene abbreviations in black were found to be associated with SNPs in this study. The
expression of genes in red are known to be regulated by MYB1 and/or MYB113 transcription factors, but not associated with the SNPs reported in
this study.
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identify the origin of the chemical reactions occurring in response to
developmental stages, environmental stress or autophagy.
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