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Abstract

Purpose: To advance research in the field of machine learning for MR image reconstruction with 

an open challenge.

Methods: We provided participants with a dataset of raw k-space data from 1,594 consecutive 

clinical exams of the knee. The goal of the challenge was to reconstruct images from these data. In 

order to strike a balance between realistic data and a shallow learning curve for those not already 

familiar with MR image reconstruction, we ran multiple tracks for multi-coil and single-coil data. 

We performed a two-stage evaluation based on quantitative image metrics followed by evaluation 

by a panel of radiologists. The challenge ran from June to December of 2019.

Results: We received a total of 33 challenge submissions. All participants chose to submit results 

from supervised machine learning approaches.

Conclusion: The challenge led to new developments in machine learning for image 

reconstruction, provided insight into the current state of the art in the field, and highlighted 

remaining hurdles for clinical adoption.
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1 | INTRODUCTION

One of the fastest growing fields of research in medical imaging during the last several years 

is the use of machine learning methods for image reconstruction. Machine learning has been 

proposed for CT dose reduction [1, 2, 3, 4, 5, 6], attenuation correction for PET-MRI [7] and 

accelerated MR imaging [8, 9, 10, 11, 12, 13, 14, 15, 16]. Despite various methodological 

Correspondence: Florian Knoll, Department of Radiology, NYU Grossman School of Medicine, New York, NY, 10016, United 
States, florian.knoll@nyumc.org.
†Indicates equal contributions.

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2021 December 01.

Published in final edited form as:
Magn Reson Med. 2020 December ; 84(6): 3054–3070. doi:10.1002/mrm.28338.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advances, the methods developed in these studies were all trained and validated on small 

individual datasets collected by the authors, which in many cases were not shared with the 

research community. These limitations in data accessibility makes it challenging to 

reproduce different approaches, and to validate comparisons between them. The lack of 

broadly accessible data also restricts work on important medical image reconstruction 

problems to researchers associated with or cooperating with large university medical centers 

where imaging data is available. This restriction is a significant lost opportunity, given the 

substantial volume of ongoing research in basic science machine learning and data science.

Indeed, there is a striking contrast between specialized medical research and more general 

research in the field of machine learning, which has seen breakthrough improvements in 

diverse areas from image classification [17] with deep convolutional neural networks 

(CNNs) [18] to championship-level gaming [19]. The core technologies that led to these 

results had already been introduced around 1990 for applications like speech recognition 

[20] and written document parsing [21]. However, deep learning for computer vision did not 

expand beyond simple digit recognition tasks for the next 20 years. In retrospect, a single 

event is often identified as the key catalyst for the recent resurgence of machine learning 

technology [18]: The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

[22], in which a deep CNN achieved spectacular results for an image classification task [17]. 

Since then, every single winning entry in the competition was a form of deep CNN, with 

current winning entries even outperforming human performance. Winning the ILSVRC has 

become extremely prestigious and has attracted the interest of leading academic institutions 

and IT companies around the world. Performance on ILSVRC tasks has become a standard 

for the evaluation of new developments in computer vision. A similar event occurred in the 

field of medical image reconstruction with the 2016 Low Dose CT Grand Challenge 

organized by the Mayo Clinic [23]. Even after the conclusion of the challenge, the dataset 

provided by the organizers continues to be widely used by research groups for their own 

developments. It serves as a standard reference in the CT community for reconstruction 

advances. More recently, a dataset with the goal to facilitate deep learning for low-dose-CT 

was also made available. [24]

Our goal with the fastMRI challenge project was provide a similar stimulation to machine 

learning research in MR image reconstruction aimed at reducing MR examination times. In 

December of 2018, we released the first large-scale database of MRI scanner raw data from 

a clinical patient population [25, 26]. In the spirit of previous challenges organized by the 

ISMRM community [27], we then conducted a challenge to provide researchers in the field 

the opportunity to evaluate their methods in a large-scale, realistic setting with evaluation 

from clinical radiologists. We also aimed to spark interest in radiology and biomedical 

imaging within the large machine learning and computer vision research community. In this 

article, we describe the design and the results of the challenge as well as the lessons we 

learned from its organization.
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2 | METHODS

2.1 | Challenge design principles

Our challenge was focused on accelerating MR image acquisitions. Two of the most 

influential developments in this arena during the last two decades have been parallel imaging 

[28, 29, 30] and compressed sensing [31]. Both of these approaches to rapid imaging are 

based on the principle of reducing the number of lines that are acquired in k-space, which 

reduces the scan time, and then exploiting redundancy in the measured data during the 

image reconstruction process. In parallel imaging, the redundancy arises from the 

simultaneous acquisition of MR signal with multiple receive coils; in compressed sensing, it 

derives from the observation that images are generally compressible. Machine learning 

approaches have generally adopted similar strategies for the acceleration of MRI, which set 

the main design criteria for our challenge.

We provided participants with sets of raw k-space data, and the goal of the challenge was to 

reconstruct images from these data. Since details about the dataset are reported in separate 

publications [25, 26], in this article we restrict our description of the dataset only to 

information that is relevant to the design of the challenge. We provided data for a total of 

1,594 consecutive clinical proton-density-weighted MRI acquisitions of the knee in the 

coronal plane, both with (COR PD FS) and without (COR PD) frequency-selective fat 

saturation. In addition to their different image contrast, these two types of acquisition also 

vary in signal to noise ratio (SNR) by approximately a factor of 4 [32]. Data were acquired 

on three clinical 3T systems (Siemens Magnetom Skyra, Prisma, and Biograph-mMR) and 

one clinical 1.5T system (Siemens Magnetom Aera) using clinical multi-channel receive 

coils. Curation of the dataset was part of a study approved by our local institutional review 

board (IRB).

The selection of problems for the challenge was based on a three-way trade-off between a) 

providing a realistic scenario representative of actual clinical imaging exams, b) allowing 

fair and proper validation, and c) making the challenge practically and conceptually 

accessible for research groups outside the core field of MR image reconstruction. This led to 

the following design principles:

• To make the image reconstruction problem realistic, we provided actual raw 

(complex valued) k-space data obtained directly from our MRI scanners.

• To reduce the complexity of the challenge, we restricted ourselves to standard 

Cartesian 2D Turbo Spin Echo sequences that are part of the routine clinical 

protocol at our institution.

• In order to provide clear ground truth against which to compare image 

reconstructions, we did not provide prospectively undersampled data. Fully-

sampled k-space data were acquired for all exams in the data set, and 

undersampling was performed retrospectively, so that no differences in 

conditions (e.g., in motion state or scanner calibration) between fully-sampled 

and undersampled acquisitions would complicate image comparisons.
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• Since the goal of the challenge was to test reconstruction methods and not 

sampling trajectory design, we predefined the allowed undersampling patterns. 

We chose one-dimensional pseudo-random sampling in the phase encoding 

direction, with full sampling of a small central k-space region, as introduced in 

the original context of compressed sensing [31].

• For multi-coil acquisitions, our ground truth reference was the root-sum-of-

squares combination of the fully-sampled multi-channel data after inverse 

Fourier transform. While this is not the optimal coil combination method in 

terms of SNR [33, 34], it does not bias the ground truth towards any particular 

approach to the estimation of coil sensitivities. We also removed readout-

direction oversampling by cropping the reconstructed images to the central 320 × 

320 pixel region. For the single-coil case, which is uncommon in clinical practice 

but was included to provide a low barrier to entry for those not familiar with 

multi-coil data acquisitions, we simulated a physically feasible ground truth 

using a linear combination of individual coil signals as described in [35].

• We used the structural similarity index (SSIM) [36] with respect to the fully 

sampled ground truth reference as an indicator of image quality. We calculated 

two other widely used quantitative metrics for our online leaderboard: pixelwise 

normalized mean square error (NMSE) and peak signal to noise ratio (PSNR). 

However, since all of these metrics provide limited insight into the diagnostic 

quality of medical images, we decided to use a ranking by an expert panel of 

musculoskeletal radiologists as the final metric to determine the winning entries 

in the challenge.

• We did not prohibit the use of additional non-fastMRI data in the development 

and training of the submissions. However, all participants who chose to use 

additional data were required to state this at the time of submission.

2.2 | Challenge tracks

One of our design goals was to test the submissions in different operating modes defined by 

the level of acceleration. We also wanted to make the challenge interesting for research 

groups with a focus on MR image reconstruction as well as for groups based in machine 

learning, computer vision and image processing. We therefore decided to organize the 

challenge into multiple submission tracks.

Regarding the different levels of acceleration, the goal of the first scenario was to operate in 

a mode where we expected the reconstruction to be challenging, but where reconstructed 

images that might be acceptable for clinical diagnosis were likely to be feasible. Based on 

our previous experience with similar data [10, 32], we chose an undersampling factor of R=4 

for this scenario. The goal of the second scenario was to aim for a substantially higher 

acceleration than can be achieved with current reconstruction methods. We chose an 

undersampling factor of R=8 for this scenario. We did not expect to receive submissions 

with clinically acceptable image quality at this high level of acceleration. The goal for this 

scenario was to evaluate the performance of the submissions when they were pushed beyond 

reasonable limits, and to analyze failure modes.

Knoll et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In our experience, the steepest component of the learning curve for use of (Cartesian) MR 

data in image reconstruction relates to the proper handling of multi-channel raw k-space data 

of the sort required for parallel imaging. We therefore designed two additional tracks, which 

we termed the multi-coil and the single-coil track. For the multi-coil track, which was 

primarily aimed at research groups with a background in MR image reconstruction, we 

provided true multi-channel raw data from the MR scanners. Since most modern MR scans 

are performed using arrays of detector coils, this is a realistic scenario whose results are 

likely to be readily translatable to real-world imaging situations. For the single-coil track, we 

provided k-space data for which multi-channel information had been combined into a single 

channel that can be reconstructed with a simple inverse Fourier transform in the fully 

sampled case. However, instead of Fourier transforming previously-reconstructed images 

stored in DICOM format in an attempt to create k-space data (an approach sometimes 

observed in the literature, but not realistic or advisable for various reasons), we chose to 

retain the complex nature of the original data. A more detailed description of the channel 

combination we used is presented in [35]. The single-coil track was primarily aimed at 

research groups from machine learning, computer vision and image processing, who might 

be interested in applying their expertise in medical imaging applications. In particular, after 

a simple inverse Fourier transform of the data, the single-coil track enabled easy use of 

methods that are entirely based on image postprocessing. While the removal of multi-

channel information decreases the complexity of working with the data, it also increases the 

difficulty of the reconstruction problem at any given acceleration factor, since the resulting 

single-channel data has reduced redundancy and more limited information content than the 

original multi-channel data. For the challenge phase, we therefore decided to limit ourselves 

to a single acceleration factor of R=4 in this track.

2.3 | Dataset split and leaderboard evaluation

We partitioned our dataset into six subsets for the individual tracks and the different phases 

of the challenge: training, validation, multi-coil test, single-coil test, multi-coil challenge, or 

single-coil challenge. Data from individual patient cases were randomly assigned to the 

individual subsets. Each patient case consists of an image volume of coronal images. The 

number of cases and the total number of slices are shown in Table 1. The dataset was made 

publicly available at https://fastmri.med.nyu.edu/.

We provided fully sampled k-space data and corresponding ground truth image 

reconstructions for the training and validation subsets, which could be used by the 

participants to develop and train their machine learning models and to determine any 

hyperparameters. In order to make most efficient use of our available data, we used the same 

training and validation cases for the multi-coil and single-coil tracks.

For the test set, we provided different subsets of undersampled k-space data for the single 

and the multi-channel tracks. Participants could upload their reconstruction results to our 

public leaderboard at http://fastmri.org/. We then calculated three commonly used 

quantitative image quality metrics: The first metric was the normalized mean square error 

(NMSE), defined as:
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NMSE(u, u) =
u − u 2

2

u 2
2 ,

where û is a reconstructed image volume and u is the fully sampled ground truth reference 

image volume. ⋅ 2
2 is the squared Euclidean norm, and the subtraction is performed entry-

wise. We computed NMSE values normalized over full image volumes rather than individual 

slices, since image-wise normalization can result in strong variations across a volume.

The second metric was peak signal-to-noise ratio (PSNR), which represents the ratio 

between the power of the maximum possible image intensity across a volume and the power 

of distorting noise and other errors:

PSNR(u, u) = 10 log10
max(u)2

MSE(u, u) .

Here MSE(û, u) is the mean square error between û and u defined as 1
n u − u 2

2
 and n is the 

number of entries in the target volume u. Higher values of PSNR (as opposed to lower 

values of NMSE) indicate a better reconstruction.

The third metric was the structural similarity index (SSIM) [36], which measures the 

similarity between two images by exploiting the inter-dependencies among nearby pixels. 

SSIM is inherently able to evaluate structural properties of the objects in an image and is 

computed at different image locations by using a sliding window. The resulting similarity 

between two image patches m and m is defined as

SSIM(m, m) =
2μmμm + c1 2σmm + c2

μm
2 + μm2 + c1 σm

2 + σm2 + c2
,

where μm and μm are the average pixel intensities in m and m, σm
2  and σm2  are their variances, 

σmm is the covariance between m and m and c1 and c2 are two variables to stabilize the 

division; c1 = (k1L)2 and c2 = (k2L)2. For the evaluation of the challenge, we chose a 

window size of 7 × 7, we set k1 = 0.01, k2 = 0.03, and defined L as the maximum value of 

the target volume, L = max(v).

We evaluated the performance on the complete test dataset as well as individual errors for 

the two image contrasts (with and without fat suppression. Participants could submit to each 

track leaderboard once a day before the submission deadline. Submissions were ranked by 

SSIM of R=8 undersampling. The challenge dataset was released on September 5th, 2019 

(see below for a description of the timeline), and the submission window was then open for 

14 days. The evaluation and the structure of the leaderboard for the challenge phase were 

identical to those for the test phase, but each team could only make one challenge 

submission, and challenge results were made available only after the submission window 
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was closed. A screenshot of the leaderboard for the multi-channel track of the completed 

challenge is shown in Figure 1.

2.4 | Challenge timeline and design of the evaluation

The challenge consisted of multiple phases according the following timeline:

• November 26, 2018: Release of the training and validation sections of the 

fastMRI dataset [25, 26].

• June 5, 2019: Official announcement of the challenge and release of the test set. 

The test set leaderboard was open for submission at this stage.

• September 5 to 19, 2019: Release of the challenge dataset and challenge 

submission window.

• September 19, 2019: Quantitative evaluation of the challenge submissions. We 

selected the top 4 submissions with highest SSIM on the challenge dataset from 

each track for the second phase of evaluation by a panel of radiologists. At this 

stage, we also asked all participants to provide an abstract for the 2019 Medical 

Imaging Meets NeurIPS workshop1.

• September 20 to October 10, 2019: Radiologist evaluation phase. We sent 5 

randomly selected cases (with and without fat suppression) from the top 4 

submissions in each track plus the corresponding ground truth reconstructions to 

our panel of seven radiologists from multiple institutions, including NYU 

Langone Health, Cleveland Clinic, University of California San Diego, 

University of Wisconsin and Stanford University. Each radiologist looked at a 

total of 1840 images. We asked the panel to rank the submissions in terms of the 

overall image quality to select one winner in each track. We then averaged the 

rankings of the radiologists to determine the winners. In addition, we asked the 

radiologists to score each submission on a 4-point scale (1 is best and 4 is worst) 

for the following criteria: Presence of artifacts, image sharpness, perceived 

contrast-to-noise ratio and diagnostic confidence. This rating was performed to 

obtain additional meta-information about the readers’ preferences, and to give 

the radiologists some suggestions on which to base their ranking. Subcriterion 

rankings were not directly used to determine the winners of the challenge. At the 

end of this stage, we notified the winners of the three tracks and shared their 

abstracts and identity with the organizers of the 2019 Medical Imaging Meets 

NeurIPS workshop.

• December 1, 2019: Publication of the challenge leaderboard with the results of 

the quantitative evaluation.

• December 14, 2019: Official announcement of the winners of the three tracks at 

the 2019 Medical Imaging Meets NeurIPS workshop, with oral presentation by 

the three winning teams.
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3 | RESULTS

3.1 | Overview of submissions

We received a total of 33 challenge submissions. 8 groups submitted to the multi-coil track, 

each with submissions for both the R=4 and the R=8 tracks. At the time of this writing, four 

of the submitting groups have published manuscripts on their approach, in addition to their 

NeurIPS abstracts: Sigma – Net from team holykspace [37], iRim from team AImsterdam 

[38], the pyramid convolutional RNN from team MSDC-RNN [39] and Adaptive CS-Net 

from Philips and LUMC [40, 41]. 17 groups submitted to the single coil R=4 track. 6 out of 

the 8 groups who submitted to the multi-coil track also submitted to the single-coil track. We 

did not require that the groups publicly disclose their names or affiliations at the submission 

stage. This was only required for the winners of each track. For the test-set leaderboard 

during the full duration of the challenge, we received more than 25 submissions for the 

multi-coil track and more than 70 submissions for the single coil track. All submissions used 

exclusively fastMRI data in the training of their approach for both challenge and public test 

submissions. We encouraged all participants to provide open source code together with their 

submissions, and 3 groups provided links to their open source code repositories.

3.2 | Analysis of results

The SSIM scores of the challenge submissions are shown in Figure 1. As expected, there is a 

substantial difference in overall SSIM values between the multi-coil and the single-coil 

tracks. The average SSIM of all submissions was 0.924, 0.895 and 0.707 for the multi-coil 

R=4, multi-coil R=8 and single-coil R=4 tracks, respectively. Even the lowest-ranking multi-

coil R=8 submission (SSIM=0.874) significantly outperformed the highest-ranking single-

coil R=4 submission (SSIM=0.754).

Figure 2 shows selected results from the Multi-Coil R=4 track, for one particular slice with 

and one slice without fat suppression. Both of these cases were obtained from 1.5T systems 

(Siemens Magnetom Aera). Corresponding difference images to the fully sampled ground 

truth are shown in the supporting material. The top 4 submissions that were evaluated by the 

radiologists are ordered from left to right based on the radiologists rankings, next to the 

ground truth on the far left. The average rank of the 7 radiologists is displayed on top of each 

submission. The SSIM to the ground truth for each particular slice is shown in the bottom 

left of the plots. The case in the top row shows a subtle subchondral osteophyte, which was 

not visible in the accelerated reconstructions. In addition to the submissions, we are 

including a combined parallel imaging and compressed sensing (PI-CS) reconstruction using 

total generalized variation [42] for reference. All data processing, including estimation of the 

coil sensitivities, was done exactly as described in the referenced paper. The reference 

results can be reproduced with the corresponding software package that is available online2. 

We optimized the regularization parameter of the reference reconstruction individually for 

each example such that SSIM was maximized. We have chosen this approach to ensure that 

the submissions are presented in context of the best possible reference reconstruction, and 

their superiority cannot simply be explained by a bad reference hyper-parameter setting. We 

would like to stress here that such an optimization requires the availability of the fully 

sampled ground truth, which was available to us but of course not to the participants. In 
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particular, for the results in Figure 2, we used a regularization parameter of 10−5 for the non 

fat-suppressed example, and 10−4 for the fat-suppressed example.

Figure 3 shows results for the Multi-Coil R=8 track. Corresponding difference images to the 

fully sampled ground truth are shown in the supporting material. The optimized 

regularization parameter for the PI-CS reference was 10−4 for both the non fat-suppressed 

and the fat-suppressed example. The case in the top row shows moderate artifact from a 

metal implant and was obtained on a 1.5 system (Siemens Magnetom Aera). None of the 

submissions was negatively affected by this irregularity. The case in the bottom row shows a 

meniscal tear. It was acquired on a 3T system (Siemens Magnetom Prisma). This pathology 

was not visible in the accelerated reconstructions.

Figure 4 shows results for the Single-Coil R=4 track. Both of these cases were obtained 

from 3T systems (Siemens Magnetom Skyra). For the single coil track, we performed a 

corresponding compresse sensing reconstruction without parallel imaging, again using a 

TGV regularizer. The optimized regularization parameters were 10−5 for the non fat-

suppressed example, and 10−7 for the fat-suppressed example. Corresponding difference 

images to the fully sampled ground truth are shown in the supporting material.

One of the open questions in machine learning for image reconstruction is the assessment of 

failure modes of trained models, and whether there are certain situations where a particular 

model will outright fail [43]. To contribute to the investigation of this phenomenon, we 

identified the cases of our challenge where the individual submissions performed worst. 

Figure 5 shows the results of the cases with lowest SSIM over the whole 3D image volume 

of the challenge dataset from each track. The chosen regularization parameters for the PI-CS 

reference were 10−4 for Multi-Coil 4x and 8x, and 10−7 for Single-Coil 4x. Corresponding 

difference images to the fully sampled ground truth are shown in the supporting material. 

Notably, all methods performed worst on the same case within each track. The two cases for 

the two multi-coil tracks were obtained from 1.5T systems (Siemens Magnetom Aera), the 

case for the single-coil-track was from a 3T system (Siemens Magnetom Skyra). While the 

SSIM values are substantially lower for these cases, the results of the different methods are 

remarkably consistent and no obvious negative outlier in terms of image quality can be 

identified. In addition, even on the cases where they performed worst, all methods still 

outperformed the PI-CS reference.

Table 2 shows the average radiologist rankings as well as the overall SSIM, NMSE and 

PSNR values for the full challenge dataset for the top 4 submissions of each track. Figure 6 

shows corresponding scatterplots after normalization of the scores (1 is best). In the case of 

multi-coil R=8, the highest ranked submission was also the one that had the highest SSIM, 

NMSE and PSNR values. For single-coil R=4, only SSIM showed a similar trend as the 

radiologists scores, while the other two metrics showed almost opposite trends. For the 

multi-coil R=4 track, the results are less conclusive. The top 4 submissions were very close 

together with all metrics. The differences in SSIM between the submissions were less than 

1% in this track.
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Additional insight into the radiologists’ ratings is provided by Figure 7, which shows the 

individual rankings by the 7 radiologists for the top 4 submissions in all three submission 

tracks. For multi-coil R=8 and single-coil R=4 tracks, the radiologists had a strong 

preference for a single submission. The highest-rated submission in each of these tracks was 

ranked first by 5 radiologists, and ranked second by the remaining 2 radiologists. The results 

are substantially less consistent for the multi-coil R=4 track. The two highest-rated 

submissions each were also ranked worst by one reader. The lowest-rated submission was 

actually ranked best by 3 out of 7 radiologists, and ranked worst by the remaining 4.

Table 3 shows the average scores for the individual categories that the radiologists were 

asked to rate for the top 4 submissions in each track: Artifacts, sharpness, perceived 

contrast-to-noise ratio and and diagnostic confidence, using a 4 point scale, where 1 is best 

and 4 is worst. These categories were intended as guidelines for radiologist ranking, not as 

strict criteria. However, by and large the radiologists chose to rank the submissions based on 

the sum of their scores in the different categories. For the multi-coil R=8 track, all 

radiologists ranked the submissions strictly based on their scores. 5 out of 7 radiologists for 

the multi-coil R=4 track and 6 out of 7 radiologists for the single-coil R=4 track ranked 

submissions strictly based on their scores. Even for the cases where the ranking deviated 

from the scores, the top-ranked submission always had the best scores as well.

4 | DISCUSSION

4.1 | Limits of the challenge design

The goal of our experimental design was that it is representative of clinical performance of 

the submissions. However, since this was the first time this challenge was held, we wanted to 

keep the evaluation as simple as possible at the same time. One of our most consequential 

decisions in terms of challenge design was to not generate any systematic differences 

between training, validation, test and challenge sets. All of these datasets were randomly 

selected from the same superset of data, and all consisted of coronal knee data from a 

limited set of MR scanners from a single vendor. This design substantially limits insight into 

robustness and generalization. It is possible to subsequently perform a more targeted 

analysis by, for example, only using a subset of the training data from one of the two 

contrasts or one field strength (1.5T or 3T) for training and validation, and the other set of 

data for testing. Given the importance of multi-coil data in the overall performance of the 

submissions, the challenge also didn’t include substantial variations of receive coil 

geometries. All coil arrays were standard knee coil configurations from a single vendor, with 

the same number of receive channels (15).

Compressed sensing [31] relies on incoherence to remove aliasing artifacts. It is still an open 

question to what degree certain sampling patterns are beneficial for machine learning 

methods [44]. We chose one-dimensional pseudo-random sampling in the phase encoding 

direction for simplicity. We did not consider recent developments in sampling pattern design 

[45], patterns that are specifically designed to combine parallel imaging and compressed 

sensing [46], or approaches that use machine learning directly for the optimization of the 

sampling pattern [47, 48]. We also did not specifically consider how easily these particular 

patterns can be implemented prospectively in terms of scanner hardware and pulse-sequence 
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constraints. Therefore, our challenge does not allow to draw conclusions with respect to 

these questions.

In addition to maintaining homogeneity of the data on a technical level, we also decided not 

to perform curation of the data in terms of anatomical or pathological variations. It would be 

interesting to separate pathological from non-pathological cases and use only one of these 

individual subsets for training and validation, and the second subset for testing. Aside from 

pathology, similar experiments could be performed by grouping subsets of data based on 

age, height, weight, body mass index or gender. Experiments like these should be considered 

for future challenges in the area of machine learning for MR image reconstruction.

Another substantial limitation of our design was that in the radiologists evaluation, we only 

asked the readers to rate image submissions by image quality on a subjective level. 

Therefore, the evaluation is not unbiased regarding personal preferences in image quality. 

Ultimately, the goal of medical imaging is to provide diagnostic information to a referring 

physician. In the example of the meniscal tear that is shown in Figure 3, the relevant 

information content of the image is whether the radiologist correctly identifies this tear and 

makes the recommendation for the correct follow up procedure (for example, surgery vs no 

surgery). Therefore, a more objective evaluation would have been to ask our readers to 

provide a diagnostic reading in the same way they would do it in their clinical practice. Such 

an evaluation can then be done blinded for each individual submission as well as for the 

fully sampled ground truth reconstruction. The measure of success for a certain 

reconstruction method is then to what degree is the obtained diagnosis consistent with the 

diagnosis from the ground truth [49]. However, since we relied on voluntary radiologists 

with limited time, such an evaluation was outside the scope of our challenge.

4.2 | Analysis of the submissions and results

The quantitative SSIM values (Figure 1) provide several interesting insights. First, the 

differences in SSIM values between submissions from the top teams are almost negligible. 

In each of the three tracks, the difference between the first and the fourth-ranked entry was 

less than 1%. For the multi-coil R=4 track, the radiologists’ scoring showed a similar trend. 

Both the top two and the bottom two submissions were tied in the ranking. However, since 

all participants decided to use only NYU-provided training data, no conclusions can be 

drawn about potential improvements by using additional training data, either by expanding 

the dataset with additional knee data, or by using synthetic data and transfer learning. When 

it comes to the visual impression of the reconstructed images, we found it remarkable to 

what degree and how constantly all submissions outperformed a conventional parallel 

imaging and compressed sensing reconstruction (Figures 2 to 5).

It is often pointed out in the medical imaging community that quantitative metrics like 

NMSE, PSNR and SSIM are poor metrics to evaluate the quality of medical images. In our 

challenge, juxtaposition of the radiologists’ scores with SSIM values (Figure 6) shows that 

for the two tracks where the radiologists picked a clear winner (multi-coil R=8 and single-

coil R=4), the winner was also the submission with the highest SSIM value. NMSE and 

PSNR were aligned with this trend for multi-coil R=8, but for single-coil R=4, NMSE 

actually resulted in the opposite ranking order from that selected by the radiologists. While 
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none of the metrics in any track resulted in the same rank order as the radiologists, it is 

important to remember that the quantitative values were very closely spaced. It is interesting 

that for the track where the SSIM values of the top 4 submissions were essentially identical 

(multi-coil R=4), the individual radiologists also had substantial disagreement in their 

preference (Figure 7). The lowest-ranked submission was actually ranked best by 3 out of 7 

radiologists, and ranked worst by the remaining 4. This indicates that for the multi-coil R=4 

track, the submissions were most likely identical in terms of image quality, as correctly 

predicted by SSIM, and the ranking was determined by individual preferences for image 

quality by the radiologists. This means that in our challenge, SSIM actually did provide 

estimates of image quality that were consistent with the preferences of radiologists. Our 

results also suggest that radiologists’ evaluations must be carried out at the level of 

diagnostic interpretation to allow their domain knowledge to provide substantial additional 

information.

While we knew that there would be a difference in performance between the single-coil and 

the multi-coil tracks, we were surprised by the degree of difference actually observed. From 

a linear algebraic point of view, the underlying problems in the different tracks are 

substantially different. The undersampled single-coil reconstruction problem is an 

undetermined system in which data acquisition violates the Shannon/Nyquist sampling 

theorem, and a solution can only be obtained by introducing prior knowledge and 

performing incoherent sampling, on the model of compressed sensing [31]. By contrast, for 

the multi-coil problem, even at R=8 acceleration, the number of receive channels (15) is still 

higher than the undersampling factor. The underlying problem involves an overdetermined 

system. However, the problem is ill-posed because the individual coil elements do not 

provide independent information, and prior knowledge is also needed to constrain the 

solution. While this may raise the question of whether fundamentally different approaches 

should be developed for the two scenarios, the results of the challenge indicate otherwise. 

Six out of eight participants in the multi-coil track also submitted to the single-coil track. 

Team holykspace [37] and team AM used a dedicated approach for multi-coil data. Team 

AM explicitly estimated coil sensitivity maps using Espirit [50] and used a nullspace 

constraint on the fully-sampled center of k-space that is used to estimate the coil 

sensitivities. Team holykspace learned the implicit weighting of the individual coils. In 

contrast, the remaining groups used essentially the same core method for both tracks, and 

only fine-tuned and re-trained for the different tracks. Also, the top three submissions in the 

single-coil track were from the same groups that submitted to the multi-coil track. As 

expected, the number of submissions for the single-coil track was substantially higher than 

for the multi-coil track, most likely due to the shallower learning curve and greater ease of 

use of the single-coil data. However, the results from the challenge show that in order to 

achieve the best possible image quality for accelerated MR scans, it is essential to take the 

multi-channel nature of MR acquisitions into account. Therefore, we plan to limit ourselves 

to multi-coil tracks for future iterations of our challenge.

The inability to correctly identify subtle pathology, even in the multi-coil R=4 results in 

Figure 2, must be considered in the light of clinical adoption. However, loss of low-contrast 

fine details is not necessarily a particular culprit of the supervised CNN learning-based 

reconstruction methods that formed the finalists in our challenge. The pathology in question 
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was also lost in the reference PI-CS reconstruction, and it is entirely possible that it would 

have been lost with any reconstruction approach at this level of acceleration. On the other 

hand, a common fear about machine learning reconstruction methods is that they react very 

unpredictably and unstably for cases that show severe abnormalities or deviations from 

normal anatomy. In our challenge, none of submissions showed any kind of deterioration for 

the case with the severe image artifact due to the metallic implant in the Multi-Coil R=8 

track (Figure 3). This result is also reinforced with the worst-case results (Figure 5), which 

also didn’t show severe outliers in terms of image quality, and all submissions still 

outperformed the parallel imaging compressed sensing reference. It is notable that the worst-

case results were simply cases where the baseline ground truth SNR was lower and it can be 

expected that image quality is lower, and not cases that show a particular anatomical or 

pathological variation or a deviation in image contrast.. Separate dedicated studies will be 

required to investigate this effect, but this result is still encouraging from the point of view of 

robustness for clinical translation. Another common fear about machine learning 

reconstruction is that when the acceleration is pushed substantially, the CNNs create 

hallucinations of artificial structures that could be falsely identified as pathology. The results 

from our Multi-Coil R=8 track show that this was not the case for the submissions to our 

challenge. However, none of the finalists used an architecture that included a generative 

adversarial model [51], where the potential for such an error is generally considered highest.

All submissions used a supervised learning approach with deep Neural Networks. While it is 

tempting to conclude that a similar paradigm shift towards deep learning has occurred for 

MR image reconstruction as in the ImageNet challenge [22] for computer vision, in our 

opinion the results of our challenge do not allow us to draw that conclusion. First, the total 

number of submissions for our challenge was substantially smaller than for ILSVRC, and it 

was only the first time the challenge was held. Second, as described above, the design of the 

challenge essentially guaranteed that (supervised) machine learning methods would have 

strong performance on the challenge dataset. Third, in contrast to purely data-driven end-to-

end learning in the true spirit of deep learning [18], the winners of all three tracks chose 

approaches that used a combination of a learned prior and a data-fidelity term that encodes 

information about the MR physics of the acquisition, in line with approaches that can be 

seen as neural network extensions of classic iterative image reconstruction methods [52, 10, 

13, 53, 14, 54, 55]. Therefore, the submissions only covered a rather narrow part of the 

whole spectrum of MR image reconstruction methods, and a large number of alternative 

approaches both learning and non-learning based, exist. Finally, even though radiologist 

ratings were ultimately the deciding factor that determined the winners, and while they did 

have the fully sampled ground truth available as a reference, their ratings were essentially 

based on subjective impression of image quality and not on diagnostic equivalency. The 

translation of machine learning for reconstruction of accelerated MRI scans in routine 

clinical practice remains an open question for future research and development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
a) Online leaderboard at the completion of the challenge (December 2019). Three 

quantitative metrics are provided for R=4 and R=8 for both image contrasts on the webpage, 

along with a selection of reconstructed images. A short description of the reconstruction 

approach used, together with links to a corresponding paper or code repository, are also 

shown if the submitting groups provide this information. b) SSIM scores of the challenge 

submissions for each track. As expected, there is a substantial difference in overall SSIM 

values between the multi-coil and the single-coil tracks.
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FIGURE 2. 
Multi-Coil R=4 track results: Selected results from the top 4 submissions in each track, for 

both image contrasts. The submissions are ordered from left to right based on the average of 

radiologists’ rankings. A combined parallel imaging and compressed sensing reconstruction 

using Total Generalized Variation (PI-CS) is shown for reference. SSIM to the ground truth 

for this particular slice is displayed in the bottom-left corner of each image. First row: 

Results for one slice from an acquisition without fat suppression. This case shows subtle 

pathology in the ROI indicated by a white rectangle in the ground truth image. Second row: 

One slice from an acquisition with fat suppression. Third row: Zoomed view of the ROI that 

shows a subchondral osteophyte (highlighted by a white arrow in the ground truth 

reconstruction). This pathology is not visible in any of the accelerated reconstructions.
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FIGURE 3. 
Multi-Coil R=8 track results: Selected results from the top 4 submissions in each track. The 

submissions are ordered from left to right based on the average of radiologists’ rankings. A 

combined parallel imaging and compressed sensing reconstruction using Total Generalized 

Variation (PI-CS) is shown for reference. SSIM to the ground truth for this particular slice is 

displayed in the bottom-left corner of each image. First row: Results for one slice from an 

acquisition without fat suppression. This case shows shows moderate artifact from a metal 

implant. Second row: One slice from an acquisition with fat suppression. This case shows 

shows a meniscal tear in the ROI indicated by a white rectangle in the ground truth image. 

Third row: Zoomed view of the ROI that shows a meniscal tear (highlighted by a white 

arrow in the ground truth reconstruction). This pathology is not well seen in any of the 

accelerated reconstructions.
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FIGURE 4. 
Single-Coil R=4 track results: Selected results from the top 4 submissions for each track. 

SSIM to the ground truth for this particular slice is displayed in the bottom-left corner of 

each image. A combined parallel imaging and compressed sensing reconstruction using 

Total Generalized Variation (PI-CS) is shown for reference.
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FIGURE 5. 
Results from the case with the lowest averaged SSIM over the whole image volume from the 

top 4 submissions for each track. A combined parallel imaging and compressed sensing 

reconstruction using Total Generalized Variation (PI-CS) is shown for reference. Notably, all 

methods performed worst on the same case within each track, and all methods outperformed 

the PI-CS reference. SSIM to the ground truth for the shown slice is displayed in the bottom-

left corner of each image.
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FIGURE 6. 
Scatterplots of the quantitative scores vs the average radiologists’ score based on ranking (1 

is best) for the top 4 submissions in all three submission tracks. NMSE, PSNR, and SSIM 

scores are normalized so that the best score corresponds to a value of 1 for convenient 

visualization. For multi-coil R=8, the highest ranked submission was also the one that had 

the highest SSIM, NMSE and PSNR values. For single-coil R=4, only SSIM showed a 

similar trend as the radiologists scores, while the other two metrics showed almost opposite 

trends. For the multi-coil R=4 track, the top 4 submissions were very close together with all 

metrics. Therefore, the results are less conclusive.
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FIGURE 7. 
Individual rankings by the 7 radiologists for the top 4 submissions in all three submission 

tracks. The ranks from 1 to 4 are color coded, and the number of radiologists who scored 

each submission at a certain rank is shown in the plot. For multi-coil R=8 and single-coil 

R=4 tracks, the radiologists had a strong preference for a single submission. The results are 

less consistent for the multi-coil R=4 track.
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TABLE 1

Overview of the dataset that was provided for the fastMRI challenge.

Cases Slices

Multi-coil Single-coil Multi-coil Single-coil

training 973 973 34,742 34,742

validation 199 199 7,135 7,135

test 118 108 4,092 3,903

challenge 104 92 3,810 3,305
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TABLE 2

Average radiologist rankings and corresponding SSIM, NMSE and PSNR scores for the full challenge dataset 

for the top 4 submissions of the three tracks.

Multi-Coil R=4

Team name Rank Avg radiologist rank SSIM NMSE PSNR

Philips & LUMC 1(tie) 2.285 0.927 0.005 39.907

MSDC-RNN 1(tie) 2.285 0.927 0.005 39.740

holykspace 3(tie) 2.714 0.927 0.005 39.715

AM 3(tie) 2.714 0.928 0.005 39.807

Multi-Coil R=8

Team name Rank Avg radiologist rank SSIM NMSE PSNR

Philips & LUMC 1 1.286 0.901 0.0086 37.437

holykspace 2 2.571 0.899 0.0092 37.009

AM 3 3.000 0.901 0.0089 37.173

AImsterdam 4 3.143 0.898 0.0096 36.816

Single-Coil R=4

Team name Rank Avg radiologist rank SSIM NMSE PSNR

AImsterdam 1 1.286 0.754 0.031 32.549

JG 2 2.571 0.750 0.031 32.476

Philips & LUMC 3 2.714 0.751 0.030 32.666

Samoyed 4 3.428 0.751 0.029 32.761
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TABLE 3

Average scores for the individual categories that the 7 radiologists were asked to rate, for the top 4 

submissions from each track. Ratings followed a 4 point scale, where 1 is best and 4 is worst. In the Multi-Coil 

R=4 track, 5 out of 7 radiologists based their rankings strictly on their scores for this track. For the remaining 

2 radiologists, the top-ranked submission also had the best overall score. In the Multi-Coil R=8 track, all 

radiologists based their rankings strictly on their scores. In the Single-Coil R=4 track, 6 out of 7 radiologists 

based their rankings strictly on their scores. For the remaining radiologist, the top-ranked submission also had 

the best overall score.

Multi-Coil R=4

Team name Artifacts Sharpness Contrast to noise Diagnostic Confidence

Philips & LUMC 2.714 2.286 2.286 2.000

MSDC-RNN 2.571 2.286 2.429 1.857

holykspace 2.000 3.000 2.714 1.857

AM 2.000 3.000 2.000 2.000

Multi-Coil R=8

Team name Artifacts Sharpness Contrast to noise Diagnostic Confidence

Philips & LUMC 1.714 2.286 2.286 2.286

holykspace 2.143 3.143 2.286 2.857

AM 1.857 3.286 2.429 3.143

AImsterdam 2.714 2.857 3.000 3.143

Single-Coil R=4

Team name Artifacts Sharpness Contrast to noise Diagnostic Confidence

AImsterdam 2.429 2.286 2.143 2.286

JG 3.000 2.714 2.429 2.571

Philips & LUMC 2.714 3.000 2.714 2.857

Samoyed 3.143 3.286 3.000 3.286
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