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Abstract

Theoretical frameworks propose that threat-related attention, which is typically assessed using 

the dot-probe paradigm, plays a key role in social anxiety. Within the dot-probe paradigm, novel 

computational approaches demonstrate that anxious individuals exhibit multiple patterns of threat-

related attention on separate trials. However, no research has leveraged such novel computational 

methods to delineate the neural substrates of threat-related attention patterns in social anxiety. 

To address this issue, fifty-three socially anxious adults (22.38 ± 3.12, 33 females) completed an 

fMRI-based dot-probe paradigm. A novel, response-based computation approach revealed conjoint 

patterns of vigilant orientation, avoidant orientation, slow disengagement, and fast disengagement, 

which were masked by standard computation measures. Compared to vigilant orientation and 

fast disengagement, avoidant orientation and slow disengagement were greater in magnitude, 

respectively. Mirroring behavioral findings, avoidant orientation and slow disengagement elicited 

greater deactivation of several regions within the Default Mode Network and stronger connectivity 

between the right amygdala and superior temporal sulcus. Taken together, these results suggest 

that distinct neural processes facilitate the heterogeneous expression of threat-related attention in 

social anxiety.
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1. Introduction

Perturbations in threat-related attention play a key role in the etiology and maintenance 

of social anxiety (Bar-Haim, Lamy, Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 

2007; Heeren, Mogoase, Philippot, & McNally, 2015). Across separate studies, however, 

individuals with social anxiety exhibit multiple expressions of threat-related attention. For 

example, socially anxious individuals may disproportionately orient attention towards or 

away from threat, or have difficulty disengaging attention from threat (e.g., Amir, Elias, 

Klumpp, & Przeworski, 2003; Klumpp & Amir, 2009; Mansell, Clark, Ehlers, & Chen, 

1999; Pineles & Mineka, 2005). Given that different expressions of threat-related attention 

are putatively supported by distinct neurocognitive processes (Cisler & Koster, 2010), 

mechanistic insights into social anxiety are currently limited. Mixed findings may be 

attributable to standard computation approaches, which assume that threat-related attention 

is expressed in a consistent manner across trials. In contrast, novel computation methods 

demonstrate that anxious individuals may exhibit multiple, distinct patterns of threat-related 

attention across separate trials (Zvielli, Bernstein, & Koster, 2014a; 2014b). For example, 

an anxious individual may orient attention toward threat on some trials, but orient attention 

away from threat on other trials. The conjoint expression of both orientation patterns would 

suggest a more complex pattern of threat-related attention mechanisms in social anxiety 

(Evans & Britton, 2018). To systematically investigate the expression of threat-related 

attention and its neural mechanisms in social anxiety, the present study used both standard 

and novel dot-probe computation approaches in conjunction with fMRI methodology.

Meta-analytic findings demonstrate that social anxiety is characterized by an attentional bias 

in response to threat (Bar-Haim et al., 2007). Traditionally, attention bias is assessed by 

presenting threat-neutral stimulus pairs and comparing average reaction time (RT) on trials 

where response probes replace a threat (congruent trials) or a neutral stimulus (incongruent 

trials). Faster RT to congruent trials than incongruent trials suggests a bias towards threat, 

whereas slower RT suggests a bias away from threat. However, theoretical frameworks 

propose that threat-related attention can be further segregated into distinct cognitive 

processes of orientation and disengagement of attention (Koster, Crombez, Verschuere, & 

De Houwer, 2004; Mogg & Bradley, 2016). Specifically, orientation refers to the initial 

allocation of attention towards a threat, whereas disengagement refers to the subsequent 

shifting of attention away from a threat (Amir et al., 2003). To disentangle these components 

of attention in the dot-probe paradigm, RT on neutral-neutral trials serves as a reference to 

generate separate measures of orientation (congruent trials) and disengagement (incongruent 

trials; Koster et al., 2004; but for limitations, see Clarke, MacLeod, & Guastella, 2013).

Within these orientation and disengagement components, expressions of threat-related 

attention may be further dissociated along fuzzy boundaries of automatic and regulatory 

processes (Barry, Vervliet, & Hermans, 2015). Attentional models propose that vigilant 

orientation facilitates rapid, automatic detection of threats (Bar-Haim et al., 2007). In 

contrast, avoidant orientation regulates negative affect elicited by threat by directing 

attention away from threats (Cisler & Koster, 2010). Fast disengagement from threat may 

operate to automatically shift attention away from threats and towards safety cues (Cisler 
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& Koster, 2010; Yiend et al., 2015). Conversely, slow disengagement facilitates elaborative 

processing of threats and may stem from poor regulatory attentional processes (Cisler & 

Koster, 2010). In summary, these dissociable components of attention may be supported by 

related, but distinct, processes that are dysregulated in social anxiety.

Given these functional differences, distinct neural mechanisms are proposed to underlie 

each expression of threat-related attention (Cisler & Koster, 2010). Within the orientation 

component, the amygdala plays a central role in orienting attention towards threat (i.e., 

vigilant orientation; Monk et al., 2008; van den Heuvel et al., 2005). Conversely, avoidant 

orientation away from threat down-regulates amygdala activity by recruiting regulatory 

regions such as the ventrolateral prefrontal cortex (vlPFC; Adenauer et al., 2010; Browning, 

Holmes, Murphy, Goodwin, & Harmer, 2010; Fani et al., 2012; Kim & Hamann, 2007; 

Taylor et al., 2014). Within the disengagement component, fast disengagement is associated 

with less amygdala activation, which could be attributable to enhanced processing of non-

threating stimuli (El Khoury-Malhame et al., 2011). Slow disengagement may reflect a 

failure to recruit the vlPFC, which impairs shifting attention away from threat (Bishop, 

2009; Britton et al., 2012). Given these functional differences among components of 

attention, past research has aimed to more precisely characterize patterns of threat-related 

attention in social anxiety.

Across studies, however, social anxiety-related differences in orientation and disengagement 

components of attention are highly inconsistent. In separate samples, social anxiety has 

been associated with vigilant orientation, avoidant orientation, slow disengagement, or no 

differences in threat-related attention (e.g., Amir et al., 2003; Evans, Walukevich, & Britton, 

2016; Klumpp & Amir, 2009; Mansell et al., 1999; Pineles & Mineka, 2005). Although 

some methodological differences exist across studies that may explain these divergent 

results, inconsistent findings are observed even when studies utilize similar or identical task 

parameters (Klumpp & Amir, 2009; Price, Tone, & Anderson, 2011; Vassilopoulos, 2005). 

As a result, it is unlikely that heterogenous findings in social anxiety can be attributed to 

methodological differences across studies. Instead, inconsistent findings may be attributable 

to the limitations of standard computation approaches, which characterize the direction in 

which attention is generally modulated by threat stimuli.

Recent research suggests that anxious individuals may express multiple patterns of threat-

related attention, rather than a single, consistent pattern of threat-related attention (Zvielli 

et al., 2014a; 2014b). On separate trials, for example, an individual may orient attention 

towards threat or orient attention away from threat in equal magnitude (see Fig. 1). Because 

the magnitude of vigilant (RTNeutral > RTCongruent = positive score) and avoidant trials 

(RTNeutral < RTCongruent = negative score) average to form a zero score, this attention pattern 

would be miscategorized as a general absence of threat-related orientation. Additionally, 

individuals may exhibit vigilant and avoidant orientation on separate trials, albeit with 

unequal magnitudes (vigilant > avoidant = positive score). In both cases, a single average 

measure may obscure the conjoint presence of both vigilant and avoidant orientation in 

social anxiety. Similarly, a standard computation approach is also used in fMRI research 

employing the dot-probe paradigm to quantify neural activation patterns associated with 

threat-related attention. As a result, standard computation approaches that average neural 
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activation across trials may similarly fail to isolate neural mechanisms underlying each 

expression of threat-related attention.

To address these limitations, recent research has developed computation approaches that 

aggregate individual trials based on the type of threat-related attention exhibited on each trial 

(Evans & Britton, 2018; Zvielli et al., 2014a, 2014b). Using response-based computation, for 

example, individual reaction times on congruent trials can be separately indexed against 

that participant’s average reaction time on neutral trials (i.e., Trial 1: RTNeutralMean - 

RTCongruent 1, Trial 2: RTNeutralMean - RTCongruent 2 … Trial n: RTNeutralMean - RTCongruent 

n). Across trials, positive and negative difference scores are subsequently aggregated to 

generate separate measures of vigilant orientation and avoidant orientation, respectively (see 

Fig. 1). Consistent with capturing distinct attention processes, response-based computation 

improves psychometric properties of threat-related attention measures and reveals unique 

anxiety-related associations (Evans & Britton, 2018).

By isolating specific attention processes using response-based computation, it is possible 

to address several related research questions concerning social anxiety. First, heterogeneous 

expressions of threat-related attention in social anxiety are consistent with mixed findings 

observed across previous studies. Dissociating attentional processes across trials may more 

accurately characterize threat-related attention in social anxiety. For example, social anxiety 

may not be characterized by one particular pattern of threat-related attention (e.g., vigilant 

orientation), but instead be more accurately characterized by multiple expressions of 

threat-related attention across trials (vigilant orientation and avoidant orientation). Second, 

dissociating attentional processes across trials may better isolate the neural mechanisms 

that contribute to conjoint patterns of threat-related attention in social anxiety. Specifically, 

evoked neural signatures can be directly extracted from trials in which a particular 

expression of threat-related attention is observed. Finally, the behavioral and neural 

measures generated by response-based computation may reveal anxiety-related associations 

that provide additional mechanistic insights into social anxiety. To date, however, no 

research has utilized response-based computation in conjunction with fMRI methodology 

in a socially anxious sample.

To address these research questions, we utilized standard and novel dot-probe computation 

approaches in conjunction with fMRI data from a previously published attention training 

study (Britton et al., 2015). In this previous report, the authors characterized neural 

activation changes associated with Attention Bias Modification (ABM) training in a sub-

clinical social anxiety sample. Prior to randomization to active ABM or placebo protocols, 

participants completed the same baseline dot-probe task while in the MRI scanner (Amir et 

al., 2009). In the published study, ABM-related changes in neural activation were examined 

in a smaller sub-sample of individuals who completed all treatment phases (n = 30). In the 

current study, we analyze data from the larger baseline sample who completed the baseline 

dot-probe task in the MRI scanner prior to treatment randomization (n = 53).

Using response-based computation in this larger baseline sample, we hypothesized that 

social anxiety would be characterized by the conjoint presence of multiple threat-related 

attention patterns (i.e., vigilant orientation, avoidant orientation, and slow disengagement), 

Evans et al. Page 4

Behav Res Ther. Author manuscript; available in PMC 2021 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which would not be observed in standard computation measures. Based on previous 

conceptualizations and empirical research (Bishop, 2009; Browning et al., 2010; Cisler 

& Koster, 2010; Monk et al., 2008; Taylor et al., 2014), we hypothesized that each 

pattern of threat-related attention would be associated with distinct neural signatures. First, 

we hypothesized that vigilant orientation would be characterized by greater amygdala 

activation, whereas avoidant orientation would be characterized by greater connectivity 

between the amygdala and vlPFC. Second, we hypothesized that and faster and slower 

disengagement from threat would be characterized by stronger and weaker vlPFC activation, 

respectively.

2. Methods

2.1. Participants

Through collaboration between the University of Maryland and the National Institute of 

Mental Health (NIMH), fifty-three adults reporting sub-clinical levels of social anxiety 

were recruited (33 females; age range: 18–30 years old; M = 22.38 years old, SD = 3.12). 

Specifically, participants were initially recruited based on reporting a score greater than 

50 on the Liebowitz Social Anxiety Scale (LSAS; Liebowitz, 1987), which approximates 

symptom levels observed in Social Anxiety Disorder (SAD; Rytwinski et al., 2009). At the 

time of the baseline scan session, the majority of participants (82%) continued to self-report 

clinically elevated levels of social anxiety on the LSAS (M = 42.94, SD = 20.58; Baker, 

Heinrichs, Kim, & Hofmann, 2002). Based on the Structured Clinical Interview for DSM-IV 

(First, Spitzer, Gibbon, & Williams, 2002), all participants were free of any current Axis 

I disorders. Participants were required to exhibit an IQ score greater than 70 based on 

the Wechsler Abbreviated Scale of Intelligence Vocabulary and Matrix Reasoning subtests 

(Wechsler, 1999). All participants were free of psychotropic medication, significant medical 

issues, and MRI contraindications.

From this larger sample (n = 53), 3 participants were ultimately excluded due to accuracy 

levels below 70% on the baseline dot-probe task (n = 2) or fMRI signal artifact during 

the task scan (n = 1). Using non-parametric tests due to the small number of excluded 

participants, these groups did not differ in gender, age, IQ, depressive symptoms, or social 

anxiety symptoms (all p’s > 0.11). Following these exclusions, all analyses were conducted 

in a final sample of 50 participants (30 females; M = 22.01 years old, SD = 2.85).

2.2. Procedure

Following screening procedures, participants completed several MRI scans at the National 

Institute of Mental Health NIMH). While in the MRI scanner, participants completed a 

baseline dot-probe task, which has been used in previous social anxiety research (Amir et 

al., 2009). After completing the baseline MRI scan, participants received either ABM or 

placebo attention training protocols based on random assignment and returned for a follow-

up scan (Britton et al., 2015). In the current study, we analyzed data from the baseline fMRI 

session that were collected from all participants prior to receiving active or placebo attention 

training (n = 53).
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2.3. Measures

2.3.1. Liebowitz social anxiety scale (LSAS)—The LSAS is a 24-item scale that 

measures the level of fear and avoidance an individual demonstrates during several types of 

social situations (Liebowitz, 1987). For each social situation (e.g., talking on the telephone 

in public), participants report how much fear was experienced (0 = None; 3 = Severe) and 

how often the situation was avoided (0 = Never; 3 = Usually) during the previous week. 

The total composite social anxiety score includes both fear and avoidance scales, with 

total scores ranging between 0 and 144. As a measure, the LSAS demonstrates excellent 

internal consistency (Cronbach’s a = 0.96; Heimberg et al., 1999). Additionally, the LSAS 

demonstrates good test-retest reliability (0.83) across a 12 week period (Baker et al., 2002).

2.3.2. The Beck depression Inventory-II (BDI-II)—The BDI-II measures the 

intensity of various depression symptoms experienced over a two week period (Beck, Steer, 

& Brown, 1996). The BDI-II is a 21-item scale (e.g. 0 = I do not feel sad; 3 = I am so 

sad or unhappy that I can’t stand it) that yields a total composite score between 0 and 63. 

The BDI-II demonstrates excellent internal consistency as well as an excellent test-retest 

reliability of 0.93 over a period of 1 week (Beck et al., 1996).

2.4. Dot-probe task

The dot-probe task was programmed and presented using E-Prime 2.0 software (Pittsburgh, 

PA). On dot-probe task trials, participants viewed a fixation cross at the center of the screen. 

Next, two facial expressions of the same individual were presented simultaneously above 

and below the fixation cross. Face pairs were either an angry and neutral face or two neutral 

faces. For angry-neutral face pairs (threat trial), the angry face was equally likely to appear 

above or below the fixation. After the faces disappeared from the screen, a response probe 

(“E” or “F”) replaced one of the locations previously occupied by a face. The response probe 

randomly replaced the angry (congruent trial) or neutral (incongruent trial) face at equal 

frequencies. For neutral face pairs (neutral trial), the response probe randomly appeared 

above or below fixation with equal frequencies. Participants identified the response probe 

via button press as quickly and accurately as possible. In addition to task trials, presentation 

of fixation-only trials facilitated deconvolution of the hemodynamic signal.

In total, the dot-probe task consisted of 192 trials (48 congruent, 48 incongruent, 48 neutral, 

48 fixation-only). On average, trials were 2500 ms long, with 500 ms fixation, 500 ms 

face pair, 400 ms probe and an average jittered inter-trial interval (ITI) of 1100 ms (Range: 

900–1300 ms).

2.5. fMRI data acquisition

MRI data were collected using a 3.0T General Electric Signa system scanner (Waukesha, 

WA) with an eight-channel gradient head coil. For functional imaging, a T2*-sensitive 

gradient echo pulse sequence was used (TR = 2300 ms, TE = 25 ms, flip angle = 90°, 

FOV = 24 cm, 96 × 96 acquisition matrix, 36 contiguous 2.6 mm interleaved axial slices). 

The first four acquisition images were discarded to allow magnetization equilibrium prior to 

task onset. Following the task, a T1-weighted scan of the whole brain was acquired using a 

high-resolution gradient echo sequence (124.12 mm axial slices, FOV = 220 mm, NEX = 1, 
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256 × 192 acquisition matrix, TI = 725 ms). The anatomical scan was used to co-register and 

normalize functional imaging data.

2.6. Data reduction

2.6.1. Behavioral data—Prior to conducting analyses, behavioral data were inspected 

for accuracy and reaction time outliers. Participants with an accuracy rate lower than 70% 

were excluded from all analyses due to poor task performance (n = 2). In line with typical 

data cleaning procedures, incorrect responses were identified as error trials and excluded. 

Additionally, trials with reaction times less than 150 ms or greater than 2000 ms were 

removed. After accounting for errors and trials outside the expected RT range, individual 

condition-level outliers were identified and removed. For each participant, trials were 

excluded when reaction times deviated 2.5 SD from the mean RT within each condition.

2.6.2. Standard computation of orientation and disengagement—As noted 

previously, attention bias to threat may be attributable to faster reaction times on congruent 

trials (i.e., facilitated orientation towards threat) or slower reaction times on incongruent 

trials (i.e., difficulty disengaging from threat; Koster et al., 2004). To address this issue, 

congruent reaction times and incongruent reaction times are separately compared to neutral 

reaction times (Koster et al., 2004). By utilizing a neutral reference condition, attention 

bias can be decomposed to examine both orientation towards threat (RTNeutralMean – 

RTCongruentMean) and disengagement from threat (RTIncongruentMean – RTNeutralMean). For 

the orientation index, positive scores indicate vigilant orientation to threat, whereas negative 

scores indicate avoidant orientation. For the disengagement index, positive scores indicate 

slowed disengagement from threat; whereas, negative scores indicate faster disengagement 

from threat.

2.6.3. Standard computation of attention bias—Although our analyses focused 

on dissociating orientation and disengagement, we also computed behavioral measures 

of attention bias for completeness. Typically, attention bias is assessed by subtracting 

the average congruent reaction times from average incongruent reaction times (i.e., 

RTIncongruentMean – RTCongruentMean). Using this computation, positive scores indicate an 

attention bias towards threat, negative scores indicate an attention bias away from threat, and 

zero-level scores indicate a lack of attention bias.

2.6.4. Response-based computation of orientation and disengagement—
Recently, novel computation methods were developed to overcome several limitations of 

standard computation approaches (Evans & Britton, 2018; Zvielli et al., 2014a, 2014b). 

To capture varying expression of threat-related attention across trials, for example, response-

based computation compares individual trial reaction times to a mean reference reaction 

time. Specifically, response-based computation compares reaction times on each individual 
congruent or incongruent trial to the neutral reference condition to separately assess vigilant 

and avoidant orientation as well as slow and fast disengagement (Evans & Britton, 2018). 

To assess distinct patterns of orientation to threat, for example, each congruent trial reaction 

time is separately referenced against the mean RT of neutral trials (i.e., RTNeutralMean 

– RTCongruent [Trial1 … Trial2 … Trialn]). Following this computation approach, separate 
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distributions of vigilant (i.e., trials producing positive difference scores) and avoidant 

orientation (trials producing negative difference scores) are obtained. Following response-

based categorization of individual trials, difference scores within each response category 

are subsequently averaged into separate measures. Within orientation to threat, for example, 

positive difference scores are identified and subsequently averaged to form a measure of 

vigilant orientation. Similarly, negative difference scores are identified and subsequently 

averaged to form a measure of avoidant orientation. The magnitude of these separate 

response-based measures indicates the degree to which an individual exhibits vigilant 

orientation and avoidant orientation. Similar methods can be applied to separate slower 

and faster patterns of disengagement from threat using incongruent trials (i.e., RTIncongruent 

[Trial1 … Trial2 … Trialn] – RTNeutral).

2.6.5. fMRI Data—Prior to analysis, fMRI data were preprocessed with typical 

procedures using Analysis of Functional NeuroImages (AFNI) software. First, EPI images 

were slice-time corrected and realigned to the first image of each time-series. Following 

these steps, the EPI image was co-registered to the anatomical image and subsequently 

normalized within Talairach space. Next, functional data were smoothed with a 6 mm full-

width-at-half maximum isotropic Gaussian filter and converted to a percent signal change 

relative to baseline fixation trials. Finally, motion parameters were examined to identify 

participants who exhibited excessive head motion during the scan (> 3 mm translation or 

> 3° rotation across 75% of TRs). No participants were removed due to excessive motion. 

However, one participant was removed due to a technical issue that produced an extensive 

fMRI signal artifact in the occipital cortex.

Following preprocessing procedures, we generated two sets of first-level models according 

to standard and response-based computation methods. For standard computation, individual 

models were generated according to task-defined conditions. Specifically, congruent, 

incongruent, and neutral trials were convolved with a gamma variate function to 

approximate the hemodynamic response. Finally, excluded trials were modelled as a 

separate regressor of no interest.

For the response-based computation methods, individual models were generated classifying 

each trial in reference to the participant’s mean neutral reaction time (e.g., RTNeutralMean 

– RTCongruent [Trial1 … Trial2 … Trialn]; see Fig. 2). For individual congruent trials, positive 

responses were coded as vigilant orientation trials, whereas negative responses were coded 

as avoidant orientation trials. For incongruent trials, positive responses were coded as faster 

disengagement trials, whereas negative responses were coded as slower disengagement 

trials. Based on this approach, each individual model contained 5 regressors (i.e., vigilant 

orientation, avoidant orientation, slower disengagement, faster disengagement, or neutral 

trials). Regressors were formed by convolving stimulus onset times with a gamma function 

to approximate the hemodynamic response. For each response-based condition, we also 

computed a regressor in which amplitude was parametrically modulated by the RT of each 

individual trial. Given that no parametric modulation was observed by RT, these modulated 

task regressors are not discussed further. Similar to the standard model, we also modelled 

several covariates of no interest. Error trials, outlier trials, and trials demonstrating non-
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directional responses (e.g., RTNeutralMean = RTCongruent [Trialn]) were modelled as a single 

error regressor.

For both standard and response-based models, identical six rigid-body motion regressors 

were derived for each individual to model motion translation and motion rotation in the xyz 

direction. Finally, regressors modelling both linear and non-linear low-frequency temporal 

drift in the scanner were included. Beta weights for all effects including error responses 

were estimated to maximize model fit.

2.7. Data analysis strategy

Behavioral measures.—For standard computation measures, we conducted separate 

one sample t-tests that compared average indices of orientation (RTNeutralMean – 

RTCongruentMean), disengagement (RTIncongruentMean – RTNeutralMean), and traditional 

attention bias (RTIncongruentMean – RTCongruentMean). Significant point estimates indicated 

that threat generally skewed orientation and/or disengagement of attention.

For response-based measures, a one-sample test analysis approach may inherently inflate the 

probability of obtaining non-zero results given the manner in which trials are sub-divided. 

As such, we focused on comparing the relative magnitude of response-based measures. To 

compare the relative magnitude of threat-related attention patterns, the absolute magnitude 

of response-based measures were then submitted to a 2 (Attention Type: Orientation 

vs. Disengagement) x 2 (Attention Direction: Positive (vigilant, slower disengagement) 

vs. Negative (avoidant, faster disengagement) Repeated Measures (RM)-ANOVA. For all 

behavioral analyses, statistical significance was determined at a ≤ 0.05.

Neural activation.—For standard computation, we conducted an omnibus group-level 

model comparing task-defined conditions (i.e., congruent, incongruent and neutral condition 

means). For the response-based computation omnibus group-level model, we conducted a 2 

(Attention Type: Orientation vs. Disengagement) x 2 (Attention Direction: Positive (vigilant, 

slow disengagement) vs. Negative (avoidant, fast disengagement). Both models employed 

random effects modelling utilizing AFNI 3dMVM. For both standard and response-based 

models, we conducted both region of interest analysis and whole-brain analysis. A priori 
seed regions were interrogated using anatomically defined regions or coordinates based on 

previous research. Separate left and right anatomical amygdala seeds were identified using 

the Talahraich-Daemon atlas in AFNI. The binarized amygdala masks were subsequently 

resampled to match the EPI data (2.5 mm isotropic voxels). Based on previous research 

suggesting that the ventrolateral prefrontal cortex (vlPFC) plays a central role in regulating 

threat-related attention, an 8 mm sphere was placed on the Talaraich analogue of the peak 

activation voxel [28, 21, 1] identified by Browning and colleagues (Browning et al., 2010).

For whole-brain analyses, family-wise error was controlled using a combined voxel-wise 

and cluster threshold approach. To obtain a cluster threshold using α = 0.05, 10,000 Monte 

Carlo simulations were run using the recently developed non-parametric ClustSim function 

within AFNI (Cox, Chen, Glen, Reynolds, & Taylor, 2017). Based on initial voxel-wise 

threshold of p = 0.005 and the observed smoothness of estimated residuals (ACF parameters: 

0.55, 4.76, 13.18), a 114-voxel (1781.25 mm3) cluster level threshold corrected for multiple 
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comparisons at p = 0.05 across a whole-brain masked search territory. Peak activation voxel 

coordinates are reported within LPI reference space.

For the a priori seed and functionally defined regions, mean percent signal changes for each 

response-based condition were extracted using AFNI 3dROIstats. Following extraction, we 

conducted follow-up RM-ANOVAs in SPSS. For all neural analyses, statistical significance 

was determined at a ≤ 0.05.

Neural connectivity.—In addition to analyses examining neural activation, we examined 

functional connectivity using both standard and response-based computation. Utilizing a 

generalized form of context-dependent psychophysiological interaction analyses (gPPI; 

McLaren, Ries, Xu, & Johnson, 2012), we examined how the a priori ROIs (bilateral 

anatomical amygdala and vlPFC) differed in functional connectivity with other neural 

regions as a function of standard (e.g., congruent) or response-based (e.g., vigilant 

orientation) task regressors.

To conduct gPPI analyses, we first computed interaction terms. These gPPI interaction terms 

represent the product of a neural seed time series and each task regressor. First, we extracted 

the time series of hemodynamic activity from an a priori seed region. Next, we deconvolved 

the time series with a gamma variate function to approximate the hemodynamic response 

function (HRF). We convolved the raw time series with the four response-based conditions 

(i.e., vigilant orientation, avoidant orientation, slowdisengagement, and fast disengagement) 

and neutral condition. As stimulus onset times were desynchronized with TR acquisition, 

we up-sampled neural time series and task regressors before computing gPPI regressors. 

After computing gPPI regressors, gPPI interaction terms were down sampled to the original 

acquisition sampling rate. Finally, the gPPI interaction regressors were convolved with a 

gamma function approximating the HRF.

Individual gPPI models included terms representing the interaction between the seed time 

series and the response-based conditions as well as parameters of the original model. For 

both standard and response-based models, we included the original task regressors, the 

same motion parameters, scanner drift parameters, and single error regressor specified in 

our neural activation analyses. Similar whole-brain analyses were conducted using the gPPI 

interaction coefficients rather than percent signal change values.

Anxiety-Related Associations.—In the absence of a non-anxious control group, we 

examined anxiety-related associations within our sample. To test which behavioral and 

neural threat-related attention patterns are distinctly associated with social anxiety, we 

compared anxiety-related associations between response-based conditions. Past behavioral 

research suggests that greater vigilant orientation, relative to avoidant orientation is 

associated with anxiety levels (Evans & Britton, 2018). As such, we separately compared 

social anxiety-related associations among response-based conditions within the orientation 

(vigilant vs. avoidant) and disengagement (fast vs. slow) components. In addition to 

behavioral measures, we focused anxiety-related analyses on neural regions that exhibited 

response-based differences in neural activation or neural connectivity to minimize the 

number of total analyses.
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3. Results

3.1. Behavioral data

3.1.1. Standard computation—To test standard indices of orientation to threat 

(RTNeutralMean – RTCongruentMean) and disengagement from threat (RTIncongruentMean – 

RTNeutralMean), we utilized one-sample t-tests. Across the sample, analyses revealed no 

evidence of either skewed orientation to threat (M = 0.47 ms, SD = 21.09; t(49) = 0.16, p 
= 0.88; 95% CI [−5.52, 6.46]) or skewed disengagement from threat (M = −0.05 ms, SD = 

17.07; t(49) =−0.02, p = 0.98; 95% CI [−4.90, 4.80]). Although not a primary aim of the 

current study, no evidence of attention bias was observed using traditional contrast scores 

(RTIncongruentMean – RTCongruentMean; M = 0.42 ms, SD = 20.19; t(49) = 0.15, p = 0.89; 95% 

CI [−5.32, 6.16]).

3.1.2. Response-based computation—Comparing the absolute magnitude of 

response-based measures revealed a significant Attention Type × Attention Direction 

interaction (F1, 49 = 9.19, p = 0.004; ηp
2 = 0.16; 95% CI [−21.57, −4.37]; see Fig. 3). 

Within the orientation component, avoidant orientation (M = 68.93 ms, SD = 26.91 ms) was 

greater in absolute magnitude compared to vigilant orientation (M = 61.27 ms, SD = 24.42 

ms; F1, 49 = 7.91, p = 0.007; ηp
2 = 0.14; 95% CI [−13.13, −2.19]). Within the disengagement 

component, slow disengagement (M = 68.01 ms, SD = 25.46 ms) was marginally greater in 

absolute magnitude compared to fast disengagement (M = 62.69 ms, SD = 23.71 ms; F1, 49 = 

3.913, p = 0.05; ηp
2 = 0.07; 95% CI [−0.07, 10.69]).

Post-Hoc Analyses (Frequency).: Given response-based differences in magnitude, it is 

notable that such differences were not detected in standard attention measures (e.g., 

NeutralRT – CongruentRT). In addition to relative magnitude, we also examined if there were 

relative differences in the frequency of response-based measures. For example, avoidant 

orientation may exhibit greater magnitude compared to vigilant orientation (e.g., avoidant = 

30 ms; vigilant = 15 ms), but also occur relatively less frequently (e.g., avoidant = 10 trials; 

vigilant = 20 trials). Due to the equal weighting of trials by standard attention measures, 

however, response-based differences in magnitude would be effectively masked.

To test this possibility, we compared the relative frequency of response-based measures. 

After confirming that the distributions of response types frequencies were each normally 

distributed with Shapiro-Wilk tests (all p’s > 0.14), we submitted the frequency of 

response-based measures to a 2 (Attention Type) × 2 (Attention Direction) RM-ANOVA. 

Consistent with our post-hoc hypothesis, we observed differences in the relative frequency 
of response-based measures as evidenced by a significant Attention Type × Attention 

Direction interaction (F1, 49 = 8.59, p = 0.005; ηp
2 = 0.15; 95% CI [1.82, 9.78]). We then 

conducted paired-samples t-tests within each attention component. Within the orientation 

component, avoidant orientation (M = 20.98 trials, SD = 4.89) were significantly less 

frequent compared to vigilant orientation (M = 24.42 trials, SD = 4.46; t(49) = 2.68, p = 

0.01). Within the disengagement component, slow disengagement (M = 21.32 trials, SD = 

4.08) were significantly less frequent compared to fast disengagement (M = 23.68 trials, SD 
= 3.65; t(49) = −2.37, p = 0.02).
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Post-Hoc Analyses (Distribution Topography).: When averaged across subjects, mean 

RTs are not normally distributed, but instead exhibit a positive skew. However, it remains 

unclear if RTs exhibit a similar skew within individual subjects, which our response-based 

approach aims to characterize. If RTs exhibit a consistent positive skew at the individual 
subject level, our response-based results may simply be attributable to the topography of RT 

distributions, rather than distinct attentional processes. To test this possibility, we conducted 

additional post-hoc analyses.

First, we quantified the normality of RT distributions at the individual subject level using 

Kolmogorov-Smirnov tests of normality. For congruent trials, most subjects exhibited 

normal RT distributions (72%), whereas a minority of subjects exhibited either positively 

skewed RT distributions (18%) or negatively skewed RT distributions (10%; see Fig. 4). 

For incongruent trials, most subjects exhibited normal RT distributions (58%), whereas 

a minority of subjects exhibited either positively skewed RT distributions (18%) or 

negatively skewed RT distributions (24%; see Fig. 5). Based on these results and descriptive 

examination of Figs. 4 and 5, it seems unlikely that our response-based results are simply a 

topographical feature of RT distributions.

Second, we confirmed our response-based results using non-parametric analyses that 

are robust against violations of normality. Specifically, we utilized a Related-Samples 

Friedman’s Two-Way Analysis of Variance by Ranks, which is more appropriate in cases 

in which distributions exhibit non-normality. This analysis essentially performs a non-

parametric version of the previously reported 2 × 2 RM-ANOVA. Similar to our parametric 

results, we observed a significant 2 × 2 interaction (p = 0.048). We then used non-parametric 

Wilcoxon Ranked tests to conduct follow-up analyses. Similar to the original paired-samples 

t-tests, avoidant orientation was greater in absolute magnitude relative to vigilant orientation 

(p = 0.01) and slow disengagement was greater in absolute magnitude relative to fast 

disengagement (p = 0.047).

Third, it could be argued that response-based differences are attributable to slower and 

faster RT more generally. Compared to the neutral reference, slower RT on congruent 

and incongruent trials generate avoidant orientation and slower disengagement indices, 

respectively. Likewise, comparatively faster RT on congruent and incongruent trials generate 

vigilant orientation and faster disengagement. Given that the magnitude of avoidant 

orientation and slower disengagement was greater than the magnitude of vigilant orientation 

and faster disengagement, it is possible that individuals might simply respond comparatively 

more slowly on both congruent and incongruent trials. Similar to our observed pattern 

of response-based differences, this general slowing of RT would also produce a larger 

magnitude of avoidant orientation and slower disengagement (i.e., slow responses) relative 

to vigilant orientation and faster disengagement (i.e., fast responses).

Given that RT values of an individual will be highly correlated, we used difference 

scores to compare orientation (i.e., RTVigilant – RTAvoidant) and disengagement (i.e., RTFast 

– RTSlow) to rule out this possibility. First, we examined the correlation between each 

difference score and overall RT. Overall RT was not associated with either differences within 

orientation (r(49) = 0.12, p = 0.43) or disengagement indices (r(49) = 0.21, p = 0.15). 
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Second, we observed only a modest correlation between orientation difference scores and 

disengagement difference scores, (r(49) = 0.26, p = 0.07). Taken together, these results 

suggest that differences among orientation and disengagement response-based measures 

were not attributable to intra-individual variability in general reaction time.

3.2. Neural activation

3.2.1. Standard computation—When comparing congruent and incongruent task-

defined conditions to neutral conditions, no significant differences in neural activation were 

detected using a priori amygdala or vlPFC seeds (all p’s > 0.33).

3.2.2. Response-based computation—Similar to the condition-based approach, 

response-based computation did not yield differences in neural activation within the right 

amygdala, left amygdala, or vlPFC ROIs (all p’s > 0.12).

However, three clusters survived whole-brain correction for the hypothesized two-way 

Attention Type × Attention Direction interaction. Specifically, we observed response-based 

differences in clusters containing the bilateral posterior cingulate cortex (PCC; [−28, −46, 

24], 525 voxels (8203 mm3); BA 31), the medial prefrontal cortex (mPFC; [−4, −59, 12], 

126 voxels (1969 mm3); BA 10), and the left superior frontal gyrus (lSFG; [−11, 51, 36], 

118 voxels (1844 mm3; see Fig. 6); BA 9).

Across all three clusters, we observed a similar pattern of activation differences among 

response types (see Fig. 6). Within the orientation component, we observed greater 

deactivation during avoidant orientation compared to vigilant orientation (all p’s < 0.007; 

all 95% CI’s [0.03, 0.19]) and during slow disengagement compared to fast disengagement 

(all p’s < 0.04; all 95% CI’s [−0.18, −0.005]). One-sample t-tests confirmed that avoidant 

orientation and slow disengagement were characterized by significant deactivation relative to 

baseline (all p’s < 0.01; all 95% CI’s [−0.21, −0.02]). In contrast, neural activation during 

vigilant orientation and fast disengagement did not differ from baseline (all p’s > 0.28; all 

95% CI’s [−0.09, 0.03]).

Post-hoc neural coherence results.: Response-based computation revealed converging 

de-activation patterns within several neural regions (PCC, mPFC, and left SFG) that are 

putative hubs within the larger Default Mode Network (DMN; Greicius, Krasnow, Reiss, 

& Menon, 2003). To test this possibility, we tested if individual differences in neural 

activity within one region co-varied with the neural activity across the other two regions 

(e.g., corr(PCC-vigilant, mPFC-vigilant); corr(PCC-vigilant, SFG-vigilant), etc.). For each 

response-based condition, we utilized Pearson bivariate product-moment correlations to 

test coherence of neural activation across regions. All response-based conditions exhibited 

strong coherence of neural activity across the PCC, mPFC, and left SFG (average r = 0.71, 

average p < 0.001). Moreover, this pattern of coherence was largely absent across different 
response types (e.g., corr(PCC-vigilant, mPFC-avoidant) for both orientation (average r = 

0.08, average p = 0.61) and disengagement (average r = 0.24, average p = 0.12). Although 

these analyses were exploratory in nature, this pattern of coherence suggests that response-

based patterns of attention elicited divergent deactivation of DMN hubs.
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3.3. Neural connectivity

3.3.1. Standard computation—Whole-brain analyses of functional connectivity using 

a priori seed regions failed to identify any neural clusters characterized by condition 

differences.

3.3.2. Response-based computation—For the right amygdala seed, we observed 

response-related differences in neural connectivity to a cluster extending across the right 

middle occipital cortex and posterior aspects of the right superior temporal sulcus (STS; 

[41, −49, 1], 294 voxels (4594 mm3; see Fig. 7). Stronger connectivity between the 

right amygdala and this occipito-STS cluster was observed during avoidant orientation 

compared to vigilant orientation (F1, 49 = 10.27, p = 0.002; ηp
2 = 0.17; 95% CI [−0.79, 

−0.18]). Similarly, stronger connectivity between these regions was observed during slower 

disengagement compared to faster disengagement (F1, 49 = 7.88, p = 0.007; ηp
2 = 0.14; 95% 

CI [0.10, 0.58]). Of note, one sample t-tests demonstrated that all response-based conditions 

exhibited stronger amygdala-STS connectivity relative to baseline (gPPI Beta Coefficients: 

0.49–0.97, all t’s > 4.31, all p’s < 0.001; all 95% CI’s [0.26, 1.32]).

When selecting the left amygdala and vlPFC as seed regions, however, no clusters survived 

whole brain corrected cluster threshold.

3.4. Anxiety-Related Associations

At the behavioral level, no standard or response-based measures were associated with 

social anxiety (all p’s > 0.15) Across neural activation patterns within the PCC, mPFC, 

or left SFG, no significant anxiety-related interactions were observed for orientation or 

disengagement components (all p’s > 0.08).

However, social anxiety was distinctly associated with neural connectivity between the 

right amygdala and posterior aspect of the ipsilateral STS. For the orientation component, 

we observed a significant anxiety-related interaction with amygdala-STS connectivity (F1, 

48 = 6.48, p = 0.01; ηp
2 = 0.12; 95% CI [0.07, 0.57]), which remained significant after 

controlling for co-morbid depressive symptoms (r(49) = 0.34, p = 0.02; 95% CI [0.07, 

0.56]). Specifically, weaker amygdala-STS connectivity during avoidant orientation was 

associated with greater social anxiety severity (r(49) = −0.27, p = 0.056; 95% CI [−0.01, 

0.51]; see Fig. 6), which was not observed during vigilant orientation (r(49) = 0.05, p = 

0.75; 95% CI [−0.23, 0.32] see Fig. 8). For the disengagement component, however, no 

anxiety-related interaction was observed with amygdala-STS connectivity (F1, 48 = 1.80, p = 

0.19; ηp
2 = 0.04).

4. Discussion

By dissociating threat-related attention patterns across individual trials, we observed a 

notably consistent pattern of response-based differences across measures of behavior, neural 

activation, and neural connectivity, which were not observed using standard computation 

measures. Based on standard behavioral measures of threat-related attention, no evidence 

of threat-related orientation or disengagement of attention was observed. In contrast, 

response-based behavioral measures of threat-related attention all significantly differed 
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from zero. In terms of absolute magnitude, avoidant orientation was greater than vigilant 

orientation, whereas slow disengagement was greater than fast disengagement. Mirroring 

these behavioral findings, response-based differences derived from separate trials were also 

reflected in both neural activation and neural connectivity. Although we did not observe 

activation differences within a priori regions (amygdala and vlPFC), whole-brain analyses 

revealed that avoidant orientation and slow disengagement were characterized by greater 

deactivation within the mPFC, PCC, and SFG compared to vigilant orientation and fast 

disengagement, respectively. Similarly, avoidant orientation and slow disengagement were 

also characterized by greater connectivity between the right amygdala and an occipito-STS 

cluster compared to vigilant and fast disengagement, respectively. Finally, we observed that 

weaker neural connectivity between the right amygdala and the occipito-STS cluster during 

avoidant orientation was associated with greater social anxiety symptoms.

Whereas standard RT measures failed to detect evidence of threat-related orientation or 

disengagement, significant differences in absolute magnitude and relative frequency were 

observed between among response-based measures. This pattern of results is consistent with 

emerging research that suggests anxiety is characterized by heterogeneous patterns of threat-

related attention, which may masked by standard attention measures (Evans & Britton, 

2018; Zvielli et al., 2014a, 2014b). Across the sample, socially anxious individuals exhibited 

stronger avoidant orientation and slow disengagement relative to vigilant orientation and fast 

disengagement, respectively. Standard attention measures failed to detect these differences 

in magnitude given that avoidant orientation and slow disengagement responses were also 

comparatively less frequent.

In social anxiety, avoidant orientation and slow disengagement responses may exhibit 

inverse patterns of magnitude and frequency due to these attention patterns recruiting 

top-down processes such as attentional control (Cisler & Koster, 2010). Specifically, the 

comparatively greater magnitude of avoidant orientation and slow disengagement may 

suggest these responses emerge when threat exerts a particularly demanding influence 

on attention, which marshals the recruitment of top-down processes. Due to the resource 

costs required to recruit top-down processes, however, avoidant orientation and slow 

disengagement may nevertheless occur less frequently to economize attentional resources. 

Neural activation and neural connectivity patterns associated with avoidant orientation and 

slow disengagement were consistent with this interpretation.

In the current study, avoidant orientation and slow disengagement may recruit top-down 

processes in response to particularly influential social threats. Avoidant orientation and slow 

disengagement responses were both associated with greater deactivation of the PCC, mPFC, 

and left SFG, which are hubs within the larger DMN (Greicius et al., 2003). Consistent with 

operating as DMN hubs, exploratory analyses revealed strong coherence in response-based 

activation among these neural regions. Deactivation of DMN hubs supports the allocation 

of attentional resources towards processing external stimuli (for a review, see Anticevic et 

al., 2012). For example, DMN deactivation occurs when attentional resources are recruited 

to support top-down processes such as identifying specific stimulus features (Buckner, 

Andrews-Hanna, & Schacter, 2008; Singh & Fawcett, 2008; Weissman, Roberts, Visscher, & 

Woldorff, 2006).
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Despite similar underlying neural mechanisms, however, avoidant orientation and slow 

disengagement represent opposing patterns of attention to social threat. Both avoidant 

orientation and slow disengagement require greater attentional resources, recruit top-down 

processes, and exhibit greater DMN deactivation. However, these seemingly paradoxical 

brain-behavior relationships may be better understood in the context of facilitating distinct 

functions. Specifically, avoidant orientation is proposed to reduce negative affect associated 

with threat processing, whereas slow disengagement is proposed to facilitate elaborative 

processing of threats (Cisler & Koster, 2010; Taylor, Cross, & Amir, 2016). As such, 

avoidant orientation decreases engagement with a social threat, slow disengagement 

increases engagement with a social threat. Despite these distinct functions, however, 

avoidant orientation and slow disengagement may both require greater attentional resources.

Consistent with this interpretation, avoidant orientation and slow disengagement were also 

characterized by greater connectivity between the right amygdala and the anatomically 

heterogenous cluster centered in the posterior aspect of the STS (BA 19). Research suggests 

that connectivity between the amygdala and posterior STS plays a central role in distributed 

neural systems that facilitate face processing (Calder & Young, 2005; Haxby, Hoffman, 

& Gobbini, 2000). Following early visual input, the posterior aspect of the STS serves as 

an entry point for processing face-related information, which is subsequently projected to 

the amygdala (Pitcher, Japee, Rauth, & Ungerleider, 2017). Together, these regions play 

a critical role in detecting and categorizing emotional perception of facial expressions 

(Adolphs, 2002). In the current study, greater amygdala and posterior STS connectivity 

underlying avoidant orientation and slow disengagement responses may suggest that these 

attention patterns facilitate enhanced processing of social threats, albeit for different 

purposes (Pine, 2003). As noted previously, past research has suggested that avoidant 

orientation facilitates emotional regulation processes (Cisler & Koster, 2010; Vassilopoulos, 

2005). Consistent with a regulatory function, impaired amygdala-STS connectivity during 

avoidant orientation was associated with greater social anxiety symptoms. Future research 

will be necessary, however, to delineate the cognitive outcomes associated with each type of 

threat-related attention.

Although our response-based approach revealed mechanistic insights, response-based RT 

measures did not demonstrate associations with social anxiety symptoms. We recruited a 

sub-clinical sample of socially anxious adults who reported a restricted range of social 

anxiety symptoms. Given this restricted range, anxiety-related associations may be difficult 

to detect. Sampling across a wider continuum of social anxiety that includes both non-

clinical and clinical anxiety may facilitate detection of anxiety-related associations with 

response-based measures. However, we did observe associations between response-based 

measures of amygdala connectivity and social anxiety, which provides some evidence of 

clinical validity.

Moreover, we believe that several findings support the clinical validity of our response-

based computation approach despite the lack of observed anxiety-related associations. 

First, response-based measures revealed a complex interplay between the magnitude 
and frequency of attentional processes. Although this interplay was not associated with 

symptoms at the individual level response-based computation more accurately characterized 
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threat-related attention in at the group level. Second, response-based computation 

revealed patterns of DMN deactivation and amygdala-STS connectivity, which mirrored 

behavioral response-based measures. Importantly, response-based measures of amygdala-

STS connectivity predicted social anxiety symptoms, which provides some evidence for 

the clinical validity of response-based computation. Nevertheless, future research will be 

necessary to comprehensively assess the clinical utility of response-based computation.

Given the novelty of our response-based approach, several caveats should be noted and 

discussed. RTs demonstrate a positively skewed distribution because RTs can theoretically 

increase infinitely, but inherently cannot decrease below 0 ms. Given this skewed 

distribution, it could be argued that differences in magnitude among response-based 

measures may be attributable to the positive skew of RTs. For example, the greater 

magnitude of avoidant orientation compared to vigilant orientation could be influenced by 

the positive skew of RTS. We took several steps to mitigate this potential bias, including 

the implementation of RT outlier cut-offs, non-parametric analyses, and comprehensive 

analysis of RT distributions across individual participants. Nevertheless, these steps cannot 

completely eliminate the potential bias of skewed RT distributions. Additionally, response-

based computation is a novel approach that remains relatively untested compared to 

standard computation approaches. In the absence of a mature literature on response-based 

computation, findings should be cautiously interpreted until further research is conducted.

Several other limitations should be noted. First, this study was conducted in a sub-clinical 

socially anxious sample without a matching control sample. Future research in individuals 

ranging from non-anxious to clinically anxious will be necessary to characterize anxiety-

related differences in both the behavioral expression and the neural mechanisms underlying 

threat-related attention patterns. Second, some additional limitations of response-based 

measures should be noted. By sub-dividing the number of congruent and incongruent trials, 

response-based computation inherently reduces the number of trials available for analysis. 

Assuming an equal number of vigilant orientation and avoidance orientation trials, for 

example, 40 congruent trials would be sub-divided into 20 trials of each response type. 

Moreover, individuals exhibit distinct distributions of response types, which introduces 

heterogeneity in the number of fMRI regressors available across participants (Evans & 

Britton, 2018). To account for this potential heterogeneity, we utilized a mixed modelling 

approach in AFNI. Nevertheless, a response-based approach inherently introduces inter-

individual variability in the number of trials that contribute to each regressor in fMRI 

models. Finally, the amygdala is not an anatomically or functionally homogenous structure, 

but is instead comprised of distinct sub-nuclei (Janak & Tye, 2015). Even at a very liberal 

threshold for small volume correction (SVC; p > 0.05, uncorrected), however, we did not 

observe any significant activation clusters within the left or right amygdala. Although no 

amygdala activation differences were noted, it is possible that sub-nuclei populations such 

as the basolateral and centromedial amygdala exhibit divergent patterns of connectivity 

with other neural structures during various patterns of threat-related attention. Although 

outside the scope of the current study, characterizing contributions of amygdala sub-nuclei 

to threat-related attention will be an important step for further research.
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Despite these limitations, our collective results converged across behavior, neural activity, 

and neural connectivity to suggest that threat-related attention patterns modulate processing 

of social threat cues in social anxiety. Compared to vigilant orientation and fast 

disengagement, avoidant orientation and slow disengagement were characterized by 

relatively greater deactivation of several DMN hubs (PCC, mPFC, SFG) and relatively 

stronger coupling between the right amygdala and posterior STS. Taken together, our results 

indicate that social anxiety may be characterized by heterogenous expression threat-related 

attention, which is supported by functionally distinct processes. Notably, this interpretation 

is consistent with a growing body of research that suggests that the variability of threat-

related attention in social anxiety may be attributable to core deficits in top-down processes 

such as attentional control (Heeren, Mogoase, McNally, Schmitz, & Philippot, 2015; Taylor 

et al., 2016). Recently, attention training methods have been developed that are designed to 

reduce the variability of threat-related attention exhibited by clinical populations, which may 

provide a promising treatment modality in social anxiety (Lazarov et al., 2019). Offering 

important clinical implications, these results add to a growing body of evidence suggesting 

that threat-related attention in social anxiety may be more heterogeneous than previously 

proposed.
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Fig. 1. Hypothetical Individual Differences in Threat-Related Orientation of Attention.
A). Hypothetical distributions of response patterns within the dot-probe task. When 

congruent reaction time (RT) is referenced against mean neutral RT (RTNeutral – 

RTCongruent), positive and negative scores indicate vigilant and avoidant orientation, 

respectively. Utilizing standard computation approaches, both Participant 1 and Participant 

2 exhibit distributions of orientation scores that would produce a standard orientation score 

of 0 ms, although Participant 2 exhibits significant vigilant and avoidant orientation of 

equal magnitude. Participant 3 exhibits a general pattern of vigilant orientation, generated 

by a disproportionate vigilant vs. avoidant orientation. B). However, utilizing a response-

based computation approach accurately captures co-occurring patterns of vigilant and 

avoidant orientation at varying degrees of magnitude. Reference: Reprinted from Journal 
of Behavioral and Experimental Psychiatry, Evans, T. C., & Britton, J. C., Improving the 

psychometric properties of dot-probe attention measures using response-based computation, 

Copyright (2018), with permission from Elsevier.
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Fig. 2. Response-Based Generation of Individual-Level fMRI Models.
Using a response-based approach to computing threat-related attention, individual congruent 

and incongruent trials from each participant were separately referenced to that participant’s 

mean neutral reaction time (e.g., RTNeutralMean – RTCongruent [Trial 1 … Trial 2 … Trial n]). 

For individual congruent trials, positive responses were coded as vigilant orientation trials, 

whereas negative responses were coded as avoidant orientation trials. For incongruent trials, 

negative responses were coded as fast disengagement trials, whereas positive responses 

were coded as slow disengagement trials. Regressors were subsequently computed for 

each individual according to their respective distribution of responses (vigilant orientation, 

avoidant orientation, slow disengagement, fast disengagement).
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Fig. 3. Comparing Standard and Response-Based Measures of Threat-Related Attention.
A). Using standard computation, no evidence of threat-related orientation (RTNeutralMean 

– RTCongruentMean) or disengagement (RTIncongruentMean – RTNeutralMean) was observed. 

B). Using response-based computation, a significant Attention Type (Orientation vs. 

Disengagement) × Attention Direction (Positive vs. Negative) interaction was observed 

(p = 0.004). Within the orientation component, avoidant orientation was greater in 

absolute magnitude compared to vigilant orientation (p = 0.007). Within the disengagement 

component, slow disengagement was greater in absolute magnitude compared to fast 

disengagement (p = 0.05). * = p < 0.05.
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Fig. 4. Subject-Level Distributions of Congruent Reaction Times
Frequency distributions of congruent reaction times (blue) are plotted separately for each 

of the 50 subjects included in final analyses (S1 – S50). A). Reference line on the x-axis 

denotes the unique mean of neutral-neutral trials, which is computed separately for each 

subject. B). Normal distribution curves are depicted separately based each subject’s unique 

congruent reaction time distribution. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Subject-Level Distributions of Incongruent Reaction Times.
Frequency distributions of incongruent reaction times (red) are plotted separately for each 

of the 50 subjects included in final analyses (S1 – S50). A). Reference line on the x-axis 

denotes the unique mean of neutral-neutral trials, which is computed separately for each 

subject. B). Normal distribution curves are depicted separately based each subject’s unique 

incongruent reaction time distribution. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. Response-Based Differences in Neural Deactivation between Orientation and 
Disengagement.
Response-based differences in neural deactivation were observed within the Posterior 

cingulate cortex (PCC), medial prefrontal cortex (mPFC), and left superior frontal 

gyrus (SFG). Across these three regions, greater deactivation was observed during 

avoidant orientation compared to vigilant orientation (all p’s < 0.007) and during slow 

disengagement compared to fast disengagement (all p’s < 0.04). Avoidant orientation and 

slow disengagement were characterized by significant deactivation relative to baseline (all 

p’s < 0.01). In contrast, neural activation during vigilant orientation and fast disengagement 

did not differ significantly from zero (all p’s > 0.28). * = p < 0.05.
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Fig. 7. Response-Based Differences in Amygdala-STS Connectivity Between Orientation and 
Disengagement.
Response-based differences in neural connectivity were observed between the right 

amygdala and an anatomically heterogeneous cluster spanning the occipital cortex and 

posterior aspects of the right superior temporal sulcus (occipito-STS). Stronger connectivity 

between the right amygdala and the occipito-STS cluster was observed during avoidant 

orientation compared to vigilant orientation (p = 0.002) and during slow disengagement 

compared to fast disengagement (p = 0.007). * = p < 0.05.
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Fig. 8. Social Anxiety is Differentially Associated with Amygdala-STS Connectivity during 
Vigilant and Avoidant Orientation to Threat.
Based on Liebowitz Social Anxiety Scale (LSAS) scores (Liebowitz, 1987), social anxiety 

symptoms were associated with neural connectivity between the right amygdala and 

posterior aspect of the superior temporal sulcus (STS) during orientation of attention 

to threat (p = 0.01). Less amygdala-STS connectivity during avoidant orientation was 

associated with greater social anxiety severity (r(49) = −0.27, p = 0.056, dotted red 

line), whereas amygdala-STS connectivity during vigilant orientation was not associated 

with social anxiety severity (r(49) = 0.05, p = 0.75, solid red line). * = p < 0.05. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

Web version of this article.)
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