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ABSTRACT Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC),
are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our
goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and
thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the
yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic
interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative
chemical-genetic interactions are involved in protein quality control pathways through the proteasome.
Genes involved in actin cytoskeleton organization and endocytosis also had negative chemical-genetic
interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment.
Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by
two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-
incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through
the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Further
suggesting the potential of genetic changes to influence the cellular response to proteotoxic stress,
overexpressing many of the genes that had a negative chemical-genetic interaction with AZC suppressed
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AZC toxicity.

Non-proteinogenic amino acids can be recognized by aminoacyl-
tRNA synthetases, charged onto tRNAs and mis-incorporated into
proteins [reviewed in Rodgers and Shiozawa (2008)]. L-azetidine-2-
carboxylic acid (AZC) is a non-proteinogenic imino acid analog of
proline produced by liliaceous plants as well as garden and sugar beets
(Fowden 1959, 1972; Rubenstein et al. 2006). In species where AZC is
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not normally produced, it is activated by the prolyl-tRNA synthetase,
charged onto tRNAP™ and mis-incorporated into proteins at proline
codons (Peterson and Fowden 1963). In nature, AZC inhibits growth
of surrounding vegetation and poisons predators presumably by
inducing protein mis-folding (Fowden and Richmond 1963). In
mammals, AZC treatment leads to defects in the production of
the proline rich protein collagen and results in limb deformation
(Aydelotte and Kochhar 1972).

The proteotoxic stress that results from incorporating non-
proteinogenic amino acids into proteins is similar to that arising
from errors in protein synthesis during translation. Mistranslation
occurs at a frequency of 107* to 107¢ (Joshi et al. 2019), and
increases in response to different environmental conditions (Ling
and Soll 2010; Wang and Pan 2016; Mohler et al. 2017) or due to
mutations in the translational machinery (Moghal et al. 2014; Raina
et al. 2014; Hoffman et al. 2017; Lant et al. 2017; Berg et al. 2017).
Mis-incorporation frequencies as high as 8 to 10% can be achieved
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in yeast and Escherichia coli (Ruan et al. 2008; Mohler et al. 2017;
Zimmerman et al. 2018; Berg et al. 2019).

The goal of our screen was to identify genes that show chemical-
genetic interactions with AZC in Saccharomyces cerevisiae and thus
systematically define the potential pathways cells use to cope with
amino acid mis-incorporation. Using the yeast deletion (Giaever et al.
2002) and temperature sensitive collections (Costanzo et al. 2016), we
identified 72 alleles with negative chemical-genetic interactions with
AZC and 12 alleles that suppressed AZC-induced growth defects
(positive chemical-genetic interaction). Genes encoding proteasomal
proteins and proteins involved in endocytosis and actin cytoskeletal
organization were identified as having negative chemical-genetic
interactions, likely due to their being required for cells to tolerate
AZC. These pathways were also required for tolerance to two other
non-proteinogenic amino acids, canavanine, an arginine analog, and
thialysine, a lysine analog, and to mistranslation resulting from a
tRNASer varjant that mis-incorporates serine at proline codons.
Genes with positive chemical-genetic interactions with AZC func-
tioned mainly in the TOR signaling pathway and in controlling amino
acid permeases.

MATERIALS AND METHODS

Genetic screen for AZC interactions

The yeast deletion collection (Giaever et al. 2002) and temperature
sensitive mutants (Ben-Aroya et al. 2008; Li et al. 2011; Kofoed et al.
2015; Costanzo et al. 2016; Berg et al. 2018) were arrayed in
quadruplicate 1536 format with four replicate colonies for each
mutant using a BioMatrix (S&P Robotics Inc.) automated pinning
system on yeast extract-peptone medium with 2% glucose (YPD)
containing 200 wg/mL geneticin (G418; Invitrogen). Newly pinned
arrays were grown for 24 hr then used as the source to re-pin the cells
first on synthetic defined (SD) medium containing uracil, leucine,
histidine and methionine then on to the same medium containing
30 wg/mL AZC (ChemCruz). Cells were grown for 5 days at 30°.
Plates were photographed every 24 hr after pinning.

Calculating fitness in AZC and identification of hits

Fitness of each strain was defined as the ratio between colony size in
medium containing AZC compared to colony size on medium
lacking AZC. Raw colony size for each strain was determined using
SGATools (Wagih et al. 2013). Further data analysis was performed
using a custom R script (Supplemental File 1). Strains displaying
small colony size in the absence of AZC, defined as growth less than
5% of the average colony size per plate, were removed from the
analysis. Fitness of each strain was normalized using a Z-score
method per plate. Briefly, the colony sizes were transformed so that
the average colony size per plate was 0 and the standard deviation was
set to 1. Strains with a Z-score greater than or equal to 3 were
considered to have a positive chemical-genetic interaction; strains
with Z-scores less than or equal to -1.5 were considered to have a
negative synthetic interaction. Alleles of essential genes were grouped
together and one Z-score calculated for the gene. Data can be found in
supplemental file 2.

Growth curve validation in AZC, canavanine and
thialysine-containing media

Strains with negative and positive chemical-genetic interactions were
validated in two independent growth curve experiments. In each
experiment, strains were grown in biological triplicate overnight in
YPD medium containing 200 pg/mL G418. Cells were washed with
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sterile water then resuspended in SD medium. Cultures were diluted
to ODggo of 0.1 in either SD medium or SD medium containing
10 pg/mL AZC. Cells were incubated with agitation at 30° and ODggq
measured every 15 min using a BioTek Epoch 2 microplate spectro-
photometer for 24 hr. Area under the curve (AUC) was calculated for
each strain using the R package ‘growthcurver’ (Sprouffske and
Wagner 2016). The AUC values were used as a measure of fitness
and normalized so that the wild-type strain in SD medium had a
fitness of 1. The experimental fitness of each mutant grown in AZC
medium (W;;) was compared to the expected fitness based on the
fitness of the wild-type strain grown in AZC medium (W;) and the
fitness of the mutant strain in SD medium (W;) using a multiplicative
model (calculated as W; — [W; * Wj]). Strains in both replicate
experiments that scored less than -0.1 (P = 0.05; Welch’s ¢-test) were
considered as having true negative chemical-genetic interactions
while strains that scored greater than 0.1 (P = 0.05; Welch’s #-test)
were considered as having true positive chemical-genetic interactions.
Data can be found in supplemental file 3.

Growth curves were performed as above in SD medium or SD
medium containing 1.0 pg/mL L-canavanine (Sigma) or 7.5 pug/mL
S-aminoethyl-L-cysteine (thialysine; Sigma). Interaction scores for
the chemical-genetic interactions were calculated as above. Data can
be found in supplemental file 4.

Overexpressing genes with negative chemical-genetic
interactions with AZC

Y6897 (MATa his3A1 leu2A0 ura3A0 met15A0 canlA:STE2pr-
S.p.HIS5 lypIA::STE3pr-LEU2) containing genes with negative
chemical-genetic interactions with AZC were obtained from the
FLEX collection where each open reading frame is cloned on a
URA3 plasmid under a galactose inducible promoter (Hu et al. 2007;
Douglas et al. 2012). Strains were grown in triplicate in media
lacking uracil and containing raffinose as the carbon source. Cul-
tures were diluted to ODgg of 0.1 in media lacking uracil and
containing galactose either with 10 pg/mL AZC or without. AUC
was calculated from 24 hr growth curves at 30° as above. The ratio of
the AUC in media with and without AZC was calculated and
compared to the control strain containing an empty plasmid.
Strains with ratios twofold or greater that of the control strain
and with a corrected P-value = 0.05 were considered as suppressors
of AZC induced toxicity. Data are found in supplemental file 6.

Synthetic genetic array analysis of AZC hits with
mistranslating tRNAYG, G26a
The SGA starter strain, Y7092 (MATa canlA:STE2pr-SpHIS5 lyp1A
his3AI leu2A0 ura3A0 met15A0), was a kind gift from Dr. Brenda
Andrews (University of Toronto). A wild-type tRNAS®" or tRNA¥Eg,
Gasa- @ serine tRNA with a proline anticodon and a G26A mutation
(Berg et al. 2017), were integrated at the HO locus with the natNT2
cassette to create CY8611 (MATa HO:natNT2 canlA:STE2pr-
SpHIS5 lyplA) and CY8613 (MATo HO:natNT2-SUP17yGG, Gasa
canlA:STE2pr-SpHIS5 lypIlA) as described in Zhu et al. (2020).
For the SGA analysis, strains that showed negative synthetic
interactions with AZC were re-arrayed in 384 format using the
BioMatrix automated pinning robot. Three arrays were constructed.
Each validated AZC sensitive allele was surrounded by a control
his3A strain to mitigate nutrient effects. The position of each AZC hit
was randomized on each of the three arrays. The arrays were
expanded to 1536-format where each strain was represented in
quadruplicate on each plate. The SGA control and query strains
(CY8611 and CY8613) were mated to each array at 22°. The SGA
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Figure 1 A screen identifying genes that have chemical-genetic interactions with AZC. (A) Overview of the screening approach. (B) Distribution of
Z-score normalized fitness values for 5307 strains representing 4970 genes from the deletion and temperature sensitive yeast collections grown on

medium containing 30 ng/mL AZC.

analysis was performed as described in Tong et al. (2001). Selected
MATa double mutants were grown at 30° for 5 days and imaged every
24 hr. Images from day 3 were analyzed and scored using SGAtools
(Wagih et al. 2013) and a custom R script (supplemental file 1).
Alleles with SGA score = -0.1 and a corrected P-value = 0.05 were
called as synthetic with tRNA¥EG Gaea. Data can be found in
supplemental file 5.

Fluorescent microscopy and actin patch quantification

A wild-type strain was grown overnight in SD media and diluted to an
ODgqo of 0.1 in either SD media or SD media containing various
concentrations of AZC (1 pg/mL, 2.5 pg/mL, 6 ng/mL, 10 pg/mL).
Cells were grown to an ODggo of 1 before being fixed in 3.7%
formaldehyde (Sigma). Cells were stained with fluorescein iso-
thiocyanate-ConA, rhodamine-phalloidin, and 4’,6-diamidino-2-
phenylindole as described in Ohya et al. (2005) and imaged with
100x magnification on a Zeiss Axio Imager Z1 Fluorescent mi-
croscope using ZEN Blue Pro software (Zeiss Inc.). The number of
actin patches per cell was measured using CalMorph (v1.2; Ohya
et al. 2005).

GO term analysis, genetic interaction profiling and

SAFE analysis

GO term analysis was performed using the GO term finder tool
(http://go.princeton.edu/) using a P-value cut off of 0.01 after ap-
plying Bonferroni correction. Terms were filtered with REVIGO
(Supek et al. 2011). GeneMANIA (Warde-Farley et al. 2010) was
used to generate protein-protein and genetic interaction networks
using the genetic interaction data from Costanzo et al. (2010, 2016)
and all available protein-protein interactions (GeneMANIA datasets
as of November 2019). Networks were constructed using Cytoscape
3.7 (Shannon et al. 2003). Spatial analysis of functional enrich-
ment (SAFE; Baryshnikova 2016) analysis was performed through
TheCellMap (http://thecellmap.org; Usaj et al. 2017).

Data availability

Strains and plasmids are available upon request. The authors affirm
that all data necessary for confirming the conclusions of the article are
present within the article, figures, and tables. Supplemental data can
be found on Figshare. Supplemental materials document contains all
supplemental figures. Supplemental file 1 contains custom R script
used to analyze the data. Supplemental file 2 contains the raw
Z-scores from the initial AZC screen. Supplemental file 3 contains
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the AUC values and interaction scores for the AZC growth curve
validation. Supplemental file 4 contains the AUC values and in-
teraction scores for the canavanine and thialysine growth curves.
Supplemental file 5 contain the results from the synthetic genetic
array with AZC sensitive strains and the mistranslating tRNA$5G, Gosa-
Supplemental file 6 contains AUC values from strains overexpressing
genes with negative chemical-genetic interactions with AZC. Supple-
mental material available at figshare: https://doi.org/10.25387/
g3.12783956.

RESULTS AND DISCUSSION

A screen for genes that have chemical-genetic
interactions with the proline analog AZC

To identify genes and pathways that have chemical-genetic interac-
tions with AZC, we measured the effect of AZC on growth of strains
in the yeast deletion and temperature sensitive collections, containing
4291 and 1016 alleles respectively. Each strain in the collections was
pinned in quadruplicate onto SD medium or SD medium containing
30 wg/mL AZC. We selected 30 pg/mL AZC as it decreased average
fitness by ~40% as measured by colony size (Figure S1). Fitness for
each strain was determined from the ratio of the growth of each
colony on medium with AZC to growth on medium without AZC
after 5 days at 30°. Fitness values were normalized on a per plate basis
and converted to Z-scores (Figure 1A). Nineteen genes (0.3% of the
mutants screened) had a Z-score greater than 3, whereas 255 genes
(5%) had a score less than -1.5 (Figure 1B; all raw colony sizes and
fitness values are found in supplemental file 2). These strains were
tested further for their potential suppression of AZC toxicity (positive
chemical-genetic interaction) and for their sensitivity to AZC (neg-
ative chemical-genetic interactions), respectively.

The 255 strains with potential negative chemical-genetic interac-
tions and the 19 strains with potential positive chemical-genetic
interactions were analyzed for growth in liquid medium containing
AZC. We tested different AZC concentrations with the wild-type
strain and a potential AZC sensitive strain hap5A (Figure S2). The
hap5A strain, with a Z-score of -3.5, was chosen as a representative
AZC sensitive strain to ensure that the AZC concentration in the
liquid growth assay allowed a dynamic range sufficient to detect
differences in sensitivity of the other strains. An AZC concentration
of 10 pg/mL was chosen for the validation as it decreased the fitness
of the wild-type strain by ~40% and the hap5A strain by greater than
85%. The growth curve analysis in liquid medium confirmed a
negative chemical-genetic interaction with AZC for 72 (28%) strains
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identified in the screen on solid medium: 43 from the deletion
collection and 29 from the temperature sensitive collection (Supple-
mental File S3). This represents 1.0% and 2.8% of all deletion strains
or temperature sensitive strains screened, respectively. The growth
curve analysis validated 12 (63%) strains with positive chemical-
genetic interactions; 6 from the deletion collection and 6 from the
temperature sensitive collection.

Defects in a variety of pathways result in negative
chemical-genetic interaction with AZC

The gene functions of the 72 AZC strains with negative chemical-
genetic interactions fell into 7 main categories when grouped
based on their descriptions in the yeast genome database
(www.yeastgenome.org; Figure 2A). Genes with a role in protein
quality control were the most abundant (17 genes) followed by
genes with a role in metabolism/mitochondria (13 genes). GO
analysis of biological processes identified an enrichment of genes
with roles in the proteasome and actin organization (Figure 2B).
Spatial analysis of functional enrichment (SAFE), which detects
network areas containing statistically overrepresented functional
groups (Baryshnikova 2016), similarly showed enrichment in the
protein turnover and cell polarity neighborhood of the yeast
genetic interaction network (Figure 2C).

There are multiple mechanisms that could result in a nega-
tive chemical-genetic interaction with AZC. First, and most gen-
erally, nonredundant genes required for cellular response to
proteotoxic stress will be identified since AZC is mis-incorporated
into proteins at proline codons. Second, temperature sensitive
alleles that are identified could be hypomorphs. Mis-incorporating
AZC into the gene product would reduce the steady state level of
the protein if the protein had one or more essential proline
residues. Related to this, misincorporation into a hypomorphic
protein could reduce function sufficiently to cause synthetic
interactions with genes (either knockouts or temperature sensitive
alleles) in secondary pathways. Third, AZC might act as a chemical
inhibitor, independent of its misincorporation into proteins,
specifically inhibiting a gene product. This would be similar,
for example, to the inhibitory effect of aminotriazole on His3
(Klopotowski and Wiater 1965) and would result in a genetic
interaction pattern closely resembling the gene whose protein is
the target of AZC. Lastly, genes with negative chemical-genetic
interactions with AZC could function to detoxify AZC, such as
the AZC N-acetyltransferase MPRI found in AZC resistant %1278
yeast strains (Shichiri et al. 2001), or increase intracellular pro-
line levels effectively diluting intracellular AZC concentrations
(for example mutations in the y-glutamyl kinase PROI; Sekine
et al. 2007).

We tested if genes having negative chemical-genetic interactions
with AZC suppressed AZC induced toxicity when overexpressed by
analyzing 53 strains found in the FLEX collection (Douglas et al.
2012). In the FLEX collection, individual genes are under GALyus
control, being overexpressed in the presence of galactose. The 53 over-
expression strains and a control strain containing an empty plasmid
were grown in galactose-containing liquid medium with or without
10 pg/mL AZC and the ratio of the area under the curve was
determined as a proxy of growth (Supplemental File 6). For the
control strain, AZC reduced the AUC to 18.3% * 7.5% of that in
medium lacking AZC. Overexpressed genes that resulted in a twofold
or greater ratio of AUC plus/minus AZC as compared to the control
strain (P = 0.05) were considered suppressors. Representative growth
curves are shown in Figure 3A and S4. Figure 3A includes the control
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strain, two non-suppressor strains (XRNI and PRE4) and six sup-
pressor strains. Twenty of the 53 genes suppressed AZC toxicity when
overexpressed (Figure 3B). The overexpressed genes did not increase
growth in medium lacking AZC, indicating that the suppression was
related to AZC toxicity; however, overexpression of some of the genes
(e.g., MCD4 and HSFI) reduced growth in the absence of AZC. The
extent of suppression varied, being the greatest for MCD4, MAK3 and
PUP2, which increased AUC to 76%, 62% and 61% that seen in the
absence of AZC, respectively. All of the functional groups contained
one or more genes that suppressed, including three of the seven genes
tested within the cell polarity/morphogenesis group and three of the
12 within the protein quality control group.

Similar cellular processes are required for resistance

to other amino acid analogs and tRNA-induced
mistranslation

To evaluate if the negative chemical-genetic interactions identified
here are specific for AZC, we determined the chemical-genetic
interactions of the 72 AZC-sensitive alleles identified above with
canavanine and thialysine, analogs of arginine and lysine, respec-
tively, in liquid media.

Both non-proteinogenic amino acids would give rise to proteo-
toxic stress, but their impact may vary depending upon the number
and importance of arginine and lysine residues in specific proteins.
From analyzing dose-response curves for each non-proteinogenic
amino acid (Figure S3), we selected concentrations of 7.5 ug/mL for
thialysine and 1.0 wg/mL for canavanine. These concentrations
resulted in ~40% decrease in wild-type growth, similar to the
concentration used for AZC. Of the 72 alleles identified to have
negative chemical-genetic interactions with AZC, 29 had a negative
chemical-genetic interaction with thialysine and 19 with canavanine
(Figure 4; See supplemental file S4 for interaction scores). Fifteen
genes had a negative chemical-genetic interaction with all three
amino acid analogs.

There were negative chemical-genetic interactions with canava-
nine and thialysine for genes in all of the functional groups with
known functions. For thialysine, the greatest similarity with AZC was
seen for genes with roles in ER/golgi/endosome/vacuole sorting
(67% overlap), transcription/chromatin (67% overlap), cell polarity/
morphogenesis (50% overlap). For canavanine, the greatest similarity
with AZC was seen for genes with roles in RNA processing (50%
overlap). Both thialysine and canavanine had negative chemical-genetic
interactions with genes involved in protein quality control (47%
overlap for thialysine and 35% overlap for canavanine). The negative
chemical-genetic interaction of genes in all these pathways suggests that
some genes in these pathways are required to respond to general amino
acid mis-incorporation. We do note that although the pathways are
similar for the three amino acid analogs, the specific genes identified
were not identical. This could suggest that AZC mis-incorporation
specifically and uniquely effects some genes in the identified pathways.
Whether this represents absolute differences between the effects of
AZC and other non-proteinogenic amino acids or differences in dose-
response is unclear.

Next, we determined if alleles that have negative chemical-genetic
interactions with AZC mis-incorporation for proline also have
negative genetic interactions with expression of a tRNA that mis-
incorporates a canonical amino acid in place of proline. This would
provide evidence that native mistranslation provokes a similar re-
sponse to the incorporation of a non-proteinogenic amino acid.
Using a synthetic genetic array (Tong et al. 2001), we measured
the fitness of double mutants containing one of the 72 alleles

-=.G3:Genes| Genomes | Genetics
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Figure 2 Negative chemical-genetic interactions with AZC. (A) Alleles that have negative chemical-genetic interactions with AZC are arranged
according to their predicted function. (B) Significantly enriched GO biological processes were determined from the set of genes with negative
chemical-genetic interactions with AZC. The number of genes identified corresponding to each GO term and their P-values are labeled on each bar.
(C) SAFE analysis of genes that have negative chemical-genetic interactions with AZC were mapped onto the yeast genetic interaction profile map
(Costanzo et al. 2016). Yellow dots represent genes within the local neighborhood of genes validated to have negative chemical-genetic
interactions with AZC. Bold terms represent network regions that are enriched.

identified above in combination with a mistranslating tRNASer
variant with a UGG anticodon (Berg et al. 2017, 2019). This variant
mis-incorporates serine at proline codons at ~5% frequency and
results in a 20% decrease in growth compared to a wild-type strain
(Berg et al. 2019). Twenty of the 72 alleles tested had a negative
genetic interaction with the mistranslating tRNA (Figure 5; See
supplemental file S5 for interaction scores). The greatest overlap
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was seen for alleles with roles in cell polarity and morphogenesis
(63%) and, as seen for canavanine and thialysine, protein quality
control (41%). Genes in metabolism/mitochondria and transcription/
chromatin did not have negative genetic interactions with tRNA
derived mistranslation. It is possible the chemical-genetic interactions
seen between the metabolism genes and the non-proteinogenic amino
acids arise from nutrient signaling effects in response to these
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Figure 3 Overexpressing genes with negative chemical-genetic interactions with AZC can suppress AZC induced toxicity. Fifty-three of the genes
having negative chemical-genetic interactions with AZC were obtained from the FLEX collection (Hu et al. 2007; Douglas et al. 2012).
Overexpression strains and a control strain containing an empty plasmid were grown in medium lacking uracil and containing raffinose, diluted
to an ODggp of 0.1 in medium lacking uracil containing galactose with or without 10 pg/mL AZC. Cells were grown for 24 hr at 30° and ODygo
measured every 15 min. (A) Representative growth curves of the control strain, six strains that suppressed AZC toxicity (MCD4, MAK3, PUP2,
RVS167, HSF1 and LAS17) and two strains that did not suppress (XRNT and PRE4). (B) Area under the curve was calculated with the R package
growthcurver (Sprouffske and Wagner 2016). Genes colored blue were considered to be suppressors of AZC toxicity when overexpressed and have
a ratio of AUC plus/minus AZC twofold or greater than that of the control strain (P < 0.05).
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Figure 6 AZC treatment results in increased actin patches. (A) Cells were grown in various concentrations of AZC to an ODgqg of 0.1, fixed, stained
with fluorescein isothiocyanate-ConA, rhodamine-phalloidin, and 4’,6-diamidino-2-phenylindole as described in Ohya et al. (2005) and imaged with
100x magnification on a Zeiss Axio Imager Z1 Fluorescent microscope. Number of actin patches per cell was quantified using CalMorph (Ohya et al.
2005). In each condition, at least 270 cells were quantified. All conditions were statistically different from each other (P < 0.05; Welch’s t-test) with
the exception of the comparison between 2.5 ng/mL and é pg/mL AZC. (B) Representative images of cells quantified in (A).

proteasome (UBP6, RPT6, RPNI11, PUP2, POC4, PRE6, PBAI,
RPN11, PRE4, IRC25, RPN12, PRE9). This supports previous reports
demonstrating the requirement for proteasomal protein degradation
for cells to cope with proteotoxic stress (Ruan et al. 2008; Hoffman
et al. 2017; Shcherbakov et al. 2019). Consistent with this, the gene
encoding ubiquitin (UBI4), a post-translational modification re-
quired in protein degradation signaling, also has a negative synthetic
interaction with AZC and thialysine. These genes as well as HSFI,
encoding the heat shock response transcription factor, almost cer-
tainly are required for cells to cope with proteotoxic stress. We note
that no single gene encoding a heat shock chaperone was found to
have a negative chemical-genetic interaction with AZC, likely due to
genetic redundancy.

The actin cytoskeleton has a role in protein

quality control

In addition to genes involved in protein quality control, our screen
identified other genes and pathways either required for resistance to
mistranslation or particularly sensitive to mis-made protein. One of
these additional pathways was actin patch organization and endo-
cytosis. Interestingly, deletions or temperature sensitive alleles of
genes involved in these pathways had a negative chemical-genetic
interaction with all three amino acid analogs and tRNA derived
mistranslation. These include two genes whose proteins are part of
the ARP2/3 complex (ARCI5 and ARCIS8), which is required for
motility and integrity of cortical actin patches (Winter et al. 1997) and
five genes that regulate actin nucleation and endocytosis (LASI7,
VRPI, RVSI61, RVS167 and PANI; Nagqvi et al. 1998; Duncan et al.
2001; Sun et al. 2006; Youn et al. 2010). To determine if AZC alters
cellular actin, we imaged cells stained with rhodamine-labeled phal-
loidin to visualize actin after treatment with various AZC concen-
trations (Figure 6). The increase in number of actin patches per cell
correlated directly with AZC concentration. In yeast, cortical actin
patches play roles in endocytosis and cell wall remodelling. Negative
genetic interactions were also observed between amino acid mis-
incorporation and vps27A and did2A, two genes involved in vacu-
olar sorting (Piper et al. 1995; Nickerson et al. 2006). It is possible
actin regulation and endocytosis pathways are required to turnover
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mis-made proteins at the plasma membrane. In support of this, Zhao
et al. (2013) demonstrated that yeast cells defective in endocytic
targeting and exposed to heat shock accumulate mis-folded cell
surface protein and die due to loss of plasma membrane integrity.
Amino acid mis-incorporation could have a similar effect on cell
surface proteins.

Genes involved in response to nitrogen compounds are
required for AZC-induced toxicity

The 12 validated strains that had positive chemical-genetic interac-
tions with AZC corresponded to deletion or mutation of 11 genes
(Figure 7A; Supplemental File 3). GO analysis identified enrichment
of genes involved in the cellular response to nitrogen compounds as
well as TOR signaling (Figure 7B).

Three of the genes with positive chemical-genetic interactions
with AZC function in AZC import. GNPI, a high affinity glutamine
permease (Zhu et al. 1996), and YDR509W, a gene which overlaps
with the 5’ coding sequence of GNPI, were both identified.
Andréasson et al. (2004) demonstrated that Gnpl is one of the
permeases that imports AZC, and increased Gnpl at the plasma
membrane enhances AZC toxicity (Nanyan et al. 2019). In addition,
AZC toxicity was suppressed by deleting DAL8I. DALSI is required
for GNPI expression, through the Ssyl-Ptr3-Ssy5 (SPS) sensing
pathway of extracellular amino acids (Boban and Ljungdahl 2007).

We tested if the twelve alleles with positive chemical-genetic
interactions with AZC more generally suppress mis-incorporation
using thialysine and canavanine (Figure 7C and 7D). Only deleting
ECMS suppressed toxicity resulting from all three non-proteinogenic
amino acids. ECM8 is an uncharacterized gene whose deletion results
in resistance to the aminoglycoside hygromycin b, an inhibitor of
translation (Lussier et al. 1997). It is possible that deleting ECM8
suppresses mis-made proteins by impacting translation levels. In-
terestingly, deletions of YDR509W and DALSI, described above to be
involved in AZC uptake, also suppressed canavanine sensitivity
suggesting these genes might have a broader role in the uptake of
amino acid analogs.

Positive chemical-genetic interactions with genes involved in the
TOR pathway is more specific since GTRI, MEHI and LST8 only had
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Figure 7 Genes that have positive chemical-
genetic interactions with AZC. (A) Network of
genes with positive chemical-genetic interac-
tions with AZC. Genetic and physical interaction
networks were generated using GeneMANIA.
Nodes represent gene/proteins, green edges
represent genes that have similar genetic in-
teraction profiles (Costanzo et al. 2010, 2016)
and blue edges represent proteins that physi-
cally interact. Dark purple indicates genes that
are part of the EGO complex. (B) Significantly
enriched GO biological processes were deter-
mined from the set of genes that have positive
chemical-genetic interactions. The number of
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positive chemical-genetic interactions with
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positive chemical-genetic interactions with AZC. Both Gtrl and
Mehl are part of the EGO complex which regulates sorting of the
general amino acid permease Gapl between the endosome and
plasma membrane (Gao and Kaiser 2006). Gtr1 also activates TORC1
in response to amino acid stimulation (Panchaud et al. 2013).
Downstream of TOR activation, Lst8 inhibits transcription factors
that activate enzymes responsible for glutamate and glutamine bio-
synthesis (Chen and Kaiser 2003). Decreasing either TOR activation
or downstream Lst8 activation increases glutamate and glutamine
synthesis, which triggers targeting of a variety of amino acid perme-
ases to the vacuole. Roberg et al. (1997) found that cells with the [s¢8-1
mutation are resistant to AZC, but sensitive to thialysine. Similarly,
we observed that both [st8-6 and Ist8-15 had negative chemical-
genetic interactions with thialysine, supporting the idea that Lst8
regulates a specific set of amino acid permeases.

The temperature sensitive allele of YHR020W, the prolyl-tRNA
synthetase, only had a positive chemical-genetic interaction with
AZC and likely decreases the amount of AZC charged onto tRNAs.
We observed a negative chemical-genetic interaction between this
allele and thialysine, likely reflecting the combined toxicity of de-
creasing charged tRNAP™ and mis-incorporating thialysine at lysine
codons. It is less clear how the other genes with positive chemical-
genetic interactions with AZC function. It should be noted two
strains, nop8-101 and sadl-1, had decreased fitness and that AZC
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/ 6 AZC. Chemical-genetic interactions with can-
avanine were determined by growth in liquid
media. Positive chemical-genetic interactions
with canavanine are colored purple. (D) Genes
with chemical-genetic interactions with thia-
lysine are shown on the network of genes
having positive chemical-genetic interactions
with AZC. Chemical-genetic interactions with
thialysine were determined by growth in lig-
uid media. Strains with a positive chemical-
genetic interaction with thialysine toxicity are
colored purple; strains with a negative chemical-
genetic interaction are colored yellow.

Positive Interaction
Negative Interaction

Thialysine

could be suppressing the slow growth caused by the mutation, rather
than the mutation suppressing AZC toxicity. Sen2 and Sadl, which
only had positive chemical-genetic interaction scores with AZC, are
involved in the splicing of tRNAs and mRNA, respectively (Winey
and Culbertson 1988; Lygerou et al. 1999). Interestingly, we observed
negative chemical-genetic interactions of sen2-1 and sadl-1 with
thialysine, indicating that the interaction between these alleles and
AZC is not the same for all types of proteotoxic stress. Nop8 is a
nucleolar protein required for 60S ribosomal subunit biogenesis and
physically interacts with Gtrl (Zanchin and Goldfarb 1999; Todaka
et al. 2005). The temperature sensitive nop8-101 allele also had a
positive chemical-genetic interaction with canavanine. Nop8 may
regulate Gtrl and act through the TOR pathway discussed above for
AZC or may play a more general role in controlling amino acid
uptake.

CONCLUSIONS

Using a chemical-genetic analysis we identified genes with positive
and negative chemical-genetic interactions with AZC. Many of
the genes with negative chemical-genetic interactions have roles in
protein quality control and are involved in the proteasome, suggest-
ing this is the main way cells degrade mistranslated proteins. We
also identified genes involved in actin organization, endocytosis
and vacuole sorting suggesting a possible role for the recycling of
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https://identifiers.org/bioentitylink/SGD:S000001901?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000004095?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000001901?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000005504?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000004590?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000005504?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000005504?doi=10.1534/g3.120.401876
https://identifiers.org/bioentitylink/SGD:S000004590?doi=10.1534/g3.120.401876

mis-made plasma membrane proteins in preventing toxicity due to mis-
incorporation. These same processes are also required for cells to cope
with two other non-proteinogenic amino acids, canavanine and thialy-
sine and serine at proline mistranslation caused by a tRNA variant.

Mistranslated proteins, either with non-proteinogenic amino acids
through genetic code expansion applications or with canonical amino
acids using tRNA and aminoacyl-tRNA synthetase variants, have ap-
plications in synthetic biology (Bacher et al. 2005; Wang and Pan 2015;
Reynolds et al. 2017; reviewed in O’Donoghue et al. 2013). Incorporating
non-proteinogenic amino acids with novel side chains can expand
functionality or specificity of a protein. Mistranslation with canonical
amino acids yields “statistical proteins”, which are pools of molecules
made from the same genetic template but with slightly different amino
acid compositions and as such can broaden the function of a protein.
Both situations result in proteotoxic stress by globally producing mis-
made proteins that must be managed by the cell. Our screen has
identified potential genes and pathways that carry out this function.
As we have shown by overexpressing genes with negative chemical-
genetic interactions, it is possible to modulate these genes and pathways
to create strains more tolerate to mis-made protein.
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