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Abstract

Persistent homology is constrained to purely topological persistence while multiscale graphs 

account only for geometric information. This work introduces persistent spectral theory to create a 

unified low-dimensional multiscale paradigm for revealing topological persistence and extracting 

geometric shapes from high-dimensional datasets. For a point-cloud dataset, a filtration procedure 

is used to generate a sequence of chain complexes and associated families of simplicial complexes 

and chains, from which we construct persistent combinatorial Laplacian matrices. We show that a 

full set of topological persistence can be completely recovered from the harmonic persistent 

spectra, i.e., the spectra that have zero eigenvalues, of the persistent combinatorial Laplacian 

matrices. However, non-harmonic spectra of the Laplacian matrices induced by the filtration offer 

another powerful tool for data analysis, modeling, and prediction. In this work, fullerenes stability 

is predicted by using both harmonic and non-harmonic persistent spectra. While non-harmonic 

persistent spectra are successfully devised to analyze the structure of fullerenes and model protein 

flexibility, which cannot be straightforwardly extracted from the current persistent homology. The 

proposed method is found to provide excellent predictions of the protein B-factors for which 

current popular biophysical models break down.
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1 Introduction

Graph theory, a branch of discrete mathematics, concerns the relationship between objects. 

These objects can be either simple vertices, i.e., nodes and/or points (zero simplexes), or 

high-dimensional simplexes. Here, the relationship refers to connectivity with possible 

orientations. Graph theory has many branches, such as geometric graph theory, algebraic 

graph theory, and topological graph theory. The study of graph theory draws on many other 

areas of mathematics, including algebraic topology, knot theory, algebra, geometry, group 

theory, combinatorics, etc. For example, algebraic graph theory can be investigated by using 

either linear algebra, group theory, or graph invariants. Among them, the use of learning 

algebra in graph study leads to spectral graph theory.

Precursors of the spectral theory have often had a geometric flavor. An interesting spectral 

geometry question asked by Mark Kac was “Can one hear the shape of a drum?” [1]. The 

Laplace-Beltrami operator on a closed Riemannian manifold has been intensively studied 

[2]. Additionally, eigenvalues and isoperimetric properties of graphs are the foundation of 

the explicit constructions of expander graphs [3]. Moreover, the study of random walks and 

rapidly mixing Markov chains utilized the discrete analog of the Cheeger inequality [4]. The 

interaction between spectral theory and differential geometry became one of the critical 

developments [5]. For example, the spectral theory of the Laplacian on a compact 

Riemannian manifold is a central object of de Rham-Hodge theory [2]. Note that the Hodge 

Laplacian spectrum contains the topological information of the underlying manifold. 

Specifically, the harmonic part of the Hodge Laplacian spectrum corresponds to topological 

cycles. Connections between topology and spectral graph theory also play a central role in 

understanding the connectivity properties of graphs [6–9]. Similarly, as the topological 

invariants revealing the connectivity of a topological space, the multiplicity of 0 eigenvalues 

of a 0-combinatorial Laplacian matrix is the number of connected components of a graph. 

Indeed, the number of q-dimensional holes can also be unveiled from the number of 0 

eigenvalues of the q-combinatorial Laplacian [10–13]. Nonetheless, spectral graph theory 

offers additional non-harmonic spectral information beyond topological invariants.

The traditional topology and homology are independent of metrics and coordinates and thus, 

retain little geometric information. This obstacle hinders their practical applicability in data 

analysis. Recently, persistent homology has been introduced to overcome this difficulty by 

creating low-dimensional multiscale representations of a given object of interest [14–19]. 

Specifically, a filtration parameter is devised to induce a family of geometric shapes for a 

given initial data. Consequently, the study of the underlying topologies or homology groups 

of these geometric shapes leads to the so-called topological persistence. Like the de Rham-

Hodge theory which bridges differential geometry and algebraic topology, persistent 

homology bridges multiscale analysis and algebraic topology. Topological persistence is the 

most important aspect of the popular topological data analysis (TDA) [20–23] and has had 

tremendous success in computational biology [24, 25] and worldwide competitions in 

computer-aided drug design [26].

Graph theory has been applied in various fields [27]. For example, spectral graph theory is 

applied to the quantum calculation of π-delocalized systems. The Hückel method, or Hückel 
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molecular orbital theory, describes the quantum molecular orbitals of π-electrons in π-

delocalized systems in terms of a kind of adjacency matrix that contains atomic connectivity 

information [28, 29]. Additionally, the Gaussian network model (GNM) [30] and anisotropic 

network model (ANM) [31] represent protein Cα atoms as an elastic mass-and-spring 

network by graph Laplacians. These approaches were influenced by the Flory theory of 

elasticity and the Rouse model [32]. Like traditional topology, traditional graph theory 

extracts very limited information from data. In our earlier work, we have proposed 

multiscale graphs, called multiscale flexibility rigidity index (mFRI), to describe the 

multiscale nature of biomolecular interactions [33], such as hydrogen bonds, electrostatic 

effects, van der Waals interactions, hydrophilicity, and hydrophobicity. A multiscale spectral 

graph method has also been proposed as generalized GNM and generalized ANM [34]. Our 

essential idea is to create a family of graphs with different characteristic length scales for a 

given dataset. We have demonstrated that our multiscale weighted colored graph (MWCG) 

significantly outperforms traditional spectral graph methods in protein flexibility analysis 

[35]. More recently, we demonstrate that our MWCG outperforms other existing approaches 

in protein-ligand binding scoring, ranking, docking, and screening [36].

The objective of the present work is to introduce persistent spectral graph as a new paradigm 

for the multiscale analysis of the topological invariants and geometric shapes of high-

dimensional datasets. Motivated by the success of persistent homology [25] and multiscale 

graphs [36] in dealing with complex biomolecular data, we construct a family of spectral 

graphs induced by a filtration parameter. In the present work, we consider the radius 

filtration via the Vietoris-Rips complex while other filtration methods can be implemented 

as well. As the filtration radius is increased, a family of persistent q-combinatorial 

Laplacians are constructed for a given point-cloud dataset. The diagonalization of these 

persistent q-combinatorial Laplacian matrices gives rise to persistent spectra. It is noted that 

our harmonic persistent spectra of 0-eigenvalues fully recover the persistent barcode or 

persistent diagram of persistent homology. Additional information is generated from non-

harmonic persistent spectra, namely, the non-zero eigenvalues and associated eigenvectors. 

In a combination with a simple machine learning algorithm, this additional spectral 

information is found to provide a powerful new tool for the quantitative analysis of 

molecular data, including the prediction of a set of protein B-factors for which existing 

standard predictors fail to work.

2 Theories and methods

In this section, we give a brief review of spectral graph theory and simplicial complex to 

establish notations and provide essential background. Subsequently, we introduce persistent 

spectral analysis.

2.1 Spectral graph theory

Graph structure encodes inter-dependencies among constituents and provides low-

dimensional representations of high-dimensional datasets. One of the representations 

frequently used in spectral graph theory (SGT) is to associate graphs with matrices, such as 
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the Laplacian matrix and adjacency matrix. Analyzing the spectra from such matrices leads 

to the understanding of the topological and spectral properties of the graph.

Let V be the vertex set, and E be the edge set. For a given simple graph G(V, E) (A simple 

graph can be either connected or disconnected), the degree of the vertex v ∈ V is the number 

of edges that are adjacent to v, denoted deg(v). The adjacency matrix A is defined by

A(G) =
1  if vi and vj are adjacent,
0  otherwise.

(1)

and the Laplacian matrix ℒ is given by

ℒ(G) =
deg vi  if vi = vj,
−1  if vj and vj are adjacent,
0  otherwise.

(2)

Obviously, the adjacency matrix characterizes the graph connectivity. The above two 

matrices are related through diagonal matrix D

ℒ = D − A

Assuming G(V, E) has N nodes, then adjacency matrix A and Laplacian matrix ℒ are both 

real symmetric N × N matrices. The eigenvalues of adjacency and Laplacian matrices are 

denoted and ordered as

αmin = αN ≤ ⋯ ≤ α2 ≤ α1 = αmax
λmin = λ1 ≤ λ2 ≤ ⋯ ≤ λN = λmax . (3)

The spectra of A and ℒ have several interesting proprieties. To understand the robustness 

and connectivity of a graph, the algebraic connectivity λ2 and the multiplicity of 0 

eigenvalues are taken into consideration which will be illustrated in the Theorem 2.1 and 

Remark 2.1. For more detailed theorems and proofs, we refer the interested reader to a 

survey on Laplacian eigenvalues of graphs [8]. Furthermore, some interesting properties and 

examples can be found in the Supporting Material: S1 as well.

Theorem 2.1. Let G(V, E) be a simple graph of order N, then the multiplicity of 0 

eigenvalue for Laplacian matrix is the number of connected components of G(V, E). The 
vertex degree is the value of the diagonal entry.

Remark 2.1. In this section, the Laplacian spectrum of simple graph G(V, E) is concerned. 
For

G(V , E) = G1 V 1, E1 ∪ ⋯ ∪ Gm V m, Em , m ≥ 1, m ∈ ℤ,
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where Gi(Vi, Ei) ⊂ G(V, E), i = 1, ⋯ , m is a connected simple graph. If m ≥ 2, the zero 
eigenvalue of ℒ(G) has multiplicity m, which results in algebraic connectivity λ2 = 0. 
However, λ2 = 0 cannot give any information about the Gi(Vi, Ei). Therefore, we study the 
smallest non-zero eigenvalue of ℒ(G), which is actually the smallest algebraic connectivity 
of ℒ(Gi), i = 1, ⋯ , m. In subsection 2.3 and section 3, we analyze the smallest non-zero 

eigenvalue of the Laplacian matrix. To make the expression more concise, we still use λ2 as 

the smallest non-zero eigenvalue. If G(V, E) is a connected simple graph, i.e., m = 1, one has 
λ2 = λ2.

2.2 Simplicial complex

A simplicial complex is a powerful algebraic topology tool that has wide applications in 

graph theory, topological data analysis [17], and many physical fields [25]. We briefly 

review simplicial complexes to generate notation and provide essential preparation for 

introducing persistent spectral graph.

2.2.1 Simplex—Let {v0, v1, ⋯ , vq} be a set of points in ℝn. A point 

v = ∑i = 0
q λivi, λi ∈ ℝ is an affine combination of vi if ∑i = 0

q λi = 1. An affine hull is the set 

of affine combinations. Here, q + 1 points v0, v1, ⋯ , vq are affinely independent if v1 − v0, 

v2 −v0, ⋯ , vq − v0 are linearly independent. A q-plane is well-defined if the q + 1 points are 

affinely independent. In ℝn, one can have at most n linearly independent vectors. Therefore, 

there are at most n + 1 affinely independent points. An affine combination v = ∑i = 0
q λivi is a 

convex combination if all λi are non-negative. The convex hull is the set of convex 

combinations.

A (geometric) q-simplex denoted as σq is the convex hull of q + 1 affinely independent 

points in ℝn(n ≥ q) with dimension dim(σq) = q. A 0-simplex is a vertex, a 1-simplex is an 

edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron, as shown in Figure 1. The 

convex hull of each nonempty subset of q + 1 points forms a subsimplex and is regarded as a 

face of σq denoted τ. The p + 1-vertices of a q-simplex is the subset {vi1, ⋯ , vip} of the q-

simplex.

2.2.2 Simplicial complex—A (finite) simplicial complex K is a (finite) collection of 

simplices in ℝn satisfying the following conditions

1. If σq ∈ K and σp is a face of σq, then σp ∈ K.

2. The non-empty intersection of any two simplices σq, σp ∈ K is a face of both of 

σq and σp.

Each element σq ∈ K is a q-simplex. The dimension of K is defined as dim(K) = 

max{dim(σq) : σq ∈ K}. To distinguish topological spaces based on the connectivity of 

simplicial complexes, one uses Betti numbers. The k-th Betti number, βk, counts the number 

of k-dimensional holes on a topological surface. The geometric meaning of Betti numbers in 

ℝ3 is the following: β0 represents the number of connected components, β1 counts the 

number of one-dimensional loops or circles, and β2 describes the number of two-
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dimensional voids or holes. In a nutshell, the Betti number sequence {β0, β1, β2, ⋯} reveals 

the intrinsic topological property of the system.

Recall that in graph theory, the degree of a vertex (0-simplex) v is the number of edges that 

are adjacent to the vertex, denoted as deg(v). However, once we generalize this notion to q-

simplex, problem aroused since q-simplex can have (q − 1)-simplices and (q + 1)-simplices 

adjacent to it at the same time. Therefore, the upper adjacency and lower adjacency are 

required to define the degree of a q-simplex for q > 0 [10, 12].

Defination 2.1. Two q-simplices σqi  and σqj of a simplicial complex K are lower adjacent if 

they share a common (q − 1)-face, denoted σqi
Lσqj. The lower degree of q-simplex, denoted 

degL(σq), is the number of nonempty (q − 1)-simplices in K that are faces of σq, which is 
always q + 1.

Defination 2.2. Two q-simplices σqi  and σqj of a simplicial complex K are upper adjacent if 

they share a common (q + 1)-face, denoted σqi
Uσqj. The upper degree of q-simplex, denoted 

degU(σq), is the number of (q + 1)-simplices in K of which σq is a face.

Then, the degree of a q-simplex (q > 0) is defined as:

deg σq = degL σq + degU σq = degU σq + q + 1. (4)

A supplemental example which illustrate the relation between simplicial complex and its 

corresponding Betti number can be found in the Supporting Material: S2.

2.2.3 Chain complex—Chain complex is an important concept in topology, geometry, 

and algebra. Let K be a simplicial complex of dimension q. A q-chain is a formal sum of q-

simplices in K with ℤ2 field of the coefficients for the sum. Under the addition operation of 

ℤ2, a set of all q-chains is called a chain group and denoted Cq(K). To relate these chain 

groups, we denote boundary operator by ∂q : Cq(K) → Cq−1(K). The boundary operator 

maps a q-chain which is a linear combination of q-simplices to the same linear combination 

of the boundaries of the q-simplices. Denoting σq = [v0, v1, ⋯ , vq] for the q-simplex 

spanned by its vertices, its boundary operator can be defined as:

∂qσq = ∑
i = 0

q
( − 1)iσq − 1

i , (5)

with σq = [v0, ⋯ , vq] being the q-simplex. Here, σq − 1
i = v0, ⋯, vi, ⋯, vq  is the (q − 1)-

simplex with vi being omitted. A q-chain is called q-cycle if its boundary is zero. A chain 

complex is the sequence of chain groups connected by boundary operators

⋯
∂q + 2 Cq + 1(K)

∂q + 1 Cq(K)
∂q Cq − 1(K)

∂q − 1 ⋯ (6)
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2.3 Persistent spectral analysis

In this section, we introduce persistent spectral theory (PST) to extract rich topological and 

spectral information of simplicial complexes via a filtration process. We briefly review 

preliminary concepts about the oriented simplicial complex and q-combinatorial Laplacian, 

while more detail information can be found elsewhere [11–13, 37]. Then, we discuss the 

properties of the q-combinatorial Laplacian matrix together with its spectrum. Moreover, we 

employ the q-combinatorial Laplacian to establish the PST. Finally, we discuss some 

variants of the persistent q-combinatorial Laplacian matrix and illustrate their formulation 

on simple geometry, i.e., a benzene molecule.

2.3.1 Oriented simplicial complex and q-combinatorial Laplacian—An oriented 

simplicial complex is the one in which all of the simplices in the simplicial complex, except 

for vertices and ∅, are oriented. A q-combinatorial Laplacian is defined based on oriented 

simplicial complexes, and its lower- and higher-dimensional simplexes can be employed to 

study a specifically oriented simplicial complex.

We first introduce oriented simplex complexes. Let σq be a q-simplex, we can define the 

ordering of its vertex set. If two orderings defined on σq differ from each other by an even 

permutation, we say that they are equivalent, and each of them is called an orientation of σq. 

An oriented q-simplex is a simplex σq with the orientation of σq. An oriented simplicial 

complex K is defined if all of its simplices are oriented. Suppose σqi  and σqj ∈ K with K being 

an oriented simplicial complex. If σqi  and σqj are upper adjacent with a common upper (q + 

1)-simplex τq+1, we say they are similarly oriented if both have the same sign in ∂q+1(τq+1) 

and dissimilarly oriented if the signs are opposite. Additionally, if σqi  and σqj are lower 

adjacent with a common lower (q − 1)-simplex ηq−1, we say they are similarly oriented if 

ηq−1 has the same sign in ∂q σqi  and ∂q σqj , and dissimilarly oriented if the signs are 

opposite.

Similarly, we can define q-chains based on an oriented simplicial complex K. The q-chain 

Cq(K) is also defined as the linear combinations of the basis, with the basis being the set of 

oriented q-simplices of K. The q-boundary operator ∂q : Cq(K) → Cq−1(K) is

∂qσq = ∑
i = 0

q
( − 1)iσq − 1

i , (7)

with σq = [v0, ⋯ , vq] to be the oriented q-simplex, and σq − 1
i = v0, ⋯, vi, ⋯, vq  the oriented 

(q − 1)-simplex with its vertex vi being removed. Let ℬq be the matrix representation of a q-

boundary operator with respect to the standard basis for Cq(K) and Cq−1(K) with some 

assigned orderings. Then, the number of rows in ℬq corresponds to the number of (q−1)-

simplices and the number of columns shows the number of q-simplices in K, respectively. 

Associated with the q-boundary operator is the adjoint operator denoted q-adjoint boundary 

operator, defined as
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∂q*:Cq − 1(K) Cq(K), (8)

and the transpose of ℬq, denoted ℬq
T , is the matrix representation of ∂q* relative to the same 

ordered orthonormal basis as ∂q [38].

Let K be an oriented simplicial complex, for integer q ≥ 0, the q-combinatorial Laplacian is 

a linear operator Δq : Cq(K) → Cq(K)

Δq ≔ ∂q + 1 ∂q + 1* + ∂q* ∂q (9)

with ∂q∂q+1 = 0, which implies Im(∂q+1) ⊂ ker(∂q). The q-combinatorial Laplacian matrix, 

denoted ℒq, is the matrix representation1.

ℒq = ℬq + 1ℬq + 1
T + ℬq

Tℬq (10)

of operator Δq, with ℬq and ℬq + 1 being the matrices of dimension q and q + 1. 

Additionally, we denote upper and lower q-combinatorial Laplacian matrices by 

ℒq
U = ℬq + 1ℬq + 1

T  and ℒq
L = ℬq

Tℬq, respectively. Note that ∂0 is the zero map which leads 

to ℬ0 being a zero matrix. Therefore, ℒ0(K) = ℬ1ℬ1
T + ℬ0

Tℬ0, with K the (oriented) 

simplicial complex of dimension 1, which is actually a simple graph. Especially, 0-

combinatorial Laplacian matrix ℒ0(K) is actually the Laplacian matrix defined in the 

spectral graph theory. In fact, Eq. (2) is exactly the same as Eq. (14) given below.

Given an oriented simplicial complex K with 0 ≤ q ≤ dim(K), one can obtain the entries of 

its corresponding upper and lower q-combinatorial Laplacian matrices explicitly [13]

ℒq
U

ij =

degU σqi ,  if i = j,

1,  if i ≠ j, σqi
Uσqj with similar orientation,

−1,  if i ≠ j, σqi
Uσqj with dissimilar orientation,

0,  otherwise.

(11)

ℒq
L

ij =

degL σqi = q + 1,  if i = j,

1,  if i ≠ j, σqi
Lσqj with similar orientation,

−1,  if i ≠ j, σqi
Lσqj with dissimilar orientation,

0,  otherwise.

(12)

The entries of q-combinatorial Laplacian matrices are

1If q = 0, ∂0 is a zero map, and we denote ℬ0 a zero matrix with dimension 1× N, where N is the number of 0-simplices. Note that 

this term is needed to attain the correct dimension of the null space. If q > dim(K), we will not discuss ∂q since there is no σq in K.
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q > 0, ℒq ij =

deg σqi + q + 1,  if i = j .

1,  if i ≠ j, σqi ≁U σqj and σqi
Lσqj with similar orientation .

−1,  if i ≠ j, σqi ≁U σqj and σqi
Lσqj with dissimilar orientation .

0,  if i ≠ j and either , σqi
Uσqj or σqi ≁L σqj .

(13)

q = 0, ℒq ij =
deg σ0

i ,  if i = j .

−1,  if σ0
i Uσ0

j .
0,  otherwise.

(14)

2.3.2 Spectral analysis of q-combinatorial Laplacian matrices—A q-

combinatorial Laplacian matrix for oriented simplicial complexes is a generalization of the 

Laplacian matrix in graph theory. The spectra of a Laplacian matrix play an essential role in 

understanding the connectivity and robustness of simple graphs (simplicial complexes of 

dimension 1). They can also distinguish different topological structures. Inspired by the 

capability of the Laplacian spectra of analyzing topological structures, we study the spectral 

properties of q-combinatorial Laplacian matrices to reveal topological and spectral 

information of simplicial complexes with dimension 0 ≤ q ≤ dim(K).

We clarify that for a given finite simplicial complex K, the spectra of its q-combinatorial 

Laplacian matrix is independent of the choice of the orientation for the q-simplices of K. 

The proof can be found in Ref. [13]. Figure 2 provides a simple example to illustrate this 

property. In Figure 2, we have two oriented simplicial complexes, K1 and K2, with the same 

geometric structure but different orientations. For the sake of brevity, we use 1, 2, 3, 4, and 5 

to represent 0-simplices (vertices), 12, 23, 34, 24, and 45 to describe 1-simplices (edges), 

and 234 to stand for the 2-simplex (triangle). Then the 0-combinatorial Laplacian matrix of 

K1 and K2 is

ℒ0 K1 = ℒ0 K2 =

1 −1 0 0 0
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1

.

Obviously, ℒ0 K1  and ℒ0 K2  have the same spectra. For q = 1, there are five 1-simplices in 

K1 and K2, while 1-combinatorial Laplacian matrices have dimension 5×5. Using K1 as an 

example, since 12 and 23 are lower adjacent with similar orientation, the element of ℒ1 K1
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addressed at first row and second column is 1 according to Eq. (13). Since 34 and 45 are 

lower adjacent with dissimilar orientation, ℒ1 K1 35 = − 1. Moreover, 23 and 34 are upper 

adjacent which results in ℒ1 K1 23 = 0. For the diagonal parts, 12 and 45 are not the faces 

of any 2-simplex, while 23, 34, and 24 are the faces of 2-simplex 234. Therefore, degU(12) = 

degU(12) = 0, and degU(23) = degU(34) = degU(34) = 1, so the diagonal terms of ℒ0 K1  are 

2, 3, 3, 3, and 2.

ℒ1 K1 =

2 1 0 1 0
1 3 0 0 0
0 0 3 0 −1
1 0 0 3 −1
0 0 −1 −1 2

, ℒ1 K2 =

2 −1 0 1 0
−1 3 0 0 0
0 0 3 0 1
1 0 0 3 −1
0 0 1 −1 2

.

The spectra of ℒ1 K1  and ℒ1 K2  have the same eigenvalues: 3, 5 ± 5
2 , 5 ± 13

2 . Since K1 

and K2 do not have 3-simplices, ℒq is a zero matrix when q ≥ 3.

A q-combinatorial Laplacian matrix is symmetric and positive semi-definite. Therefore, its 

eigenvalues are all real and non-negative. An analogy to the property that the number of zero 

eigenvalues of ℒ0 represents the number of connected components (β0) in the simple graph 

(simplicial complex with dimension 1), the number of zero eigenvalues of ℒq can also reveal 

the topological information. More specifically, for a given finite oriented simplicial complex, 

the Betti number βq of K satisfy

βq = dim ℒq(K) − rank ℒq(K) =  nullity  ℒq(K) =
#  of zero eigenvalues of ℒq(K) (15)

In the Supporting material: S3, we illustrate the connection between Betti number and the 

dimension of the rank of q-combinatorial Laplacian matrix.

2.3.3 Persistent spectral theory—Instead of using the aforementioned spectral 

analysis for q-combinatorial Laplacian matrix to describe a single configuration, we propose 

a persistent spectral theory to create a sequence of simplicial complexes induced by varying 

a filtration parameter, which is inspired by persistent homology and our earlier work in 

multiscale graphs [34, 35]. We provide a brief introduction to persistent homology in the 

Supporting Material: S4.

A filtration of an oriented simplicial complex K is a sequence of sub-complexes Kt t = 0
m  of 

K

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ⋯ ⊆ Km = K . (16)

It induces a sequence of chain complexes
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⋯ Cq + 1
1

∂q + 1
1 *

∂q + 1
1

Cq
1

∂q1 *

∂q1
⋯

∂3
1 *

∂3
1

C2
1

∂2
1 *

∂2
1

C1
1

∂1
1 *

∂1
1

C0
1

∂0
1 *

∂0
1

C−1
1

⋯ Cq + 1
2
|∩

∂q + 1
2 *

∂q + 1
2

Cq
2

|∩

∂q2 *

∂q2
⋯

∂3
2 *

∂3
2

C2
2

|∩

∂2
2 *

∂2
2

C1
2

|∩

∂1
2 *

∂1
2

C0
2

|∩

∂0
2 *

∂0
2

C−1
1

⋯ Cq + 1
m|∩

∂q + 1
m *

∂q + 1
m

Cq
m|∩

∂qm *

∂qm
⋯

∂3
m *

∂3
m

C2
m|∩

∂2
m *

∂2
m

C1
m|∩

∂1
m *

∂1
m

C0
m|∩

∂0
m *

∂0
m

C−1
1

(17)

where Cq
t ≔ Cq Kt  and ∂q

t :Cq Kt Cq − 1 Kt . Each Kt itself is an oriented simplicial 

complex which has dimension denoted by dim(Kt). If q < 0, then Cq(Kt) = {∅} and ∂q
t  is 

actually a zero map.2 For a general case of 0 < q ≤ dim(Kt), if σq is an oriented q-simplex of 

Kt, then

∂qt σq = ∑
i

q
( − 1)iσq − 1

i , σq ∈ Kt,

with σq = [v0, ⋯ , vq] being the oriented q-simplex, and σq − 1
i = v0, ⋯, vi, ⋯, vq  being the 

oriented (q − 1)-simplex for which its vertex vi is removed.

Let ℂq
t + p be the subset of Cq

t + p whose boundary is in Cq − 1
t :

ℂq
t + p: = α ∈ Cq

t + p ∣ ∂q
t + p(α) ∈ Cq − 1

t . (18)

We define

ðq
t + p:ℂq

t + p Cq − 1
t (19)

Based on the q-combinatorial Laplacian operator, the p-persistent q-combinatorial Laplacian 

operator Δq
t + p:Cq Kt Cq Kt  defined along the filtration can be expressed as

Δq
t + p = ðq + 1

t + p ðq + 1
t + p * + ∂q

t* ∂q
t . (20)

We denote the matrix representations of boundary operator ðq + 1
t + p  and ∂q

t  by ℬq + 1
t + p  and ℬq

t , 

respectively. It is clear that the number of rows in ℬq + 1
t + p  is the number of oriented q-

simplices in Kt, and the number of columns is the number of oriented (q+1)-simplices in 

2We define the boundary matrix ℬ0
t  for boundary map ∂0

t  as a zero matrix. The number of columns of ℬ0
t  is the number of 0-

simplices in Kt, the number of rows will be 1.
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Kt + p ∩ ℂq + 1
t + p . The transpose of the matrices ℬq + 1

t + p  and ℬq
t , are the matrix representations of 

the adjoint boundary operator ∂q + 1
t + p * and ∂q

t * , respectively. Therefore, the p-persistent q-

combinatorial Laplacian matrix, ℒq
t + p, is

ℒq
t + p = ℬq + 1

t + p ℬq + 1
t + p T + ℬq

t Tℬq
t . (21)

Intuitively, for a non-empty set Cq
t , the p-persistent q-combinatorial Laplacian matrix ℒq

t + p

is a square matrix with dimension to be the number of q-simplices in Kt. Moreover, ℒq
t + p is 

symmetric and positive semidefined and thus, all the spectra of ℒq
t + p are real and non-

negative. If p = 0, then ℒq
t + 0 is exactly the q-combinatorial Laplacian matrix defined in Eq. 

(10).

We are interested in the difference between ℒq
t + 0 and ℒq

t + p. Suppose we have an oriented 

simplicial complex Kt, and also an oriented simplicial complex Kt+p constructed by adding 

different dimensions simplices (”outer” topological structures) to Kt with dim(Kt+p) = q + 1. 

Since Kt ⊂ Kt+p, we have

ℒqt + 0 = ℬq + 1
t + 0 ℬq + 1

t + 0 T
+ ℬqt

Tℬqt

ℒqt + p = ℬq + 1
t + p ℬq + 1

t + p T
+ ℬqt

Tℬqt .

Case 1. If Im ðq + 1
t + p ∩ Kt + p\Kt ∩ Cq

t = ∅ for all possible q, then the ”outer” topological 

structures are disconnected with Kt. Therefore, the boundary matrix ℬq + 1
t + p  is exactly the 

same with ℬq + 1
t . In this situation, the spectra of ℒq

t + 0 and ℒq
t + p are the same, which 

reveals the fact that the topological structure Kt does not change under the filtration process.

Case 2. If Im ðq + 1
t + p ∩ Kt + p\Kt ∩ Cq

t ≠ ∅ for at least one q, then the boundary matrix 

ℬq + 1
t + p  will be changed by adding additional non-zero columns. Therefore, ℒq

t + p is no 

longer the same as ℒq
t + 0, but the structure information in Kt will still be preserved in ℒq

t + p. 

In this case, the topological structure Kt builds connection with “outer” topological 

structures. By calculating the spectra of ℒq
t + p, the disappeared and preserved structure 

information of Kt under the filtration process can be revealed.

Based on the fact that the topological and spectral information of Kt can also be analyzed 

from ℒq Kt  along with the filtration parameter by diagonalizing the q-combinatorial 
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Laplacian matrix, we focus on the spectra information calculated from ℒq
t + p. Denote the set 

of spectra of ℒq
t + p by

Spectra  ℒqt + p = λ1 qt + p, λ2 qt + p, ⋯, λN qt + p ,

where ℒq
t + p has dimension N × N and spectra are arranged in ascending order. The smallest 

non-zero eigenvalue of ℒq
t + p is defined as λ2 q

t + p. In the previous section, we have seen 

that Betti numbers (i.e # of zero eigenvalues) can reveal q-cycle information. Similarly, we 

define the number of zero eigenvalues of p-persistent q-combinatorial Laplacian matrix 

ℒq
t + p to be the p-persistent qth Betti numbers

βq
t + p = dim ℒq

t + p − rank ℒq
t + p =  nullity  ℒq

t + p =
#  of zero eigenvalues of ℒq

t + p .
(22)

In fact, βq
t + p counts the number of q-cycles in Kt that are still alive in Kt+p, which exactly 

provides the same topological information as persistent homology does. However, persistent 

spectral theory offers additional geometric information from the spectra of persistent 

combinatorial Laplacian matrix beyond topological persistence. In general, the topological 

changes can be read off from persistent Betti numbers (harmonic persistent spectra) and the 

geometric changes can be derived from the non-harmonic persistent spectra.

Figure 3 demonstrates an example of a standard filtration process. Here the initial setup K1 

consists of five 0-simplices (vertices). We construct Vietoris-Rips complexes by using an 

ever-growing circle centered at each vertex with radius r. Once two circles overlapped with 

each other, an 1-simplex (edge) is formed. A 2-simplex (triangle) will be created when 3 

circles contact with one another, and a 3-simplex will be generated once 4 circles get 

overlapped one another. As Figure 3 shows, we can attain a series of simplicial complexes 

from K1 to K6 with the radius of circles increasing. Table 1 lists the number of q-cycles of 

simplicial complex To fully illustrate how to construct p-persistent q-combinatorial 

Laplacian matrices by the boundary operator and determine persistent Betti numbers, we 

analyze 6 p-persistent q-combinatorial Laplacian matrices and their corresponding harmonic 

persistent spectra (i.e., persistent Betti numbers) and non-harmonic persistent spectra. An 

supplementary example to distinguish different topological structures by implementing PST 

is provided in the Supporting Material: S5. Moreover, additional matrices are analyzed in the 

Supporting Material: S6.

Case 1. The initial setup is K3 and the end status is K4. The 1-persistent 0, 1, 2-

combinatorial Laplacian operators are

Δ0
3 + 1 = ð1

3 + 1 ð1
3 + 1 * + ∂0

3* ∂0
3,
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Δ1
3 + 1 = ð2

3 + 1 ð2
3 + 1 * + ∂1

3* ∂13,

Δ2
3 + 1 = ð3

3 + 1 ð3
3 + 1 * + ∂2

3* ∂2
3,

Since 2-simplex and 3-simplex do not exist in K4, ∂2
3, ∂2

3 + 1, and ∂2
3 do not exist, then

ℒ0
3 + 1 = ℬ1

3 + 1 ℬ1
3 + 1 T

+ ℬ0
3 T

ℬ0
3,

ℒ1
3 + 1 = ℬ1

3 T
ℬ1

3 .

From Table 2, one can see that β0
3 + 1 = 0 and β1

3 + 1 = 1, which reveals only one 0-cycle and 

one 1-cycle in K3 are still alive in K4.

Case 2. The initial setup is K6 and the end status is K6. The 0-persistent 0, 1, 2-

combinatorial Laplacian operators are

ℒ0
6 + 0 = ℬ1

6 + 0 ℬ1
6 + 0 T

+ ℬ0
6 T

ℬ0
6,

ℒ1
6 + 0 = ℬ2

6 + 0 ℬ2
6 + 0 T

+ ℬ1
6 T

ℬ1
6,

ℒ2
6 + 0 = ℬ3

6 + 0 ℬ3
6 + 0 T

+ ℬ2
6 T

ℬ2
6,

From Table 3, β0
6 + 0 = 1, β1

6 + 0 = 0, and β2
6 + 0 = 0 imply that only one 0-cycle (connected 

component) exists in K6.

with

ℬ3
6 + 0 =

0123
012
023
013
123

−1
−1
1
1

    , ℬ2
6 =

012 023 013 123
01
12
23
03
24
02
13

1 0 1 0
1 0 0 1
0 1 0 1
0 −1 −1 0
0 0 0 0

−1 1 0 0
0 0 1 −1

    , ℒ3
6 + 0 =

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

.
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We have constructed a family of persistent spectral graphs induced by a filtration parameter. 

For the sake of simplicity, we focus on the analysis of high-dimensional spectra with p = 0 in 

the rest of this section. As clarified before, the 0-persistent q-combinatorial Laplacian matrix 

is the q-combinatorial Laplacian matrix. A graph structure encodes inter-dependencies 

among constituents and provides a convenient representation of the high-dimensional data. 

Naturally, the same idea can be applied to higher-dimensional spaces. For a set of points 

V ⊂ ℝn without additional structures, we consider growing an (n − 1)-sphere centered at 

each point with an ever-increasing radius r. Therefore, a family of 0-persistent q-

combinatorial Laplacian matrices as well as spectra can be generated as the radius r 
increases, which provides topological and spectral features to distinguish individual entries 

of the dataset.

2.3.4 Variants of p-persistent q-combinatorial Laplacian matrices—The 

traditional approach in defining the q-boundary operator ∂q : Cq(K) → Cq−1(K) can be 

expressed as:

∂qσq = ∑
i = 0

q
( − 1)iσq − 1

i ,

which leads to the corresponding elements in the boundary matrices being either 1 or −1. 

However, to encode more geometric information into the Laplacian operator, we add volume 

information of q-simplex σq to the expression of q-boundary operator.

Given a vertex set V = {v0, v1, ⋯ , vq} with q + 1 isolated points (0-simplices) randomly 

arranged in the n-dimensional Euclidean space ℝn, often with n ≥ q. Set dij to be the 

distances between vi and vj with 0 ≤ i ≤ j ≤ q and obviously, dij = dji. The Cayley-Menger 

determinant can be expressed as [39]

DetCM v0, v1, ⋯, vq =

0 d01
2 d02

2 ⋯ d0q
2 1

d10
2 0 d12

2 ⋯ d1q
2 1

d20
2 d21

2 0 ⋯ d2q
2 1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
dq0

2 dq1
2 dq2

2 ⋯ 0 1
1 1 1 1 1 0

(23)

The q-dimensional volume of q-simplex σq with vertices {v0, v1, ⋯ , vq} is defined by

Vol σq = ( − 1)q + 1

(q!)22q DetCM v0, v1, ⋯, vq . (24)

In trivial cases, Vol(σ0) = 1, meaning the 0-dimensional volume of 0-simplex is 1, i.e., there 

is only 1 vertex in a 0-simplex. Also, the 1-dimensional volume of 1-simplex σ1 = [vi, vj] is 
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the distance between vi and vj, and the 2-dimensional volume of 2-simplex is the area of a 

triangle [vi, vj, vk].

In applications, it is often useful to replace the characteristic number “1” with some other 

descriptive quantities [40]. Therefore, we define weighted boundary operator equipped with 

volume, denoted ∂q,

∂qσq = ∑
i = 0

q
( − 1)iVol σqi σq − 1

i . (25)

Employing the same concept to the persistent spectral theory, we have the volume-weighted 

p-persistent q-combinatorial Laplacian operator. We also define

ðq
t + p :ℂq

t + p Cq − 1
t (26)

with

ℂqt + p: = α ∈ Cqt + p ∣ ∂q
t + p(α) ∈ Cq − 1

t .

Similarly, an inverse-volume weighted boundary operator, denoted ∂q, is given by

∂qσq = ∑
i = 0

q
( − 1)i 1

Vol σqi
σq − 1

i . (27)

To define an inverse-volume weighted p-persistent q-combinatorial Laplacian operator. We 

define

ðq
t + p :ℂq

t + p Cq − 1
t (28)

with

ℂqt + p: = α ∈ Cqt + p ∣ ∂q
t + p(α) ∈ Cq − 1

t

Then volume-weighted and inverse-volume-weighted p-persistent q-combinatorial Laplacian 

operators defined along the filtration can be expressed as

Δq
t + p = ðq + 1

t + p ðq + 1
t + p * + ∂q

t* ∂q
t ,

Δq
t + p = ðq + 1

t + p ðq + 1
t + p * + ∂q

t* ∂q
t .

(29)

Wang et al. Page 16

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2020 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The corresponding weighted matrix representations of boundary operators ðq + 1
t + p

, ðq
t
, ðq + 1

t + p
, 

and ðq
t
 are denoted ℬq + 1

t + p
, ℬq

t
, ℬq + 1

t + p
, and ℬq

t
, respectively. Therefore, volume-weighted and 

inverse-volume-weighted p-persistent q-combinatorial Laplacian matrices can be expressed 

as

ℒq
t + p = ℬq + 1

t + p ℬq + 1
t + p T

+ ℬq
t T

ℬq
t ,

ℒq
t + p = ℬq + 1

t + p ℬq + 1
t + p T

+ ℬq
t T

ℬq
t .

(30)

Although the expressions of the weighted persistent Laplacian matrices are different from 

the original persistent Laplacian matrices, some properties of ℒq
t + p are preserved. The 

weighted persistent Laplacian operators are still symmetric and positive semi-defined. 

Additionally, their ranks are the same as ℒq
t + p. With the embedded volume information, 

weighted PSGs can provide richer topological and geometric information through the 

associated persistent Betti numbers and non-harmonic spectra (i.e., non-zero eigenvalues). In 

real applications, we are more interested in the 0, 1, 2-combinatorial Laplacian matrices 

because its more intuitive to depict the relation among vertex, edges, and faces. Given a set 

of vertices V = {v0, v2, ⋯ , vN} with N + 1 isolated points (0-simplices) randomly arranged 

in ℝn. By varying the radius r of the (n − 1)-sphere centered at each vertex, a variety of 

simplicial complexes is created. We denote the simplicial complex generated at radius r to be 

Kr, then the 0-persistent q-combinatorial Laplacian operator and matrix at initial set up Kr is

ℒq
r + 0 = ℬq + 1

r + 0 ℬq + 1
r + 0 T + ℬq

r Tℬq
r . (31)

The volume of any 1-simplex σ1 = [vi, vj] is Vol(σ1) is actually the distance between vi and 

vj denoted dij. Then the 0-persistent 0-combinatorial Laplacian matrix based on filtration r 
can be expressed explicitly as

ℒ0
r + 0

ij =
−∑

j
ℒ0

r + 0
ij,  if i = j

−1,  if i ≠ j and dij − 2r < 0
0,  otherwise.

(32)

Correspondingly, we can denote the 0-persistent 1-combinatorial Laplacian matrix based on 

filtration r by ℒ1
r + 0, and the 0-persistent 2-combinatorial Laplacian matrix based on 

filtration ℒ2
r + 0.

Alternatively, variants of persistent 0-combinatorial Laplacian matrices can be defined by 

adding the Euclidean distance information. The distance-weight persistent 0-combinatorial 

Laplacian matrix based on filtration r can be expressed explicitly as
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ℒ0
r + 0

ij =
−∑

j
ℒ0

r + 0
ij,  if i = j

−dij,  if i ≠ j and dij − 2r < 0
0,  otherwise.

(33)

Moreover, the inverse-distance-weight persistent 0-combinatorial Laplacian matrix based on 

filtration r can also be implemented:

ℒ0
r + 0

ij =

−∑
j

ℒ0
r + 0

ij,  if i = j

− 1
dij

,  if i ≠ j and dij − 2r < 0

0,  otherwise.

(34)

The spectra of the aforementioned 0-persistent 0-combinatorial Laplacian matrices based on 

filtration are given by

Spectra  ℒ0
r + 0 = λ1 0

r + 0, λ2 0
r + 0, ⋯, λN 0

r + 0 ,

Spectra  ℒ0
r + 0 = λ1 0

r + 0, λ2 0
r + 0, ⋯, λN 0

r + 0 ,

Spectra  ℒ0
r + 0 = λ1 0

r + 0, λ2 0
r + 0, ⋯, λN 0

r + 0 ,

where N is the dimension of persistent Laplacian matrices, λj 0
r + 0 and λj 0

r + 0 are the j-th 

eigenvalues of ℒ0
r + 0

 and ℒ0
r + 0

, respectively. We denote βq
r + 0 and βq

r + 0 the qth Betti for 

ℒq
r + 0

 and ℒq
r + 0

, respectively.

The smallest non-zero eigenvalue of ℒ0
r + 0, denoted λ2 0

r + 0, is particularly useful in many 

applications. Similarly, the smallest non-zero eigenvalues of ℒ0
r + 0

 and ℒ0
r + 0

 are denoted as 

λ2 0
r + 0

 and λ2 0
r + 0

, respectively.

Finally, it is mentioned that using the present procedure, more general weights, such as the 

radial basis function of the Euclidean distance, can be employed to construct weighted 

boundary operators and associated persistent combinatorial Laplacian matrices.

2.3.5 Multiscale spectral analysis—In the past few years, we have developed a 

multiscale spectral graph method such as generalized GNM and generalized ANM [33, 34], 
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to create a family of spectral graphs with different characteristic length scales for a given 

dataset. Similarly, in our persistent spectral theory, we can construct a family of spectral 

graphs induced by a filtration parameter. Moreover, we can sum over all the multiscale 

spectral graphs as an accumulated spectral graph. Specifically, a family of ℒ0
r + 0 matrices, 

as well as the accumulated combinatorial Laplacian matrices, can be generated via the 

filtration. By analyzing the persistent spectra of these matrices, the topological invariants 

and geometric shapes can be revealed from the given input point-cloud data. The spectra of 

ℒ0
r + 0, ℒ0

r + 0
, and ℒ0

r + 0
 mentioned above carry similar information on how the topological 

structures of a graph are changed during the filtration. Benzene molecule (C6H6), a typical 

aromatic hydrocarbon which is composed of six carbon atoms bonded in a planar regular 

hexagon ring with one hydrogen joined with each carbon atom. It provides a good example 

to demonstrate the proposed PST. Figure 4 illustrates the filtration of the benzene molecule. 

Here, we label 6 hydrogen atoms by H1, H2, H3, H4, H5, and H6, and the carbon adjacent to 

the labeled hydrogen atoms are labeled by C1, C2, C3, C4, C5, and C6, respectively. Figure 

5(b) depicts that when the radius of the solid sphere reaches 0.54 Å, each carbon atom in the 

benzene ring is overlapped with its joined hydrogen atom, resulting in the reduction of β0
r + 0

to 6. Moreover, once the radius of solid spheres is larger than 0.70 Å, all the atoms in the 

benzene molecule will connect and constitute a single component which gives rise β0
r + 0 = 1. 

Furthermore, we can deduce that the C-C bond length of the benzene ring is about 1.40 Å, 

and the C-H bond length is around 1.08 Å, which are the real bond lengths in benzene 

molecule. Figure 5(c) shows that a 1-dimensional hole (1-cycle) is born when the filtration 

parameter r increase to 0.70 Å and dead when r = 1.21 Å. In Figures 5(b) and 5(c), it can be 

seen that variants of 0-persistent 0-combinatorial Laplacian and 1 -combinatorial Laplacian 

matrices based on filtration give us the identical β0
r + 0 and β1

r + 0 information respectively.

The C-C bond length of benzene is 1.39 Å, and the C-H bond length is 1.09 Å. Due to the 

perfect hexagon structure of the benzene ring, we can calculate all of the distances between 

atoms. The shortest and longest distances between carbons and the hydrogen atoms are 1.09 

Å and 3.87 Å. In Figure 5(a), a total of 10 changes of λ2 0
r + 0 values is observed at various 

radii. Table 4 lists all the distances between atoms and the values of radii when the changes 

of λ2 0
r + 0 occur. It can be seen that the distance between atoms approximately equals twice 

of the radius value when a jump of λ2 0
r + 0 occurs. Therefore, we can detect all the possible 

distances between atoms with the nonzero spectral information. Moreover, in Figure 5(b), 

the values of the smallest nonzero eigenvalues of ℒ0
r + 0, ℒ0

r + 0
, and ℒ0

r + 0
 change 

concurrently.

3 Applications

In this section, we apply the proposed persistent spectral theory to the study of two 

important systems, fullerenes and proteins. All three different types of persistent 

combinatorial Laplacian matrices are employed in our investigation. The resulting persistent 

spectra contain not only the full set of topological persistence from the harmonic spectra, 
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which is identical to that from a persistent homology analysis, but also non-harmonic 

eigenvalues and eigenvectors. Since the power of topological persistence has been fully 

explored and exploited in the past decade [20–23], to demonstrate the additional utility of 

our persistent spectral analysis, we mainly emphasize the non-harmonic spectra in the 

present applications. In particular, we demonstrate that persistent spectral theory is able to 

accurately predict the B-factors of a set of proteins for which the current biophysical models 

break down.

3.1 Fullerene analysis and prediction

In 1985 Kroto et all discovered the first structure of C60 [41], which was confirmed by 

Kratschmer et al in 1990 [42]. Since then, the quantitative analysis of fullerene molecules 

has become an interesting research topic. The understanding of the fullerene structure-

function relationship is important for nanoscience and nanotechnology. Fullerene molecules 

are only made of carbon atoms that have various topological shapes, such as the hollow 

spheres, ellipsoids, tubes, or rings. Due to the monotony of the atom type and the variety of 

geometric shapes, the minor heterogeneity of fullerene structures can be ignored. The 

fullerene system offers a moderately large dataset with relatively simple structures. 

Therefore, it is suitable for validating new computational methods because every single 

change in the spectra is interpretable. The proposed persistent spectral theory, i.e., persistent 

spectral analysis, is applied to characterize fullerene structures and predict their stability.

All the structural data can be downloaded from CCL.NET Webpage. This dataset gives the 

coordinates of fullerene carbon atoms. In this section, we will analyze fullerene structures 

and predict the heat of formation energy.

3.1.1 Fullerene structure analysis—The smallest member of the fullerene family is 

C20 molecule with a dodecahedral cage structure. Note that 12 pentagons are required to 

form a closed fullerene structure. Following the Euler’s formula, the number of vertices, 

edges, and faces on a polygon have the relationship V − E + F = 2. Therefore, the 20 carbon 

atoms in the dodecahedral cage form 30 bonds with the same bond length. The C20 is the 

only fullerene smaller than C60 that has the molecular symmetry of the full icosahedral point 

group Ih. C60 is a molecule that consists of 60 carbon atoms arranged as 12 pentagon rings 

and 20 hexagon rings. Unlike C20, C60 has two types of bonds: 6 : 6 bonds and 6 : 5 bonds. 

The 6 : 6 bonds are shorter than 6 : 5 bonds, which can also be considered as “double bond” 

[43]. C60 is the most well-know fullerene with geometric symmetry Ih. Since C20 and C60 

are highly symmetrical, they are ideal systems for illustrating the persistent spectral analysis.

Figure 6 (a) illustrates the radius filtration process built on C20. As the radius increases, the 

solid balls corresponding to carbon atoms grow, and a sequence of ℒ0
r + 0 matrices can be 

defined through the overlap relations among the set of balls. At the initial state (r = 0.00 Å), 

all of the atoms are isolated from one another. Therefore, ℒ0
r + 0 is a zero matrix with 

dimension 20×20. Since the C20 molecule has the same bond length which can be denoted as 

l(C20), once the radius of solid balls is greater than l(C20), all of the balls are overlapped, 

which makes the system a singly connected component. Figure 6 (b) depicts the 
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accumulated ℒ0
r + 0 for C20. For C60, the accumulated ℒ0

r + 0 is described in Figure 7 (a). 

Figure 7s (b)-(f) are the plots of ℒ0
r + 0 under different filtration r values. The blue cell 

located at the ith row and jth column means the balls centered at atom i and atom j 
connected with each other, i.e., a 1-simplex formed with its vertex to be i and j. When the 

radius filtration increases, more and more bluer cells are created. In Figure 7 (f), the color of 

cells, except the cells located in the diagonal, turns to blue, which means all of the carbon 

atoms are connected with one another at r = 3.6 Å. For clarity, we set the diagonal terms to 

0.

In Figure 8, the blue solid line represents C20 properties and the dash orange line represents 

C60 properties. For Figure 8(a), the blue line drops at r = 0.72 Å, which means the bond 

length of C20 is around 1.44 Å. The orange line drops at r = 0.68 Å and 0.72 Å, which 

means the “double bond” length of C60 is around 1.36 Å and the 6 : 5 bond length is around 

1.44 Å. Moreover, the total number of “double bond” is 30, yielding β0
r + 0 = 30 when the 

radius of solid balls is over 0.68 Å. In conclusion, one can deduce the number of different 

types of bonds as well as the bond length information from the number of zero eigenvalues 

(i.e., β0
r + 0) under the radius filtration. Furthermore, the geometric information can also be 

derived from the plot of λ2 0
r + 0. Each jump in Figure 8(d) at a specific radius represents the 

change of geometric and topological structure. The smallest non-zero eigenvalue λ2 0
r + 0 of 

ℒ0
r + 0 matrices for C20 changes 5 times in Figure 8(d), which means C20 has 5 different 

distances between carbon atoms. Furthermore, by Remark 2.1, as λ2 0
r + 0 of C20 keeps 

increasing, the smallest vertex connectivity of the connected subgraph continues growing 

and the topological structure becomes steady. As can be seen in the right-corner chart of 

Figure 6, the carbon atoms will finally grow to a solid object with a steady topological 

structure.

Figure 8(b) depicts the changes of Betti 1 value β1
r + 0 (i.e., the number of zero eigenvalues 

for ℒ1
r + 0) under the filtration r. Since C20 has 12 pentagonal rings, β1

r + 0 jumps to 11 when 

radius r equals to the half of the bond length of l(C20). These eleven 1-cycles disappear at r = 

1.17 Å. There are 12 pentagons and 20 hexagons in C60, which results in β1
r + 0 = 12 at r = 

0.72 Å, β1
r + 0 = 31 at r = 1.17 Å. All of the pentagons and hexagons disappear at r = 1.22 Å.

As the filtration process, even more structure information can be derived from the number of 

zero eigenvalues of ℒ2
r + 0 in Figure 8(c). For C20, β2

r + 0 when r = 1.17 Å, which corresponds 

to the void structure in the center of the dodecahedral cage. The void disappears at r = 1.65 

Å since a solid structure is generated at this point. For fullerene C60, 20 hexagonal cavities 

and a center void exist from 1.12 Å to 1.40 Å yielding β2
r + 0 = 21. As the filtration goes, 

hexagonal cavities disappear which results β2
r + 0 decrease to 1. The central void keeps alive 

until a solid block is formed at r = 3.03 Å. In a nutshell, we can deduce the number of 
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different types of bonds, the bond length, and the topological invariants from the present 

persistent spectral analysis.

3.1.2 Persistent spectral predictions of fullerene stability using both 
harmonic and non-harmonic spectra—Having shown that the detailed fullerene 

structural information can be extracted into the spectra of ℒq
r + 0, we further illustrate that 

fullerene functions can be predicted from their structures by using our persistent spectral 

theory in this section. Similar structure-function analysis has been carried out by using other 

methods [24, 33, 44]. For small fullerene molecule series C20 to C60, with the increase in the 

number of atoms, the ground-state heat of formation energies decrease [45, 46]. The left 

chart in Figure 9 describes this phenomenon. Similar patterns can also be found in the total 

energy (STO-3G/SCF at MM3) per atom and the average binding energy of C2n. To analyze 

these patterns, many theories have been proposed. Isolated pentagon rule assumes that the 

most stable fullerene molecules are those in which all the pentagons are isolated. Zhang et 

al. [46] stated that fullerene stability is related to the ratio between the number of pentagons 

and the number of carbon atoms. Xia and Wei [44] proposed that the stability of fullerene 

depends on the average number of hexagons per atom. However, these theories all focused 

on the pentagon and hexagon information. More specifically, they use purely topological 

information to reveal the stability of fullerene. In contrast, we believe that both harmonic 

persistent spectra and non-harmonic persistent spectra can be used model the structure-

function relationship of fullerenes. We hypothesize that the non-harmonic persistent spectra 

of ℒ0
r + 0 matrices are powerful enough to model the stability of fullerene molecules. To 

verify our hypothesis, we compute the summation, mean, maximal, standard deviation, 

variance of its eigenvalues, and λ2 0
r + 0 of the persistent spectra of ℒ0

r + 0 over various 

filtration radii r. We depict a plot with the horizontal axis represents radius r and the vertical 

axis represents the particular spectrum value, which is actually the same as Figure 8. Then 

we define the area under the plot of spectra with a negative sign as

Aα = − ∑
i = 1

Λi
αδr, (35)

where δr is the radius grid spacing, in Figure 8, δr = 0.01 Å. Here, α = Sum, Avg, Max, Std, 

Var, Sec is the type index and thus, Λi
α represent the summation, mean, maximal, standard 

deviation, variance, and the smallest non-zero eigenvalue λ2 0
r + 0 of ℒ0

r + 0 at i-th radius 

step, respectively. The right chart in Figure 9 describes the area under the plot of spectra and 

closely resembles that of the heat of formation energy. We can see that generally the left 

chart and the middle chart show the same pattern. The integration of λ2 0
r + 0 decreases as 

the number of carbon atoms increases. However, the structural data we used might not be the 

same ground-state data as in Ref. [46], which results in C36 do not match the corresponding 

energy perfectly. Limited by the availability of the ground-state structural data, we are not 

able to analyze the full set of the fullerene family.

As the present persistent spectral method provides both topological (i.e., harmonic) and non-

topological spectral analyses, we are interested in a further comparison of their 
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performances. For the topological spectral analysis, we adopt the model of Xia and Wei 

[44], which is based in the atom number averaged Betti-2 length for the cavity. The Betti 2 

length for the cavity is the longest persistence of β2
r + 0 (i.e., the number of zero eigenvalues 

for ℒ2
r + 0 under the filtration r. Table 5 presents the predictions obtained from both 

topological spectral analysis and non-topological spectral analysis. The right chart of Figure 

9 plots the correlations between predicted energies and the heat of formation energy of the 

fullerene molecules computed from quantum mechanics [46]. Clearly, both methods provide 

very accurate predictions.

To quantitatively validate our model, we apply one of the simplest machine learning 

algorithms, linear least-squares method, to predict the heat of formation energy. The Pearson 

correlation coefficient for the α-th method is defined as

Cc
α =

∑k = 1
N Aα

k − Aα Ek − E

∑k = 1
N Aα

k − Aα
2∑k = 1

N Ek − E 2
1
2

(36)

where Aα
k represents the theoretically predicted energy of the k-th fullerene molecule, Ek 

represents the heat of formation energy of the k-th fullerene molecule, and Aα and E are the 

corresponding mean values.

Table 6 lists the correlation coefficient under different type index α and harmonic spectral 

information of ℒ2
r + 0. The highest correlation coefficient is close to unity (0.986) obtained 

with α = Max. The lowest correlation coefficient is 0.942 with α = Sum. We can see that all 

the correlation coefficients are close to unity, which verifies our hypothesis that the non-

harmonic spectra of ℒ0
r + 0 have the capacity of modeling the stability of fullerene 

molecules. The performance of the topological spectra is on a bar with that of the best of the 

non-harmonic spectra. Obvious, our persistent harmonic spectral information and persistent 

non-harmonic spectral information could be trivially combined in the present machine 

learning setting to achieve an even higher accuracy. Therefore, our persistent spectral theory 

works extremely well only with both harmonic and non-harmonic spectra, which means our 

persistent spectral theory is a powerful tool for quantitative data analysis and prediction.

3.2 Protein flexibility analysis

As clarified earlier, the number of zero eigenvalues of p-persistent q-Laplacian matrix (p-

persistent qth Betti number) can also be derived from persistent homology. Persistent 

homology has been used to model fullerene stability [44]. In this section, we further 

illustrate the applicability of present persistent spectral theory by a case that non-harmonic 

persistent spectra offer a unique theoretical model whereas it may be difficult to come up 

with a suitable persistent homology model for this problem. To this end, we consider a 

challenging biophysical problem for which current methods do not work well.

The protein flexibility is known to correlate with a wide variety of protein functions. It can 

be modeled by the beta factors or B-factors, which are also called Debye-Waller factors. B-
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factors are a measure of the atomic mean-square displacement or uncertainty in the X-ray 

scattering structure determination. Therefore, understanding the protein structure, flexibility, 

and function via the accurate protein B-factor prediction is a vital task in computational 

biophysics [48]. Over the past few years, quite many methods are developed to predict 

protein B-factors, such as GNM [30], ANM [31], FRI [49, 50] and MWCG [34, 48]. 

However, all of the aforementioned methods are based on a particular matrix derived from 

the graph network which is constructed using alpha carbon as nodes and connections 

between nodes as edges. In this section, we apply our persistent spectral theory to create 

richer geometric information in B-factor prediction. In particular, we are interested in the 

prediction of B-factors for which the standard GNM fails to work.

To illustrate our method, we consider a protein whose total number of residues is N. In this 

work, we employ the coarse-grained Cα representation. Similarly, like in the previous 

application of fullerene structure analysis, we treat each Cα atom as a 0-simplex at the initial 

setup and assign it a solid ball with a radius of r. By varying the filtration parameter r, we 

can obtain a family of ℒ0
r + 0. For each matrix ℒ0

r + 0, its corresponding ordered spectrum is 

given by

λ1 0
r + 0, λ2 0

r + 0, ⋯, λN 0
r + 0 .

Suppose the number of zero eigenvalues is m, then, we have β0
r + 0 = m. Since ℒ0

r + 0 is 

symmetric, then eigenvectors of ℒ0
r + 0 corresponding to different eigenvalues must be 

orthogonal to each other. The Moore-Penrose inverse of ℒ0
r + 0 can be calculated by the non-

harmonic spectra of ℒ0
r + 0:

ℒ0
r + 0 −1

= ∑
k = m + 1

N 1
λk 0

r + 0 uk 0
r + 0 uk 0

r + 0 T
,

where T is the transpose and uk 0
r + 0 is the kth eigenvector of ℒ0

r + 0. The modeling of ith B-

factor at filtration parameter r can be expressed as

Bir = ℒ0
r + 0

ii
−1

, ∀i = 1, 2, ⋯, N,

and the final model of ith B-factor is given by

BiPST = ∑
r

wrBir + w0, ∀i = 1, 2, ⋯, N,

where wr and w0 are fitting parameters which can be determined from a simple machine 

learning algorithm, the linear regression, using B-factors from experimental data BExp. 3 In 

this application, we consider the filtration radius from 2 to 6 with the grid spacing of 0.5 and 
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grid spacing of 2 from 6 to 26, then totally 20 different ℒ0
r + 0 are created at r = 1.5, 2, 2.5, 3, 

3.5, 4, 4.5, 5, 5.5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26. By calculating all the non-

harmonic spectra together with their eigenvectors, 20 Moore-Penrose inverse matrices 

ℒ0
r + 0 −1

 are constructed.

Park et al have carried out the B-factor prediction of small-, medium- and large-sized 

proteins using GNM and NMA [51]. We collect a total of fifteen medium-sized or large-

sized proteins for which the Pearson correlation coefficient of GNM prediction is less than 

0.4 reported in an earlier study [51]. Figure 10 plots the flexibility of 1V70 with red color 

represents for the most flexible regions (the highest B-factor). Obviously, B-factors 

predicted by PST are very similar to experimental values, whereas GNM predictions differ 

dramatically from experimental B-factors. This situation can also be seen from Figure 11 

where B-factors predicted by PST and GNM are compared with those of experimental 

results. GNM fail to work for 1V70, 1R7J, and 2FQ3. The Pearson correlation coefficients 

of GNM, NMA, and PST are compared in Table 7. This study shows that the proposed PST 

has a great potential in multiscale biophysical modeling and prediction.

4 Conclusion

Spectral graph theory is a powerful tool for data analysis due to its ability to extract 

geometric and topological information. However, its performance can be quite limited for 

various reasons. One of them is that the current spectral graph theory does not provide a 

multiscale analysis. Motivated by persistent homology and multiscale graphs, we introduce 

persistent spectral theory as a unified paradigm to unveil both topological persistence and 

geometric shape from high-dimensional datasets.

For a point set V ⊂ ℝn without additional structures, we construct a filtration using an (n − 

1)-sphere of a varying radius r centered at each point. A series of persistent combinatorial 

Laplacian matrices are induced by the filtration. It is noted that our harmonic persistent 

spectra (i.e., zero eigenvalues) fully recover the persistent barcode or persistent diagram of 

persistent homology. Specifically, the numbers of zero eigenvalues of persistent q-

combinatorial Laplacian matrices are the q-dimensional persistent Betti numbers for the 

same filtration given filtration. However, additional valuable spectral information is 

generated from the non-harmonic persistent spectra. In this work, in addition to persistent 

Betti numbers and the smallest nonzero eigenvalues, five statistic values, namely, sum, 

mean, maximum, standard deviation, and variance, are also constructed for data analysis. We 

use a few simple two-dimensional (2D) and three-dimensional (3D) structures to carry out 

the proof of principle analysis of the persistent spectral theory. The detailed structural 

information can be incorporated into the persistent spectra of. For instant, for the benzene 

molecule, the approximate C-C bond and C-H bond length can be intuitively read from the 

plot of the 0-dimensional persistent Betti numbers. Moreover, persistent spectral theory also 

has the capacity to accurately predict the heat of formation energy of small fullerene 

3We carry out feature scaling to make sure all Bi
r are on a similar scale.
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molecules. We use the area under the plot of the persistent spectra to model fullerene 

stability and apply the linear least-squares method to fit our prediction with the heat of 

formation energy. The resulting correlation coefficient is close to 1, which shows that our 

persistent spectral theory has an excellent performance on molecular data. Furthermore, we 

have applied our persistent spectral theory to the protein B-factor prediction. In this case, 

persistent homology does not offer a straightforward model. We consider a set of 15 

challenging proteins for which the most popular biophysical method, Gaussian network 

model (GNM), fails to work [51]. We show that the additional non-harmonic persistent 

spectral information provides extremely successful B-factor predictions to this set of 

challenging proteins.

It is pointed out that the proposed persistent spectral analysis can be paired with advanced 

machine learning algorithms, including various deep learning methods, for a wide variety of 

applications in data science. In particular, the further construction of element-specific 

persistent spectral theory and its application to protein-ligand binding affinity prediction and 

computer-aided drug design will be reported elsewhere.
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Figure 1: 
Illustration of simplices. (a) 0-simplex (a vertex), (b) 1-simplex (an edge), (c) 2-simplex (a 

triangle), and (d) 3-simplex (a tetrahedron)
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Figure 2: 
Illustration of two oriented simplicial complexes with the same geometric structure but 

having different orientations. Here, we denote the vertices by 1, 2, 3, 4, and 5, edges by 12, 

23, 34, 24, and 45, and the triangle by 234.
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Figure 3: 
Illustration of filtration. We use 0, 1, 2, 3, and 4 to stand for 0-simplices, 01, 12, 23, 03, 24, 

02, and 13 for 1simplices, 012, 023, 013, and 123 for 2-simplices, and 0123 for the 3-

simplex. Here, K1 has five 0-cycles, K2 has four 0-cycles, K3 has two 0-cycles and a 1-cycle, 

K4 has a 0-cycle and a 1-cycle, K5 has one 0-cycle, and K6 has a 0-cycle.
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Figure 4: 
Benzene molecule and its topological changes during the filtration process.
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Figure 5: 
Persistent spectral analysis of the benzene molecule induced by filtration parameter r. Blue 

line, orange line, and green line represent ℒ0
r + 0, ℒ0

r + 0
, and ℒ0

r + 0
 respectively. (a) Plot of 

the smallest non-zero eigenvalues with radius filtration under ℒ0
r + 0 (blue line), ℒ0

r + 0
 (red 

line), and ℒ0
r + 0

 (green line). Total 10 jumps observed in this plot which represent 10 

possible distances between atoms. (b) Plot of the number of zero eigenvalues (β0
r + 0) with 

radius filtration under ℒ0
r + 0, ℒ0

r + 0
, and ℒ0

r + 0
 (three spectra are superimposed). When r = 

0.00 Å, 12 atoms are disconnected with each other. After r = 0.54 Å, H atoms and their 

adjacent C atoms are connected with one another resulting in β0
r + 0 = 6. With r keeps 

growing, all of the atoms are connected with one another and then β0
r + 0 = 1. (c) Plot of the 

number of zero eigenvalues (β1
r + 0) with radius filtration under ℒ1

r + 0. When r = 0.70 Å, a 1-

cycle created since all of the C atoms are connected and form a hexagon, resulting in 

β1
r + 0 = 1. After the radius reached 1.21 Å, the hexagon disappears and β1

r + 0 = 0.
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Figure 6: 
(a) Illustration of filtration built on fullerene C20. Each carbon atom of C20 is plotted by its 

given coordinates, which are associated with an ever-increasing radius r. The solid balls 

centered at given coordinates keep growing along with the radius filtration parameter. (b) 

The accumulated ℒ0
r + 0 matrix for C20. For clarity, the diagonal terms are set to 0.
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Figure 7: 
Illustration of persistent multiscale analysis of C60 in terms of 0-combinatorial Laplacian 

matrices (b)-(f) and their accumulated matrix (a) induced by filtration. As the value of 

filtration parameter r increases, high-dimensional simplicial complex forms and grows 

accordingly. (b), (c), (d), (e), and (f) demonstrate the 0-combinatorial Laplacian matrices 

(i.e., the connectivity among C60 atoms) at filtration r = 1.0 Å, 1.5 Å, 2.5 Å, 3.0 Å, and 3.6 

Å, respectively. The blue cell located at the ith row and jth column represents the balls 

centered at atom i and atom j connected with each other. For clarity, the diagonal terms are 

set to 0 in all plots.
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Figure 8: 

Illustration of persistent spectral analysis of C20 and C60 using the spectra of ℒq
r + 0 (q = 1, 2 

and 3). (a) The number of zero eigenvalues of ℒ0
r + 0, i.e., β0

r + 0, under radius filtration. (b) 

The number of zero eigenvalues of ℒ1
r + 0, i.e., β1

r + 0 under radius filtration. (c) The number 

of zero eigenvalues of ℒ2
r + 0, i.e., β2

r + 0 under radius filtration. (d) The smallest non-zero 

eigenvalue λ2 0
r + 0 under radius filtration. The radius grid spacing is 0.01 Å.
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Figure 9: 
Persistent spectral analysis and prediction of fullerene heat formation energies. Left chart: 

the heat of formation energies of fullerenes obtained from quantum calculations [46]. 

Middle chart: PST model using the area under the plot of λ2 0
r + 0. Right chart: Correlation 

between the quantum calculation and the PST prediction using non-topological spectral 

analysis (α = Max).
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Figure 10: 
Comparison of protein B-factors obtained by experiment (Left chart), PST (Middle chart), 

and GNM (Right chart) for protein PDB ID: 1V70, visualized in Visual Molecular 

Dynamics (VMD) [47]. Red color represents for the most flexible regions.
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Figure 11: 
Comparison of experimental B-factors (Exp) and those predicted by PST and GNM for 

proteins 1V70, 1R7J, 1OPD, and 2FQ3.
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Wang et al. Page 40

Table 1:

The number of q-cycles of simplicial complexes demonstrated in Figure 3.

# of q-cycles K1 K2 K3 K4 K5 K6

q = 0 5 4 2 1 1 1

q = 1 0 0 1 1 0 0

q = 2 0 0 0 0 0 0
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Table 2:

K3 → K4

q q = 0 q = 1 q = 2

ℬq + 1
3 + 1

01 12 23 03 24
0
1
2
3
4

−1 0 0 −1 0
1 −1 0 0 0
0 1 −1 0 −1
0 0 1 1 0
0 0 0 0 1

/ /

ℬq
3 0 1 2 3 4

0 0 0 0 0

01 12 23 03
0
1
2
3
4

−1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 1
0 0 0 0

/

ℒq
3 + 1

2 −1 0 −1 0
−1 2 −1 0 0
0 −1 3 −1 −1

−1 0 −1 2 0
0 0 −1 0 1

2 −1 0 1
−1 2 −1 0
0 −1 2 1
1 0 1 2

/

βq
3 + 1 1 1 /

dim ℒq
3 + 1

5 4 /

rank ℒq
3 + 1

4 3 /

nullity  ℒq
3 + 1

1 1 /

Spectra  ℒq
3 + 1

{0, 0.8299, 2, 2.6889, 4.4812} {0, 2, 2, 4} /
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Table 3:

K6 → K6

q q = 0 q = 1 q = 2

ℬq + 1
6 + 0

01 12 23 03 24 02 13
0
1
2
3
4

−1 0 0 −1 0 −1 0
1 −1 0 0 0 0 −1
0 1 −1 0 −1 1 0
0 0 1 1 0 0 1
0 0 0 0 1 0 0

012 023 013 123
01
12
23
03
24
02
13

1 0 1 0
1 0 0 1
0 1 0 1
0 −1 −1 0
0 0 0 0

−1 1 0 0
0 0 1 −1

ℬ3
6 + 0

ℬq
6 0 1 2 3 4

/ 0 0 0 0 0

01 12 23 03 24 02 13
0
1
2
3
4

−1 0 0 −1 0 −1 0
1 −1 0 0 0 0 −1
0 1 −1 0 −1 1 0
0 0 1 1 0 0 1
0 0 0 0 1 0 0

ℬ2
6

ℒq
6 + 0

3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1

4 0 0 0 0 0 0
0 4 0 0 −1 0 0
0 0 4 0 1 0 0
0 0 0 4 0 0 0
0 −1 1 0 2 −1 0
0 0 0 0 −1 4 0
0 0 0 0 0 0 4

ℒ3
6 + 0

βq
6 + 0 1 0 0

dim ℒq
6 + 0

5 7 4

rank ℒq
6 + 0

4 7 4

 nullity  ℒq
6 + 0

1 0 0

 Spectra  ℒq
6 + 0

{0, 1, 4, 4, 5} {1, 4, 4, 4, 4, 4, 5} {4, 4, 4, 4}
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Table 4:

Distances between atoms in the benzene molecule and the radii when the changes of λ2 0
r + 0 occur (Values 

increase from left to right).

Type C1-H1 C1-C2 C2-H1 C1-C3 H1-H2 C1-C4 C3-H1 C4-H1 H1-H3 H1-H4

Distance (Å) 1.09 1.39 2.15 2.41 2.48 2.78 3.39 3.87 4.30 4.96

r (Å) 0.54 0.70 1.08 1.21 1.24 1.40 1.70 1.94 2.15 2.49
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Table 5:

The heat of formation energy of fullerenes [46] and its corresponding energies predicted non-harmonic 

spectral model (α = Max) and harmonic spectral model. The unit is EV/atom.

Fullerene type C20 C24 C26 C30 C32 C36 C50 C60

Heat of formation energy 1.180 1.050 0.989 0.850 0.781 0.706 0.509 0.401

Non-harmonic spectral energy 1.138 1.050 0.964 0.821 0.857 0.766 0.474 0.391

Harmonic spectral energy 1.224 0.962 0.929 0.861 0.825 0.737 0.564 0.364
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Wang et al. Page 45

Table 6:

The correlation coefficients for predictions using different type of statistics of non-harmonic spectra and 

topological spectra (Top).

Type index Sum Avg Max Std Var Sec Top

Correlation coefficient 0.942 0.985 0.986 0.969 0.977 0.981 0.979
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Wang et al. Page 46

Table 7:

Pearson correlation coefficients in B-factor predictions using GNM, NMA, and PST for a group of proteins 

that are very challenging to GNM. Pearson correlation coefficients for GNM and NMA are extracted from 

Ref. [51].

PDB ID GNM NMA PST

1OPD 0.398 0.372 0.886

2PKT −0.286 −0.245 0.745

2FQ3 0.384 0.609 0.808

1R7J 0.368 0.400 0.908

1W2L 0.397 0.130 0.808

5CYT 0.331 0.248 0.624

1V70 0.162 0.265 0.826

1CCR 0.351 0.379 0.708

2VIM 0.212 0.243 0.535

2CG7 0.379 0.355 0.780

1QTO 0.334 0.672 0.853

1WHI 0.270 0.492 0.612

1NKO 0.368 0.583 0.770

1O08 0.309 0.281 0.811

2HQK 0.348 0.715 0.808
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