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rs34331204 regulates TSPAN13 expression and contributes to Alzheimer’s disease
with sex differences
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Alzheimer’s disease is the most common neurodegenerative

disease with complex genetic architecture (Liu et al., 2014).

Recently, large-scale genome-wide association studies

(GWAS) have been performed and successfully identified

more than 40 novel Alzheimer’s disease genetic variants

(Lambert et al., 2013; Cuyvers et al., 2015; Kunkle et al.,

2019). Meanwhile, large-scale GWAS of Alzheimer’s disease

endophenotypes have also been reported (DemiNg et al.,

2017, 2018; Chung et al., 2018; Dumitrescu et al., 2019;

Moreno-Grau et al., 2019), and identified sex differences

(Deming et al., 2018; Dumitrescu et al., 2019). In 2018,

Deming and colleagues conducted sex-specific GWAS of

CSF levels of amyloid-b42 and tau from 1527 males and

1509 females (Deming et al., 2018). They identified

rs316341 (sex-interaction P = 0.04) and rs13115400 (sex-

interaction P = 0.002) to show stronger association with

amyloid-b42 in females than males (Deming et al., 2018). In

2019, Dumitrescu and colleagues analysed a GWAS dataset

with 2701 males and 3275 females (Dumitrescu et al.,

2019). They identified variant rs34331204, which showed

significant sex-specific association with P = 2.90 � 10–4

(Dumitrescu et al., 2019). The rs34331204 variant minor al-

lele C was associated with a lower risk of neurofibrillary

tangles (NFT) in males (P = 2.50 � 10–8) but not females

(P = 0.85). Interestingly, rs34331204 was also associated

with increased hippocampal volume and executive function

only in males (Dumitrescu et al., 2019). Hence, their find-

ings provide a male-specific protective genetic variant against

tau pathology.

There are still four main concerns to be mentioned, al-

though these are important and interesting findings. First,

Dumitrescu and colleagues established the association be-

tween rs34331204 variant C allele and reduced NFT bur-

den. It is known that increased NFT burden is a key

Alzheimer’s disease neuropathology. However, it remains

unclear whether the rs34331204 variant is associated with

Alzheimer’s disease risk, especially in males. Second, the

rs34331204 variant is a non-coding variant. Dumitrescu and

colleagues conducted an expression quantitative trait loci

(eQTL) analysis to identify the candidate genes within the

rs34331204 variant, and further evaluate the association be-

tween the tau load and the expression of target genes in the
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prefrontal cortex (PFC) (Dumitrescu et al., 2019). Using the

Braineac data, eQTL analyses—including the exon-specific

level and the transcript level—were carried out. However,

they only evaluated the association between target gene ex-

pression and tau load at the transcript level. Importantly,

these eQTL analyses are based on the average expression

profile across all 10 brain tissues in Braineac (Dumitrescu

et al., 2019). It remains unclear whether these target genes

have different expression in these different brain tissues.

Third, ours and other studies have clearly indicated that

eQTL analyses vary considerably in different tissue/cell

types, and disease statuses (Liu et al., 2016, 2017a, 2018,

2019a, b, 2020; Peters et al., 2016; Soldner et al., 2016; Hu

et al., 2017b). Hence, a tissue-specific eQTL analysis should

be performed, especially in the PFC. Fourth, if one gene is

the target gene of the rs34331204 variant in PFC, and its ex-

pression shows sex-specific association with tau pathology

in PFC, it remains unclear whether there is significant differ-

ence regarding differential expression (Alzheimer’s disease

versus controls) in males and females. These concerns

prompted us to further evaluate their findings.

In stage 1, we conducted a candidate variant study to

evaluate the potential association between the rs34331204

variant and Alzheimer’s disease risk using three large-scale

Alzheimer’s disease GWAS datasets. The first dataset was

from the International Genomics of Alzheimer’s Project

(IGAP) (Kunkle et al., 2019). The IGAP stage 1 dataset

included 21 982 Alzheimer’s disease patients and 41 944

cognitively normal control subjects of European descent

from four consortia including the Alzheimer Disease

Genetics Consortium (ADGC), Cohorts for Heart and

Aging Research in Genomic Epidemiology Consortium

(CHARGE), The European Alzheimer’s Disease Initiative

(EADI), and the Genetic and Environmental Risk in AD/

Defining Genetic, Polygenic and Environmental Risk for

Alzheimer’s Disease Consortium (GERAD/PERADES)

(Kunkle et al., 2019). All Alzheimer’s disease patients were

diagnosed using the NINCDS-ADRDA criteria or DSM-IV

guidelines (Kunkle et al., 2019). Meanwhile, we selected two

sex-specific Alzheimer’s disease GWAS datasets including

one Alzheimer’s disease GWAS dataset in males diagnosed

by paternal history of Alzheimer’s disease (14 338 cases and

245 941 controls), and one Alzheimer’s disease GWAS data-

set in females diagnosed by maternal history of Alzheimer’s

disease (27 696 cases and 260 980 controls), both of which

were from the UK Biobank (Marioni et al., 2018). Here, we

defined the significance threshold to be P5 0.05. Using the

Alzheimer’s disease GWAS dataset in IGAP, we found no

significant association between the rs34331204 variant and

Alzheimer’s disease risk. Interestingly, the sex-specific ana-

lysis indicated that rs34331204 variant C allele was associ-

ated with reduced Alzheimer’s disease risk in males

(P = 0.046), but not in females (P = 0.365), as provided in

Supplementary Table 1.

In stage 2, we conducted a gene expression analysis to dem-

onstrate the significant expression difference of the target

genes of rs34331204 across the 10 brain tissues in Braineac.

Using the Braineac dataset, Dumitrescu and colleagues

(2019) identified eight target genes for rs34331204 variant:

BZW2, TSPAN13, AGR3, ANKMY2, LRRC72, AGR2,

ISPD, and AHR, and evaluated the association of six genes

with tau pathology in PFC by excluding AGR3 and

LRRC72. Using the online Braineac database (http://www.

braineac.org/), we found that all of these six genes showed

significant expression difference across the 10 brain tissues

including TSPAN13 (maximum fold change = 5.8,

P = 2.20 � 10–64), AHR (maximum fold change = 3,

P = 2.30 � 10–68), ANKMY2 (maximum fold change = 2,

P = 8.80 � 10–44), BZW2 (maximum fold change = 2,

P = 1.00 � 10–37), ISPD (maximum fold change = 1.6,

P = 3.50 � 10–22), and AGR2 (maximum fold change = 1.1,

P = 5.00 � 10–8). A box plot showing the expression of these

six genes across the 10 brain tissues in Braineac is provided

in Fig. 1. All of these findings indicate that a tissue-specific

eQTL analysis is needed, especially in PFC.

In stage 3, we performed an eQTL analysis of the

rs34331204 variant in PFC using two independent datasets.

The first dataset was from the Religious Orders Study and

Memory and Aging Project (ROSMAP), which included 494

human PFC samples (Ng et al., 2017). Ninety-seven per cent

of these samples were diagnosed with pathological

Alzheimer’s disease and clinical Alzheimer’s disease (Ng

et al., 2017). In ROSMAP, a Spearman’s rank correlation

was used to perform the eQTL analysis (Ng et al., 2017).

The second dataset was from the PsychENCODE

Consortium (Wang et al., 2018). There were a total of 1866

PFC individuals including 1039 control individuals [113

from Genotype-Tissue Expression Consortium (GTEx ver-

sion 7) and 926 from PsychENCODE], and 827 disease

samples (558 schizophrenia, 217 bipolar disorder, 44 autism

spectrum disorder, and eight affective disorder from

PsychENCODE) (Wang et al., 2018). In PsychENCODE, a

liner regression analysis was used to conduct the eQTL ana-

lysis (Wang et al., 2018). The statistical significance was a

Bonferroni-corrected threshold of P5 0.05/31 = 1.61 � 10–3.

The results showed that the rs34331204 variant C allele was

associated with increased TSPAN13 expression only in the

ROSMAP dataset (P = 1.23 � 10–3) (Table 1).

However, this association was not replicated in the

PsychENCODE dataset (Table 1). We consider that multiple

disease statuses in PsychENCODE may have caused this

negative finding, although there was larger sample size com-

pared with ROSMAP. Here, we carried out a further sub-

group eQTL analysis of the rs34331204 variant in PFC

using the neuropathologically normal samples from two in-

dependent datasets. The first dataset was from the Braineac,

including 134 PFC samples (Ramasamy et al., 2014). The se-

cond dataset was from the GTEx (version 8), including 175

PFC samples (Battle et al., 2017). We first evaluated the as-

sociation between the rs34331204 variant and TSPAN13

expression using a liner regression analysis in both datasets.

We then extracted the corresponding summary statistics of

the rs34331204 variant in both datasets, and determined the

heterogeneity of the rs34331204 variant using Cochran’s Q
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Figure 1 A box plot showing the expression of the six genes across the 10 brain tissues in Braineac. (A) Fold change between

OCTX and WHMT = 5.8 (P = 2.20 � 10–64) for TSPAN13; (B) fold change between WHMT and CRBL = 3 (P = 2.30 � 10–68) for AHR; (C) fold

change between TCTX and WHMT = 2 (P = 8.80 � 10–44) for ANKMY2; (D) fold change between PUTM and MEDU = 2 (P = 1.00 � 10–37) for

BZW2; (E) fold change between TCTX and MEDU = 1.6 (P = 3.50 � 10–22) for ISPD; (F) fold change between WHMT and HIPP = 1.1

(P = 5.00 � 10–8) for AGR2. CRBL = cerebellar cortex; FCTX = frontal cortex; HIPP = hippocampus; MEDU = medulla; OCTX = occipital cor-

tex; PUTM = putamen; SNIG = substantia nigra; TCTX = temporal cortex; THAL = thalamus; WHMT = intralobular white matter.
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test. Finally, we conducted a meta-analysis to evaluate the

association between the rs34331204 variant and TSPAN13

expression using R Package (meta: General Package for

Meta-Analysis) (Hu et al., 2017a). The overall odds ratio

(OR) was calculated by the fixed effect model (Mantel-

Haenszel) or random-effect model (DerSimonian-Laird),

which is determined by the heterogeneity (Hu et al., 2017a;

Liu et al., 2017b). The statistical significance was 0.05.

Interestingly, we found no significant heterogeneity with

P = 0.7425. A meta-analysis using the fixed effect model

highlighted a significant association between the

rs34331204 variant C allele and reduced TSPAN13 expres-

sion (beta = –0.15, P = 0.0107). Hence, all of these findings

indicate that the directions regarding the effect of

rs34331204 variant C allele on TSPAN13 expression are

different in neuropathologically normal samples and neuro-

degenerative disease individuals.

In stage 4, we performed an Alzheimer’s disease control

gene expression analysis of TSPAN13 in males and females,

respectively. We selected the gene expression dataset from

the Harvard Brain Tissue Resource Center (HBTRC), includ-

ing 129 (62 males and 67 females) Alzheimer’s disease

samples and 101 (82 males and 19 females) non-demented

healthy control samples in human PFC (Zhang et al., 2013).

Here, we selected P50.05 to define the differential expres-

sion of TSPAN13 in Alzheimer’s disease and healthy control

subjects. Using the online Bioconductor R package GEO2R,

we found that TSPAN13 indicated stronger differential ex-

pression in males (fold change = 0.81 for Alzheimer’s dis-

ease versus control, P = 2.90 � 10–16) than females (fold

change = 0.82 for Alzheimer’s disease versus control,

P = 3.20 � 10–4).

Taken together, Dumitrescu and colleagues identified the

rs34331204 variant C allele to be significantly associated

with the reduced NFT in males (Dumitrescu et al., 2019).

However, four main concerns remained unclear. Here, we

performed a multi-stage analysis to answer these questions.

In stage 1, we identified the rs34331204 variant C allele to

be associated with reduced Alzheimer’s disease risk only in

males. In stage 2, we demonstrated the different expression

of the target genes of rs34331204 across the 10 brain tissues

in Braineac. In stage 3, we found that the rs34331204 vari-

ant only regulated TSPAN13 expression in PFC, and in

stage 4, we identified stronger differential expression of

Table 1 The rs2293871 variant and HTRA1 expression in human brain tissues

SNP EA NEA Gene symbol Gencode ID Beta P-value Dataset

rs34331204 C A SOSTDC1 ENSG00000171243.7 –0.0257 5.69 � 10–1 ROSMAP

rs34331204 C A ANKMY2 ENSG00000106524.4 0.0372 4.09 � 10–1 ROSMAP

rs34331204 C A TSPAN13 ENSG00000106537.7 0.1450 1.23 3 10–3 ROSMAP

rs34331204 C A BZW2 ENSG00000136261.10 –0.0213 6.37 � 10–1 ROSMAP

rs34331204 C A AC006041.1 ENSG00000229379.1 0.0097 7.45 � 10–1 PsychENCODE

rs34331204 C A RP11-196O16.1 ENSG00000273477.1 0.0002 9.95 � 10–1 PsychENCODE

rs34331204 C A RPL36AP29 ENSG00000224683.1 –0.0111 8.41 � 10–1 PsychENCODE

rs34331204 C A CRPPA-AS1 ENSG00000229688.3 0.0218 4.56 � 10–1 PsychENCODE

rs34331204 C A ISPD ENSG00000214960.5 0.0132 5.26 � 10–1 PsychENCODE

rs34331204 C A SOSTDC1 ENSG00000171243.7 0.0394 1.55 � 10–1 PsychENCODE

rs34331204 C A GS1-166A23.1 ENSG00000272537.1 0.0032 9.32 � 10–1 PsychENCODE

rs34331204 C A LRRC72 ENSG00000205858.5 –0.0335 4.16 � 10–1 PsychENCODE

rs34331204 C A AC005014.5 ENSG00000224280.1 0.0265 3.92 � 10–1 PsychENCODE

rs34331204 C A GS1-166A23.2 ENSG00000272361.1 0.0176 6.90 � 10–1 PsychENCODE

rs34331204 C A ANKMY2 ENSG00000106524.4 0.0060 6.92 � 10–1 PsychENCODE

rs34331204 C A BZW2 ENSG00000136261.10 0.0160 3.55 � 10–1 PsychENCODE

rs34331204 C A AC073333.8 ENSG00000235837.1 0.0662 2.29 � 10–1 PsychENCODE

rs34331204 C A TSPAN13 ENSG00000106537.7 0.0012 9.54 � 10–1 PsychENCODE

rs34331204 C A AC073333.1 ENSG00000267906.1 0.0356 4.31 � 10–1 PsychENCODE

rs34331204 C A AGR2 ENSG00000106541.7 –0.0370 4.04 � 10–1 PsychENCODE

rs34331204 C A RP11-455J15.1 ENSG00000270593.1 –0.0329 2.63 � 10–1 PsychENCODE

rs34331204 C A RAD17P1 ENSG00000232400.1 0.1042 2.24 � 10–2 PsychENCODE

rs34331204 C A AGR3 ENSG00000173467.4 0.0305 4.95 � 10–1 PsychENCODE

rs34331204 C A AC098592.2 ENSG00000227965.1 –0.0135 4.72 � 10–1 PsychENCODE

rs34331204 C A AC098592.1 ENSG00000223867.1 –0.0466 1.51 � 10–1 PsychENCODE

rs34331204 C A BRWD1P3 ENSG00000232841.1 0.0200 6.50 � 10–1 PsychENCODE

rs34331204 C A AC073332.1 ENSG00000237773.1 0.0418 3.41 � 10–1 PsychENCODE

rs34331204 C A AHR ENSG00000106546.8 0.0229 3.23 � 10–1 PsychENCODE

rs34331204 C A AC019117.1 ENSG00000236318.1 0.0019 9.71 � 10–1 PsychENCODE

rs34331204 C A AC019117.1 ENSG00000236039.1 –0.0421 1.93 � 10–1 PsychENCODE

rs34331204 C A AC017060.1 ENSG00000226598.1 –0.0209 2.54 � 10–1 PsychENCODE

EA = effect allele; EAF = effect allele frequency; NEA = non-effect allele. Beta is the regression coefficient based on the effect allele. Beta 4 0 and Beta 5 0 means that this effect

allele increase and reduce disease or phenotype, respectively. The statistical significance for eQTL analysis was a Bonferroni-corrected threshold of P5 0.05/31 = 1.61 � 10–3.
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TSPAN13 in males than females in the PFC. We believe that

these findings provide important supplementary information

regarding the role of the rs34331204 variant in Alzheimer’s

disease.
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