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Abstract

The identification of major histocompatibility complex (MHC)-binding peptides in mass 

spectrometry (MS)-based immunopeptideomics relies largely on database search engines 

developed for proteomics data analysis. However, because immunopeptidomics experiments do 

not involve enzymatic digestion at specific residues, an inflated search space leads to a high false 

positive rate and low sensitivity in peptide identification. In order to improve the sensitivity and 

reliability of peptide identification, we developed DeepRescore, a post-processing tool that 

combines peptide features derived from deep learning predictions, namely accurate retention time 

and MS/MS spectra predictions, with previously used features to rescore peptide-spectrum 

matches. Using two public immunopeptidomics datasets, we showed that rescoring by 

DeepRescore increased both the sensitivity and reliability of MHC-binding peptide and neoantigen 

identifications compared to existing methods. We also showed that the performance improvement 

was, to a large extent, driven by the deep learning-derived features. DeepRescore was developed 

using NextFlow and Docker and is available at https://github.com/bzhanglab/DeepRescore.
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1. Introduction

The major histocompatibility complex (MHC), also called the human leukocyte antigen 

(HLA) complex in humans, can bind to peptide antigens and display them on the cell surface 

for recognition by T-cells. The rich repertoire of peptides presented by MHC class I (MHC-

I) and MHC class II (MHC-II) complexes, referred to as the immunopeptidome, reflects the 
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health state of a cell. MHC-binding peptides derived from mutated and other cancer-specific 

proteins, pathogens, and self-peptides, in the case of autoimmunity, serve as leading targets 

for T-cell recognition. Liquid chromatography-coupled tandem mass spectrometry (LC-

MS/MS) is one of the most commonly utilized approaches to comprehensively interrogate 

the naturally presented MHC-binding peptide repertoire [1].

The most widely used method for peptide identification from LC-MS/MS-based 

immunopeptidomics data is database searching, in which MS/MS spectra are searched 

against a reference protein sequence database or a customized, sample-specific protein 

sequence database. This method was originally developed for the analysis of MS/MS spectra 

generated in bottom-up shotgun proteomics studies [2]. Database search tools developed for 

the analysis of shotgun proteomics data, such as Comet [3], MS-GF+ [4], X!Tandem [5], 

MaxQuant [6], and Mascot [7], can be and have been used for the analysis of 

immunopeptidomics data [8, 9]. However, this comes with a major risk. In shotgun 

proteomics experiments, proteins are digested into peptides by enzymes such as trypsin 

before LC-MS/MS analysis [10]. Due to the sequence specificity of enzyme cleavage, the 

database search space can be significantly reduced through an enzyme-specific search. In 

contrast, immunopeptidomics experiments do not utilize enzymatic digestion, and thus the 

database search space is much larger. This inflated search space can lead to a high false 

positive rate and low sensitivity in the identification of MHC-binding peptides [2, 11].

Several tools, such as MS-Rescue [12] and MHCquant [13], have been developed to address 

this limitation. To improve the sensitivity of MHC class I peptide identification, MS-Rescue 

uses high confidence peptide identifications, i.e., the peptides passing 1% false discovery 

rate (FDR) threshold, to train a model in order to rescore peptide identifications of lower 

confidence. Similarly, MHCquant uses Percolator [14] to rescore peptide-spectrum matches 

(PSMs) identified by Comet. Percolator uses semi-supervised machine learning to build an 

SVM-based classifier that can better discriminate between target and decoy PSMs. This is 

achieved by incorporating additional features not initially used in PSM scoring in the 

classifier. Classifier training begins with parsing the initial database searching results to form 

a group of high-scoring PSMs from the target proteins (positives) and another group of 

PSMs from decoy proteins (negatives). Assuming there are false positives and false 

negatives in the initial results, the learned classifier is applied to the entire set and computes 

a new score for each PSM. The procedure is repeated multiple times until convergence. This 

new score routinely increases the number of confident identifications because original search 

engine scores typically fail to address the specific characteristics of individual experiments. 

Compared to database searching without rescoring, rescoring using Percolator in MHCquant 

significantly improves the sensitivity of peptide identification in immunopeptidomics data 

analysis [13].

The performance of Percolator is tightly associated with the features used for semi-

supervised learning. Recent advancements in deep learning have enabled accurate peptide 

retention time (RT) prediction [15–17] and MS/MS spectrum prediction [15, 18, 19] for a given 

peptide sequence. We reasoned that adding these new, peptide-specific features to Percolator 

could further improve the confidence and sensitivity of peptide identification in 

immunopeptidomics data analysis. Here, we present DeepRescore, a novel 
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immunopeptidomics data analysis tool that leverages deep learning-derived peptide features 

to rescore PSMs. We demonstrate the performance of DeepRescore using two public 

immunopeptidomics datasets and experimental validation with synthetic peptides.

2. Materials and methods

2.1 Datasets and processing

Two public immunopeptidomics datasets were used in our study. The first dataset was from 

an in-depth immunopeptidomics analysis of native melanoma tissue samples from 25 

melanoma patients, which was generated by a Q Exactive HF mass spectrometer [9]. Raw 

MS/MS data files were downloaded from PRIDE with accession number PXD004894. The 

data for HLA class I binding peptides from the sample Mel15, which included 938,131 

MS/MS spectra, were used in our study and were denoted as dataset D1. The second dataset 

was from a large immunopeptidomics analysis of 95 mono-allelic cell lines, which was 

generated by a Fusion Lumos (Thermo Scientific) [20]. Raw MS/MS data files were 

downloaded from MassIVE with accession number MSV000084442. The data files from the 

A*11:01 mono-allelic cell line, which included 279,700 MS/MS spectra, were used in this 

study and were denoted as dataset D2. Raw MS/MS data files from both datasets were 

converted to MGF files using ProteoWizard (v3.0.19014) [21].

We performed database searching for both datasets using four widely used search engines: 

MS-GF+ (v2018.10.15), Comet (v2018.01 rev. 4), X!Tandem (v2017.2.1.2), and MaxQuant 

(v1.6.5.0). The first dataset (D1) was searched against a customized database. Specifically, 

somatic mutations for the tumor sample were downloaded from the original study and 

annotated using ANNOVAR [22]. Then Customprodbj (https://github.com/bzhanglab/

customprodbj) [17] was used to build a customized database, which includes reference 

proteins in the human RefSeq protein database (56,659 sequences), variant proteins 

containing somatic mutations, and 245 contaminant protein sequences. These processes 

were automated using NeoFlow (https://github.com/bzhanglab/neoflow) [17]. For the second 

dataset (D2), the human protein database (63,691 sequences) downloaded from UCSC 

Genome Browser was used, with 245 contaminant protein sequences appended. For both 

datasets, the MS/MS data were searched against the protein databases with decoy sequences, 

and parameters for database searching were set as follows: enzyme specificity, unspecific 

cleavage; variable modification, oxidation of methionine; fixed modification, 

carbamidomethyl of cysteine; precursor ion mass tolerance, 10 ppm; MS/MS mass 

tolerance, 0.02 Da. Only peptides with length between 8 and 25 were considered. Peptide 

identifications were filtered using the target-decoy strategy [23] implemented in PGA [24] 

based on the PSM scores reported by each search engine (i.e., Evalue from MS-GF+, Comet, 

and X!Tandem, and posterior error probability from MaxQuant), and FDR was controlled at 

1% at both PSM and peptide levels.

2.2 Deep learning-derived PSM quality-indicating features

For each PSM, we considered two PSM quality-indicating features: (1) the absolute 

difference between the predicted retention time (RT) of the associated peptide and the 
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observed RT associated with the spectrum, and (2) the similarity between the predicted 

MS/MS spectrum of the associated peptide and the experimental MS/MS spectrum.

For RT prediction, we used AutoRT (https://github.com/bzhanglab/AutoRT), a peptide 

sequence-based RT prediction tool that uses deep learning and transfer learning to achieve 

high prediction accuracy [17]. Specifically, deep neural network models we previously 

trained on the basis of a large public dataset containing 136,791 peptides [25] were employed 

as the base models for transfer learning in this study. To train LC-MS/MS run-specific 

models, the base models were fine-tuned using high-quality peptides identified in each run 

and their RTs using transfer learning. In Section 3.2, high-quality peptides were defined as 

the peptides passing 1% FDR filtering at both PSM and peptide levels according to at least 

three of the four search engines to ensure high quality of the training samples for all search 

engines. In Section 3.3, high-quality peptides were defined as the peptides passing 1% FDR 

for each search engine separately for usability in real applications. In order to avoid 

overfitting, dropout and early stop were used in AutoRT. The run-specific models were used 

to predict RTs for all PSMs, and delta RT, denoted as RTdelta, was calculated for each PSM 

as follows:

RTdelta = RTobserved −   RTpredicted

GPTime, a traditional machine learning based RT prediction tool [26], was also included in 

this study for comparison.

For MS/MS spectrum prediion, we used pDeep2 and the pre-trained model from the original 

study [19]. For each PSM, the normalized spectral angle (SA) between the predicted MS/MS 

spectrum and the experimental MS/MS spectrum was calculated as previously described [27]:

SA = 1 −  
2cos−1 S1 ·   S2

π

where S1 and S2 are the normalized spectra for the experimental MS/MS spectrum and the 

predicted MS/MS spectrum, respectively.

2.3 Implementation of DeepRescore

DeepRescore was implemented using Docker and NextFlow. The workflow of DeepRescore 

is shown in Figure 1. The current implementation supports four search engines: MS-GF+, 

Comet, X!Tandem, and MaxQuant. DeepRescore takes PSM identification results from a 

search engine and MS/MS data in MGF format as input, although the latter is not required 

for MaxQuant. For each PSM, three sets of features are extracted or calculated. The first set 

is the set of search engine specific features, which include multiple scores for each search 

engine (e.g., Score, PEP, and Delta Score for MaxQuant). The second set is the set of search 

engine independent features that are commonly reported for all search engines. This set of 

features was adopted from our previous studies [28]. The third set includes the deep learning 

derived features described above, including delta RT and SA. All features used in 

DeepRescore are summarized in Supplementary Table S1. These features were integrated by 
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Percolator (v3.4) [29] to generate a new score for each PSM. These new scores were used to 

filter the PSMs by controlling FDR at 1% at both PSM and peptide levels. The results of 

DeepRescore can be imported into PDV [30] for visualization. The source code of 

DeepRescore is available at https://github.com/bzhanglab/DeepRescore.

2.4 Evaluation

To evaluate the quality of peptides identified by DeepRescore, we calculated MHC-peptide 

binding affinity using three tools: NetMHCpan (v4.0) [31], MHCflurry (v1.6.0) [32], and 

HLAthena (http://hlathena.tools/) [20], respectively. Only peptides with length between 8 and 

11 were considered unless otherwise noted. For each HLA allele, binding affinities were 

predicted for all identified peptides, and percentile rank scores were calculated for each 

peptide. The tumor sample in D1 has multiple HLA alleles. For a given peptide, the best 

percentile rank score across all HLA alleles of the sample was used. Following previous 

studies [31, 33], we defined MHC binders as peptides with a percentile rank score of 2% or 

less.

2.5 Peptide synthesis and LC-MS/MS analysis

Reference peptides were synthesized by Biomatik (Biomatik, Canada) and analyzed using a 

nano-LC 1000 system (Thermo Fisher Scientific, San Jose, CA) coupled to an Orbitrap 

Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Briefly, peptide at 1μM 

concentration were pooled together, and the 18 peptide mixture was loaded onto a 2cm × 

100μm ID pre-column trap packed with Reprosil-Pur Basic C18 1.9 μm beads (Dr.Maisch 

GmbH, Germany). The peptides were resolved on a 5cm × 150μm ID analytical column 

packed with the same stationary phase. A 90-minute gradient of 2–30% acetonitrile/0.1% 

formic acid at a flow rate of 800nl/min was used. The peptides were directly electrosprayed 

into the mass spectrometer operated in a data-dependent mode with ‘Top 10’ method. The 

full MS scan was performed in Orbitrap in the range of 300–1400m/z at 120,000 resolution 

followed by HCD fragmentation (CE32%) and MS/MS acquisition (15,000 resolution). 

Precursor isolation width was set at 2m/z, with AGC of 1X105, and maximum ion 

accumulation time of 120ms. The dynamic exclusion was set to 2s. The raw MS/MS data 

was converted to MGF file using ProteoWizard (v3.0.19014). Then the MS/MS data was 

searched against a database which contains the selected synthetic peptides using Comet 

(v2018.01 rev. 4). The parameters for database searching were set as follows: enzyme 

specificity, unspecific cleavage; variable modification, oxidation of methionine; fixed 

modification, carbamidomethyl of cysteine; precursor ion mass tolerance, 10 ppm; MS/MS 

mass tolerance, 0.02 Da. The identification result was loaded into PDV for visualization.

3. Results and Discussion

3.1 Different search engines give vastly different peptide identifications

We applied four widely used search engines, namely Comet, MS-GF+, X!Tandem, and 

MaxQuant, to the two immunopeptidomics datasets (D1 and D2). For D1, Comet, MS-GF+, 

X!Tandem, and MaxQuant identified 23400, 22789, 20727, and 17122 unique peptide 

sequences, respectively (Figure 2A, left). Comet identified the most peptides, 3%, 13% and 

37% more peptides than MS-GF+, X!Tandem, and MaxQuant, respectively. Together, the 
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four search engines identified a total of 31447 unique peptides. Among these peptides, only 

33% were commonly identified by all four search engines, whereas 24% were uniquely 

identified by only one of them.

For D2, Comet, MS-GF+, X!Tandem, and MaxQuant identified 3255, 4935, 4048, and 2635 

unique peptide sequences, respectively (Figure 2A, right). MS-GF+ identified the most 

peptides, 52%, 22%, and 87% more peptides than Comet, X!Tandem, and MaxQuant, 

respectively. The four search engines identified a total of 5,397 unique peptides. Among 

these peptides, only 34% were commonly identified by all the four search engines, whereas 

19% were uniquely identified by only one of them.

These results showed that applying different search engines to the same immunopeptidomics 

dataset gives vastly different peptide identification results. Such inconsistency has been 

previously reported [13, 34]. Low overlap between results from different search engines 

suggests that considerable room for improvement remains for individual search engines.

3.2 Validity of deep learning-derived PSM quality-indicating features

One effective approach to improve search engine results is to rescore PSMs by considering 

additional features [14]. We reasoned that features indicating PSM quality that are 

independent of search engine scoring would be strong features for such rescoring. Here, we 

considered two such features: (1) delta RT: the absolute difference between predicted RT 

and the experimentally observed RT of a peptide, and (2) SA: the similarity between 

predicted MS/MS spectrum of a peptide and corresponding experimental MS/MS spectrum. 

Delta RT and SA were computed based on two deep learning tools, AutoRT and pDeep2, 

respectively. In both datasets, target PSMs showed considerably lower delta RTs and higher 

SAs compared to decoy PSMs across all four search engines (Figure S1), supporting the 

utility of delta RT and SA as PSM quality-indicating features.

To further evaluate the validity of these features as PSM quality-indicating features, we 

classified the union of peptides identified by any of the four search engines (1% FDR) into 

four groups based on the number of search engines identifying each peptide. Specifically, 

groups 1, 2, 3 and 4 represent peptides that were identified by 1, 2, 3, and 4 search engines, 

respectively. In general, peptides identified by more search engines are more reliable than 

those identified by fewer search engines. Thus, a good PSM quality-indicating feature 

should be able to distinguish these four groups.

For comparison, we calculated delta RTs based on both AutoRT prediction and GPTime 

prediction. The RTs predicted by AutoRT were in general much closer to experimentally 

observed RTs in both datasets than the RTs predicted by GPTime, as indicated by much 

lower delta RTs (Figure 2B–C). According to both calculations, group 4 peptides showed the 

lowest delta RTs, whereas group 1 showed the highest delta RTs in both datasets. We further 

compared the delta RTs between all neighboring groups (4 vs. 3, 3 vs. 2, and 2 vs. 1). In 

both datasets, all three comparisons showed significant differences (p<0.01, Kolmogorov–

Smirnov test) according to delta RTs calculated based on AutoRT prediction (Figure 2B), 

whereas only one out of the three comparisons showed a significant difference according to 

delta RTs calculated based on GPTime prediction (Figure 2C).
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For SA scores calculated by pDeep2, group 4 peptides showed the highest SA scores, 

whereas group 1 showed the lowest SA scores in both datasets (Figure 2D). In the 

comparison between neighboring groups, all three comparisons showed significant 

difference in D1. In D2, two comparisons were statistically significant, and one was not 

significant, which may be explained by the small sample size of D2.

Together, these results showed that both delta RT derived from AutoRT and SA derived from 

pDeep2 are useful PSM quality indicating features. Moreover, we also showed that AutoRT 

outperforms GPTime in RT prediction, and more accurate RT prediction provides a better 

indication of the quality of peptide identifications.

3.3 DeepRescore increases the sensitivity of peptide identification

To improve search engine results through PSM rescoring, we developed DeepRescore, 

which considers three types of feature sets for rescoring: (1) search engine specific features; 

(2) search engine independent features, and (3) deep learning-derived features. Based on 

these features, Percolator was used to rescore all PSMs, including both target and decoy 

PSMs, and these new scores were used to filter the PSMs.

In D1, when used in combination with DeepRescore, Comet, MaxQuant, MS-GF+, and X!

Tandem identified 35683, 34204, 28104 and 32776 unique peptide sequences (1% FDR, 

Supplementary Table S2), respectively, which were 56%, 109%, 27% and 61% higher, 

respectively, than the numbers originally reported for each search engine at the same FDR 

level (Figure 3A). Such improvements were reproducible across different FDR thresholds 

from 0.5% to 10% (Figure S2). In D2, DeepRescore increased peptide identification by 

61%, 109%, 10%, and 34% for Comet, MaxQuant, MS-GF+, and X!Tandem, respectively, at 

1% FDR (Figure 3A, Supplementary Table S3), and these improvements were also 

reproducible for different FDR levels (Figure S2).

Without PSM rescoring, MaxQuant identified the fewest peptides among the four search 

engines in both datasets. However, after PSM rescoring by DeepRescore, the numbers of 

identified peptides were comparable across different search engines (Figure 3A). 

Importantly, after rescoring by DeepRescore, the proportions of peptides commonly 

identified by all four search engines increased from 33% to 57% in D1 and from 34% to 

74% in D2 (Figure 3B–E).

We also compared the peptides identified by DeepRescore with those reported in the original 

studies [9, 20]. Four and three search engines identified more peptides than the original 

reports for D1 (Figure S3) and D2 (Figure S4A), respectively. For example, Comet with 

DeepRescore identified 55% more peptides in D1 compared to the original report (Figure 

S3). We observed this increase despite using a 1% peptide FDR in this study, which is more 

stringent than the thresholds used in the original studies. Specifically, 1% PSM FDR was 

used in the original studies for D1 and D2.

In summary, these results clearly demonstrate the power of DeepRescore for increasing the 

sensitivity of peptide identification in immunopeptidomics.
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3.4 Dominant contribution of the deep learning-derived features in DeepRescore

To investigate the contributions of the deep learning-derived features to performance 

improvement, we performed rescoring using a series of reduced models (Figure 3A). 

Compared to the full DeepRescore models, dropping delta RT and SA (Reduced Model 1) 

led to greatly reduced peptide identifications for all search engines in both datasets. In 

contrast, dropping all other features from DeepRescore while keeping only delta RT, SA, 

and the search engine’s original PSM score (Reduced Model 2) led to only very minor 

reductions in peptide identifications for three out of the four search engines in both datasets. 

These results demonstrated dominant contributions of the deep learning-derived features in 

DeepRescore. Compared to Reduced Model 2, further dropping delta RT (Reduced Model 3) 

or SA (Reduced Model 4) led to evident reductions in peptide identifications, suggesting 

complementary contributions from these two deep-learning derived features.

We also investigated the contribution of individual features by looking at the weights of 

features in rescoring, which were extracted from the iteratively trained SVM as part of the 

Percolator algorithm. Remarkably, delta RT showed the highest weight among all features 

across all search engines in both datasets (Figure 3F). SA was also among the top five 

features in all comparisons.

Of note, delta RT was used as a feature for PSM rescoring in immunopeptidomics data 

analysis in a recently published study [13], in which the data did not support delta RT as an 

effective feature for improving peptide identification. In that study, delta RT was computed 

based on OpenMS RTModel, which was based on oligo-kernel support vector regression. 

One possible explanation for these apparently contradictory conclusions is that AutoRT 

might be more accurate for RT prediction, which is critical for accurate delta RT estimation 

and effective PSM rescoring. Consistent with this hypothesis, we replaced AutoRT derived 

delta RT with GPTime derived delta RT and observed obvious performance reductions 

across all four search engines in both datasets (Figure S5).

Results in Figure 3F showed that delta RT is a stronger feature than SA. We note that the 

model we used for MS/MS spectrum prediction was trained on the basis of proteomics data 

from trypsin digested proteome rather than immunopeptidomics data. Thus, the model can 

be potentially improved by using a large, high quality immunopeptidomics data for training 

when it becomes available [2].

Taken together, these results demonstrated that DeepRescore performance relies on accurate 

RT and MS/MS spectrum predictions and that these deep learning-derived features are the 

dominant contributors to the improvements provided by DeepRescore.

3.5 Peptides identified by DeepRescore are of high quality

To further evaluate the quality of the peptides identified by DeepRescore, we used MHC-

peptide binding affinity as a systematic and unbiased quantitative metric and three MHC-

peptide binding prediction tools (NetMHCpan, MHCflurry and HLAthena) were used in this 

study. Prediction models underlying these three tools use different algorithms and training 

data. Although all three tools have been shown to provide high prediction accuracy, they 

have unique strengths and weaknesses and thus provide independent data for our evaluation. 
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We compared peptide identification results from (1) original search engine scores without 

PSM rescoring, (2) rescoring using Reduced Model 1, in which delta RT and SA were 

dropped from the full DeepRescore model, and (3) rescoring using the full DeepRescore 

model. Only peptides with length between 8 and 11 were considered in this evaluation, 

which covered at least 75% of the identified peptides across different search engines in the 

two datasets (Figure S6). For both datasets, the vast majority of the peptides identified by 

methods (1) and (2) were also identified by method (3) (Figure 4A). Among all peptides 

with length between 8 and 11 identified by DeepRescore, 84%−95% were considered MHC 

binders by the three prediction tools across all search engines in both datasets, which was 

comparable to the proportions resulted from method (1) and (2) (Figure S7). The ratios of 

MHC binders among peptides uniquely identified by DeepRescore were 86% – 93% for D1 

and 71% – 86% for D2, and these ratios were obviously higher than those among peptides 

not identified by DeepRescore (Figure 4C). In the results above, MHC binders were defined 

as peptides with a percentile rank score of 2% or less for predicted MHC-peptide binding 

affinity [31, 33]. Similar patterns were observed with a wide range of cutoffs (Figure S8). 

These results suggest a higher proportion of false positives among peptides not identified by 

DeepRescore compared to those uniquely identified by DeepRescore. Remarkably, in 

HLAthena-based evaluation, peptides uniquely identified by DeepRescore in D2 also 

showed obviously higher ratios of binders than those uniquely reported in the original study 

even though HLAthena was trained using the peptides identified in D2 in the original study 

(Figure S4B). Thus, DeepRescore not only increases the sensitivity of peptide identification 

but also effectively reduces false positives.

3.6 Neoantigen identification using DeepRescore

Neoantigens encoded by tumor-specific somatic mutations are ideal targets for T cell-based 

immunotherapy, and they could be identified by an immunoproteogenomics approach, in 

which immunopeptidomics data are searched against sample-specific, customized protein 

sequence databases derived from paired DNA sequencing data. We built a customized 

database for D1 based on the somatic variants detected in the same sample using DNA 

sequencing data and then searched the MS/MS data against the customized database using 

Comet followed by PSM rescoring using DeepRescore. Our analysis identified 12 unique 

putative neoantigens with length between 8 and 12 (Supplementary Table S4). For the same 

sample, the original study reported 8 putative neoantigens, and a recent reanalysis of the 

sample by Bichmann et al. [13] reported 11 putative neoantigens. All but two neoantigens 

reported in those studies were identified by DeepRescore (Figure 5A). The two neoantigens 

not identified by DeepRescore but reported in the previous studies had high RT errors and 

low SAs (Tables S4) and are likely to be false positives. Taken together, the results 

demonstrated the benefit of using DeepRescore for neoantigen identification from 

immunopeptidomics data.

3.7 Experimental validation of peptides identified by DeepRescore

In order to further validate the quality of the peptides uniquely identified by DeepRescore, 

we selected 18 peptides (q-value <= 0.01) from D1 for experimental validation using 

synthetic peptides (Supplementary Table S5). The 18 peptides included 3 neoantigens 

uniquely identified by DeepRescore and 15 peptides from reference proteins. Among the 15 
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peptides, 12 were uniquely identified by DeepRescore and were randomly selected from 

three different confidence groups (low, medium and high), with 4 peptides for each group. 

The other 3 were randomly selected from peptides identified by both DeepRescore and other 

methods, with 1 peptide for each confidence group. These overlapping peptides were used as 

controls. For all the three neoantigens, we observed a high similarity (Pearson’s correlation 

coefficient (PCC) > 0.9)) between the original experimental spectra used to identify the 

peptides and the spectra from corresponding synthetic peptides (Figure 5B–D, Figure S9). 

Among the 12 reference protein-derived peptides uniquely identified by DeepRescore, a 

high similarity (PCC > 0.9) between experimental and synthetic spectra were found for 11 

(Figure S10). The PCCs observed for these peptides were comparable to those for the three 

control peptides identified by both DeepRescore and other methods (Figure S10). Taken 

together, the results clearly demonstrated the high quality of peptides uniquely identified by 

DeepRescore.

Although the original experimental spectra are highly similar to the corresponding spectra 

from the synthetic peptides, some of the peaks in the original experimental spectra were not 

matched to any peaks in the spectra from corresponding synthetic peptides. These peaks are 

likely from background noise especially when their intensities are low or from the co-

isolated peptides due to the complexity of the immunopeptidomics samples. We observed 

more unmatched peaks for neoantigen peptides than for peptides from reference proteins. 

This may result from the low abundance of the neoantigen peptides. Thus, validation using 

synthetic peptides is recommended when considering neoantigens identified by 

DeepRescore for clinical applications.

4. Concluding remarks

MS-based immunopeptidomics is the primary analytical methodology for high-throughput 

and direct identification of MHC binding peptides in vivo. However, applying different 

search engines to the same immunopeptidomics dataset gives vastly different peptide 

identification results. To improve peptide identification in immunopeptidomics, we validated 

delta RT and SA, two deep learning-derived features as indicators of PSM quality and then 

combined them with other previously used features for PSM rescoring in DeepRescore. We 

showed that DeepRescore increased both the sensitivity and quality of MHC-binding peptide 

and neoantigen identifications compared to existing methods, and the performance 

improvement was, to a large extent, driven by the deep learning-derived features. 

DeepRescore is freely available to the scientific community to utilize for sensitive and 

reproducible MHC-binding peptide and neoantigen identification from immunopeptidomics 

data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance of the study:

Comprehensive characterization of the human immunopeptidome plays a critical role in 

understanding the immune system and guiding vaccine development and 

immunotherapies. Mass spectrometry (MS)-based immunopeptidomics is the most 

commonly used approach to comprehensively interrogate human immunopeptidome. 

However, sensitive and reliable peptide identification from immunopeptidomics data 

remains a major challenge. To address this challenge, we leveraged the power of deep 

learning and developed a new computational tool named DeepRescore. Using two public 

immunopeptidomics datasets, we showed that DeepRescore increased both the sensitivity 

and reliability of peptide and neoantigen identifications compared to existing methods. 

DeepRescore is freely available to the scientific community to allow sensitive and 

reproducible peptide and neoantigen identification from immunopeptidomics data.
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Figure 1. Overview of the study design and the DeepRescore workflow.
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Figure 2. Search engine comparison and validation of two deep learning-derived quality-
indicating features.
(A) Comparison of the peptides identified by four search engines in two 

immunopeptidomics datasets. (B) Distribution of AutoRT-derived delta RT for different 

peptide groups shown in A. (C) Distribution of GPTime-derived delta RT for different 

peptide groups. (D) SA (spectra angle) distribution for different peptide groups. The red 

numbers showing above the horizontal lines are p values from Kolmogorov–Smirnov test of 

the neighboring peptide groups. MAE: median absolute error. The boxplots representing the 

delta RT distribution of AutoRT and GPTime for the peptides identified by four search 

engines and three search engines were from the testing data (20% of the peptides in each run 

identified by at least three search engines) which were not used during training.
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Figure 3. Sensitivity of DeepRescore and feature contributions.
(A) The numbers of unique peptide sequences identified by different methods in datasets D1 

and D2, respectively. Original: no rescoring; DeepRescore: rescoring using all the features 

available in DeepRescore; Reduced Model 1: dropping delta RT and SA from the full 

DeepRescore model; Reduced Model 2: dropping all other features from DeepRescore while 

keeping only delta RT, SA, and the search engine’s original PSM score; Reduced Model 3: 

further dropping delta RT from Reduced Model 2; Reduced Model 4: further dropping SA 

from Reduced Model 2. (B-E) Comparisons of peptides identified from datasets D1 (B-C) or 

D2 (D-E) by the four search engines either with or without DeepRescore. (F) Feature 

weights extracted from the iteratively trained SVM as part of the Percolator algorithm for 

each search engine on dataset D1 and D2.
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Figure 4. Quality evaluation of DeepRescore identifications.
(A) Venn diagrams comparing peptides identified by different methods in dataset D1. (B) 
Venn diagrams comparing peptides identified by different methods in dataset D2. (C) Ratios 

of MHC binders predicted by different tools among peptides uniquely identified by 

DeepResore or among peptides not identified by DeepRescore in the two datasets.
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Figure 5. Comparison of neoantigen identification using different methods.
(A) The venn diagram comparing neoantigens identified by four different methods. (B-D) 

Annotated spectra for neoantigens uniquely identified by DeepRescore. The precursor peak 

for spectrum showing in (B) was removed and the raw spectrum was shown in Figure S9.
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