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Objectives:  The purpose of this study was to automatically diagnose odontogenic cysts and 
tumors of both jaws on panoramic radiographs using deep learning. We proposed a novel 
framework of deep convolution neural network (CNN) with data augmentation for detection 
and classification of the multiple diseases.
Methods:  We developed a deep CNN modified from YOLOv3 for detecting and classifying 
odontogenic cysts and tumors of both jaws. Our data set of 1282 panoramic radiographs 
comprised 350 dentigerous cysts (DCs), 302 periapical cysts (PCs), 300 odontogenic kerato-
cysts (OKCs), 230 ameloblastomas (ABs), and 100 normal jaws with no disease. In addition, 
the number of radiographs was augmented 12-fold by flip, rotation, and intensity changes. 
We evaluated the classification performance of the developed CNN by calculating sensitivity, 
specificity, accuracy, and area under the curve (AUC) for diseases of both jaws.
Results:  The overall classification performance for the diseases improved from 78.2% sensi-
tivity, 93.9% specificity,91.3% accuracy, and 0.86 AUC using the CNN with unaugmented data 
set to 88.9% sensitivity, 97.2% specificity, 95.6% accuracy, and 0.94 AUC using the CNN with 
augmented data set. CNN using augmented data set had the following sensitivities, specifici-
ties, accuracies, and AUCs: 91.4%, 99.2%, 97.8%, and 0.96 for DCs, 82.8%, 99.2%, 96.2%, and 
0.92 for PCs, 98.4%,92.3%,94.0%, and 0.97 for OKCs, 71.7%, 100%, 94.3%, and 0.86 for ABs, 
and 100.0%, 95.1%, 96.0%, and 0.97 for normal jaws, respectively.
Conclusion:  The CNN method we developed for automatically diagnosing odontogenic cysts 
and tumors of both jaws on panoramic radiographs using data augmentation showed high 
sensitivity, specificity, accuracy, and AUC despite the limited number of panoramic images 
involved.
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Introduction

Computer-aided diagnosis (CAD) has been utilized 
to identify cavities and periodontitis lesions as well as 
maxillary sinusitis, osteoporosis, and other patholo-
gies in the oral and maxillofacial field.1 It can provide 
dental professionals with a valuable second opinion by 
detecting and classifying pathological changes automat-
ically. Conventional CAD systems require extraction of 
the most significant features before training to success-
fully recognize or classify images, but feature extraction 
is a difficult and time-consuming task. A recent 
method based on deep learning, a subset of machine 
learning, can overcome this limitation by automatically 
extracting relevant features during training, and uses 
the whole image directly without best-feature represen-
tation.2–4 Deep learning-based methods have been used 
extensively to solve complex problems in radiology.5 
A deep convolutional neural network (CNN), a type 
of deep learning, is the most commonly used method 
for organ segmentation6,7 as well as classification8,9 and 
detection10,11 of organs and related diseases in medical 
imaging. Various attempts have been made to determine 
specific characteristics of target regions intended for 
detection and classification.12 Research into the appli-
cations of CAD using deep CNNs has been expanding 
rapidly, and is expected to produce more accurate diag-
noses at faster rates.1

However, application of deep learning in the field of 
oral and maxillofacial imaging has been limited to detec-
tion of landmarks in cephalograms,13 detection and clas-
sification of teeth,14–16 diagnosis of cavities,17–21 diagnosis 
of periodontitis,22 and detection of maxillary sinusitis.23 
One study aimed to achieve automatic segmentation 
of all teeth,14 while other research used deep learning 
to classify the root morphology of the mandibular first 
molar,21 convert a two-dimensional panoramic image to 
a three-dimensional one,24 and diagnose osteoporosis in 
panoramic radiographs.25,26

To date, few studies have used deep learning to 
detect and classify radiolucent lesions in the jaw. A deep 
learning object detection technique was used for auto-
matic detection and classification of radiolucent lesions 
in the mandible,27 and for differential diagnosis between 
ameloblastomas and odontogenic keratocysts of the 
jaw on panoramic radiographs.28 Precise pre-operative 
diagnosis of these tumors and cysts of the jaw can help 
oral and maxillofacial surgeons plan appropriate treat-
ment, but this is more difficult in the maxilla than in 
the mandible because of superimposition of the normal 
structures in the maxilla.29 Nonetheless, no study to 
date has examined the functionality of deep CNN for 
automatic diagnosis of odontogenic cysts and tumors 
occurring in both jaws using panoramic radiographs. 
Therefore, the purpose of this study was to automati-
cally diagnose odontogenic cysts and tumors of both 
jaws with the highest rate of occurrence in the oral and 
maxillofacial regions. We proposed a novel framework 

of deep CNN with data augmentation for detection and 
classification of the multiple diseases.

Methods and materials

Data preparation and augmentation of panoramic 
radiographs
We prepared a total of 1282 panoramic radiographs of 
patients who visited Seoul National University Dental 
Hospital from 1999 to 2017. These radiographs included 
350 dentigerous cysts (273 in the mandible and 77 in the 
maxilla), 302 periapical cysts (123 in the mandible and 
179 in the maxilla), 300 odontogenic keratocysts (266 in 
the mandible and 34 in the maxilla), and 230 ameloblas-
tomas (222 in the mandible and 8 in the maxilla). As a 
control group, we also prepared 100 normal panoramic 
radiographs. Panoramic radiographs were obtained 
from adult patients without mixed dentition, and only 
one radiograph was used per patient. The study was 
approved by the Institutional Review Board (IRB) of 
Seoul National University Dental Hospital (ERI18001).

The cysts and tumors were classified finally based on 
the histopathological diagnosis from biopsies in addi-
tion to clinical diagnosis, and we selected panoramic 
radiographs with the same radiologic diagnosis by two 
radiologists with more than 15 years of experience. In 
other words, we used only the panoramic radiographs 
with identical radiological and histopathological diag-
noses. Panoramic radiographs had a resolution of 1976 
× 976 pixels, and each radiograph was labeled manu-
ally by drawing rectangular bounding boxes around 
the lesions using ImageJ30 for training. The bounding 
boxes included radiographic characteristics of each 
disease such as cortical margin and internal radiolucent 
lesions. Average sizes of the annotated lesions were 178 
× 196 pixels for dentigerous cysts, 186 × 170 pixels for 
periapical cysts, 297 × 304 pixels for odontogenic kera-
tocysts, and 386 × 351 pixels for ameloblastomas. We 
applied a contrast-limited adaptive histogram equaliza-
tion (CLAHE) technique to the images to expand the 
high values and compress the values in the dark layer 
more effectively.28

Because we had a limited number of panoramic 
images, we performed data augmentation to increase 
the amount of training data for deep learning. Using 
MATLAB (MathWorks, Natick, MA), images were 
flipped horizontally, rotated by 1° and −1°, and their 
grayscale was transformed by γ correction (γ = 0.8, 1, 
1.2). As a result, the number of images was increased 
12-fold. Images were randomly separated into a training 
data set (80%) and a test data set (20%) before data 
augmentation. The training data set for dentigerous 
cyst, periapical cyst, odontogenic keratocyst, and amelo-
blastoma comprised 280, 242, 240 and 184 panoramic 
images, respectively, and test data set, 70, 60, 60, and 46, 
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respectively. The training data set was used to train the 
CNN, and the test data set was used to evaluate the final 
trained model.

A deep CNN model for detection and classification of 
multiple diseases
We developed a modified CNN from the YOLOv3 
based on the Darknet-53 network for detecting and 
classifying multiple diseases on panoramic radiographs 
(Figure 1). YOLOv3 predicted bounding boxes at three 
different scales using features from scales extracted 
using a similar concept to feature pyramid networks 

(FPNs).31 In the last of  these layers, the CNN replaced 
the softmax function with independent logistic classi-
fiers to calculate the objectness of  the input belonging 
to a specific class.32 The CNN predicted the bounding 
box, confidence (objectness), and class predictions 
(Figure 1). Each bounding box had a confidence value 
calculated from the logistic regression. We modified 
the input resolution from 320 × 320 pixels to 608 × 
608 pixels, which made it possible to predict lesions of 
smaller pixel sizes. The location of  skip connection was 
also changed from the convolution layers of  76 x 76 x 
256 to 76 x 76 x 256 to those of  152 × 152 × 128 to 152 × 
152 × 128 in order to use four times upsampling instead 
of  two times for reducing the losses of  spatial informa-
tion (Figure 2). The network was trained on a total of 
8000 epochs with a 64-batch size and one- or two-stride 
size by using pre-prepared augmented images. An adap-
tive moment estimation solver was used to optimize the 
network with a learning rate of  0.001 and momentum 
of 0.9.

After training, the network outputted bounding 
boxes and the confidence that the bounding box enclosed 
a lesion for input panoramic images. Intersection over 
union (IoU) score, ratio of the area of intersection 
and area of union of the predicted bounding box and 
ground truth bounding box, was computed in the final 
set of outputs. We used 0.5 as the IoU threshold value 
to obtain the average precision (AP) score for disease 
detection (Figure 1). The network could detect one or 
more bounding boxes of possible classes for one lesion 
at the input panoramic image. If  multiple bounding 
boxes of the same class were generated for one lesion, 
only one bounding box among the boxes was predicted 
for the class by non-maximum suppression. Finally, 
one bounding box of the highest confidence among the 
multiple predictions was adopted for disease classifica-
tion (Figure 1).

Figure 1  A framework of the deep CNN for detection and classifica-
tion of multiple diseases. CNN, convolutional neural network.

Figure 2  A CNN architecture modified from YOLOv3 with the modified layers in Bold. CNN, convolutional neural network.
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Evaluation of detection and classification performance 
of the deep CNN model
We evaluated the performance of the developed model 
using a test data set not used for training. For detec-
tion performance, we calculated recall (sensitivity) (TP/
(FN +TP)), precision (positive predictive value) (TP/
(FP +TP)), F1-score (2 × precision×recall/(precision 
+ recall)), and average precision (AP) values, which 
are common parameters in object detection.33,34 The 
precision-recall curve (PRC) was also computed from 
the model’s detection outputby varying the confidence 
threshold that determined what was counted as a model-
predicted positive detection.33 AP was calculated as the 
average value of precision across all recall values. We 
calculated a confusion matrix to evaluate the classifica-
tion performance of the CNN for diseases.35 For classi-
fication performance, we calculated sensitivity (TP/(FN 
+TP)),specificity (TN/(TN +FP)), and accuracy ((TN + 
TP)/(TN + TP + FN + FP)) from the confusion matrix. 
The receiver operating characteristic curve (ROC) was 
also computed from the model’s classification output by 
varying the confidence threshold for each disease.36 We 
calculated the value of the area under the ROC curve 
(AUC).

Results

We measured AP, precision, recall, and F1-score values 
to evaluate model performance for lesion detection with 

or without data augmentation (Table 1). AP values for 
dentigerous cysts (DCs), periapical cysts (PCs), odon-
togenic keratocysts (OKCs), and ameloblastoma (ABs) 
using non-augmented datasetwere 0.91, 0.79, 0.67, and 
0.78, respectively, compared to 0.84, 0.89, 0.91, and 0.88, 
for augmented data set, respectively (Table 1). Mean AP, 
precision, recall, and F1-score for DCs, PCs, OKCs, and 
ABs were 0.79, 0.78, 0.74, and 0.76 for non-augmented 
data set and 0.88, 0.87, 0.83, and 0.85 for augmented 
data set, respectively (Table 1). The precision-recall (PR) 
curves for detecting lesions are shown in Figure 3.

Table 2 shows the confusion matrix for classifying 
DCs, PCs, OKCs, ABs, and normal jaws using the 
developed CNN with or without data augmentation. 
To assess the classification performance of  the CNN 
for absence of  diseases, panoramic radiographs with 
no diseases were designated normal. Table 3 summa-
rizes the classification results of  sensitivity, sensitivity, 
accuracy, and AUC for each disease. Figure 4 shows 
the correctly and falsely classified lesions with and 
without data set augmentation. The receiver operating 
characteristic (ROC) curves for classifying multiple 
diseases are shown in Figure  5. For DCs, lesions 
correctly classified by the CNN had a crown, radio-
lucent lesion, and surrounding cortical bony margin 
both without (Figure  4 (a)) and with data augmen-
tation (Figure  4(e)). Sensitivity, specificity, accu-
racy, and AUC for DCs without augmentation were 
87.1%, 94.7%, 94.1% and 0.91, respectively, compared 

Table 1  AP, mean AP, precision (positive predictive value), recall (sensitivity), and F1-score for detecting DC, PC, OKC, and AB of the devel-
oped CNN with or without data set augmentation

AP

Mean AP Precision Recall F1-scoreDC PC OKC AB

With augmentation 0.84 0.89 0.91 0.88 0.88 ± 0.04 0.87 0.83 0.85

Without augmentation 0.91 0.79 0.67 0.78 0.79 ± 0.12 0.78 0.74 0.76

AB, ameloblastoma; AP, average precision; DC, dentigerous cyst; OKC, odontogenic keratocyst; PC, periapical cyst.

Figure 3  PR curves from automatic detection of dentigerous cysts, periapical cysts, odontogenic keratocysts, and ameloblastomas without (a) 
and with (b) data set augmentation. AB, ameloblastoma; DCs, dentigerous cysts; OKCs, odontogenic keratocysts; PCs, periapical cysts.
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to 91.4%, 99.2%, 97.8%, and 0.96, respectively, with 
augmentation. For PCs, correctly classified lesions 
had a root apex, radiolucent lesion, and surrounding 
cortical bony lesion both without (Figure  4 (b)) 
and with data augmentation (Figure  4 (f)). Sensi-
tivity, specificity, accuracy, and AUC for PCs were 
71.9%, 95.0%, 91.2%, and 0.84, respectively, without 
augmentation, and 82.8%, 99.2%, 96.2%, and 0.92, 
respectively, with augmentation. For OKCs, correctly 
classified lesions were unilocular radiolucent cystic 
lesions associated with the third molar on the mandible 
without augmentation (Figure 4 (c)) and large radio-
lucent cystic lesions extending from the border of  the 
maxilla with augmentation (Figure  4(g)). Sensitivity, 
specificity, accuracy, and AUC for OKCs without 
augmentation were 78.9%, 89.4%, 87.8%, and 0.83, 
respectively, compared to 98.4%, 92.3%, 94.0%, and 
0.97, respectively, with augmentation. ABs presented 
as large unilocular lesions on the maxilla’s anterior side 
without augmentation (Figure 4(d)), and radiolucent 
lesions including the crown of  the third molar with 
teeth root resorption on the mandible with augmen-
tation (Figure  4(h)). Sensitivity, specificity, accuracy, 
and AUC of  the CNN for ABs was 54.3%, 99.1%, 
90.3%, and 0.77, respectively, without augmentation, 
and 71.7%, 100%, 94.3%, and 0.86, respectively, with 
augmentation. Lastly, sensitivity, specificity, accu-
racy, and AUC for normal jaws was 99.0%, 91.1%, 
92.9% and 0.94, respectively, without augmentation, 
and 100%, 95.1%, 96.0% and 0.97, respectively, with 
augmentation. Mean sensitivity, specificity, accuracy, 

and AUC for all diseases were 78.2%, 93.9%,91.3%, 
and 0.86, respectively, without augmentation, and 
88.9%, 97.2%,95.6%, and 0.94, respectively, with 
augmentation.

Discussion

A deep CNN, a type of deep learning model, automat-
ically and adaptively learns spatial hierarchies of image 
features by using multiple building blocks of convolu-
tion layers, pooling layers, and fully connected layers.2–4 
Various imaging modalities, such as periapical, ceph-
alometric, panoramic radiographs, as well as CBCT 

Table 2  Confusion matrix for classifying DC, PC, OKC, AB, and 
normal jaws (Normal) by the developed CNN, with or without data 
set augmentation

Input

Without augmentation With augmentation

DC PC OKC AB Normal DC PC OKC AB Normal

DC 0.87 0.05 0.03 0.00 0.05 0.92 0.03 0.03 0.00 0.03

PC 0.06 0.72 0.08 0.00 0.14 0.03 0.84 0.04 0.00 0.10

OKC 0.06 0.06 0.78 0.03 0.06 0.00 0.00 0.98 0.00 0.02

AB 0.05 0.05 0.27 0.55 0.09 0.00 0.00 0.22 0.72 0.06

Normal 0.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00 0.00 1.00

Table 3  Sensitivity, specificity, accuracy, and AUC for classifying DC, PC, OKC, AB, and normal jaws (Normal) by the developed CNN, with 
or without data set augmentation

Without augmentation With augmentation

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) AUC

Sensitivity
(%)

Specificity
(%)

Accuracy
(%) AUC

DC 87.1 94.7 94.1 0.91 91.4 99.2 97.8 0.96

PC 71.9 95.0 91.2 0.84 82.8 99.2 96.2 0.92

OKC 78.9 89.4 87.8 0.83 98.4 92.3 94.0 0.97

AB 54.3 99.1 90.3 0.77 71.7 100.0 94.3 0.86

Normal 99.0 91.1 92.9 0.94 100.0 95.1 96.0 0.97

Mean 78.2 ± 16.8 93.9 ± 3.8 91.3 ± 2.4 0.86 ± 0.07 88.9 ± 11.8 97.2 ± 3.3 95.6 ± 1.5 0.94 ± 0.05

AUC, area under the curve.

Figure 4  Lesions annotated by the radiologist (solid line) and 
correctly classified by the developed CNN model (dotted line) as 
adentigerous cyst (a), periapical cyst (b), odontogenic keratocyst (c), 
and ameloblastoma (d) without data set augmentation. A correctly 
classified (solid line) dentigerous cyst (e), periapical cyst (f), odonto-
genic keratocyst (g), and ameloblastoma (h) with data set augmenta-
tion, and a falsely classified (dotted line) odontogenic keratocyst (e), 
none (f), dentigerous cyst (g), and dentigerous cyst (h) without data set 
augmentation. CNN, convolutional neural network.
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have been used to detect and classify diseases in CAD 
studies using a deep CNN. One study involved segmen-
tation of teeth on panoramic images.16 Another evalu-
ated the root morphology of the mandibular first molar 
on panoramic radiography.21 Sinusitis was detected by 
learning the form of the maxillary sinus onpanoramic 
images.23 Osteoporosis has also been diagnosed by 
evaluating cortical erosion of the mandibular inferior 
cortex from panoramic images.25 However, there are few 
CNN-based CAD studies of radiolucent jaw lesions on 
panoramic radiographs.

We developed a modified CNN from YOLOv3 for 
automatically detecting and classifying odontogenic 
cysts and tumors of both jaws on panoramic images, 
as these types of cysts and tumors have the highest rate 
of occurrence in the oral and maxillofacial region. We 
increased the input resolution of the panoramic image, 
and changed the skip connections compared with the 
original YOLOv3, which could reduce information loss 
during training, and increase the performance the CNN. 
The developed CNN based on YOLOv3 showed overall 
detection performance of 0.88 of AP, 0.87 of precision, 
and 0.83 of recall. Classification sensitivity was 72% for 
ABs, 98% for OKCs, 91% for DCs, and 83% for PCs 
using augmented data set. A study reported automatic 
classification of ABs, OKCs, DCs, RCs, and SBCs using 
DIGITS, a pretrained deep learning model.27 In the 
study, the total number of training data set was 210, 
and the number of test data set was 3 ameloblastomas, 
6 odontogenic keratocysts, 8 dentigerous cysts, and 7 
radicular cysts to evaluate the performance.27 As the 
result, classification sensitivity was 60% for ABs, 13% for 
OKCs, 82% for DCs, and 77% for RCs.27 On the other 
hand, we used a total of 1282 panoramic radiographs 
and data augmentation of 12 times. Generally, our CNN 
model showed higher sensitivities for these diseases than 
the model of Ariji et al, most likely because these authors 
used a smaller number of cysts and tumor images than 
we did for training and evaluation. In addition to this, 

we classified odontogenic cysts and tumors in both the 
maxilla and mandible, while they only classified cysts and 
tumors in the mandible.27 Another study reported binary 
classification of ABs and OKCs using a VGG-16 CNN, 
a pre-trained network using ImageNet. The number of 
original training data set and test data set was 200 and 
50, respectively, for each disease. They used data augmen-
tation of double using only horizontal flips for training 
data set, and the sensitivity and specificity for differential 
diagnosis was 81.8%, and 83.3%, respectively.28 In our 
study, the sensitivity and specificity for ABs was 71.7%, 
and 100%, respectively, while that for OKCs was 98.4%, 
and 92.3%, respectively. Overall sensitivity was 88.9% 
and overall specificity was 97.2% using data augmenta-
tion inspite of multiple classification for four diseases. 
Generally, the deep learning model we developed based 
on the state-of-the-art network YOLOv3 and augmented 
data set had higher sensitivity and specificity than those 
of previous models in classifying cysts and tumors of 
both jaws on panoramic images.

Odontogenic cysts and tumors classified in this study 
share some radiologic features, thus differential diagnosis 
may be difficult.37 It is common for DCs to wrap around the 
crown symmetrically, and it should not come into contact 
with the root as it originates from the cementoenamel 
junction of the crown. If a cyst arising from the crown of 
an unerupted tooth extends towards the periapical side-
over the cementoenamel junction of the unerupted tooth, 
then it is likely an OKC.38 Separately, multilocular OKCs 
with scalloped borders may appear similar to ABs, but 
they tend to grow along the marrow space without signif-
icant cortical bone expansion compared to ABs, which 
usually show significant cortical expansion with well-
defined cortical borders in the mandible and ill-defined 
margins in the maxilla.39 It is more difficult to diagnose 
these radiolucent lesions correctly in the maxilla than in 
the mandible because of superimposition of structures 
such as the nasal cavity, maxillary sinus, hard palate, and 
inferior nasal concha in the maxilla.29

Figure 5  ROC curves from automatic classification of dentigerous cysts, periapical cysts, odontogenic keratocysts, ameloblastomas, and normal 
jaws without (a) and with (b) data set augmentation. ROC, receiver operating characteristic.
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Our CNN had 88.9% sensitivity for classification using 
augmented data set. It had a 100% sensitivity (false nega-
tive rate of 0) for classification of disease-free (normal) 
jaws. The sensitivity for OKCs was the highest at 98.4% 
(lowest false negative rate of 0.02) among the four diseases; 
the false negative was classified as normal. In contrast,the 
lowest sensitivity of 71.7% (highest false negative rate 
of 0.28) was obtained for ABs among the four diseases, 
with false diagnosis of ABs as OKCs (0.22) and normal 
(0.06). Fewer images were used for ABs learning than for 
the other three diseases, despite their heterogeneous radio-
graphic appearance (multi- and unilocular). The second 
highest sensitivity of 91.4% (false negative rate of 0.09) 
was obtained for DCs among the four diseases, and DCs 
were falsely diagnosed as PCs (0.03), OKCs (0.03), or 
normal (0.03). DC lesions involving the third molar in the 
maxilla, those associated with the supernumerary tooth 
in the anterior maxilla, or those that overlapped with the 
wall of the maxillary sinus or anterior teeth were misdi-
agnosed. The sensitivity for PCs was 82.8% (false nega-
tive rate of 0.17). Our model failed to diagnose smaller 
lesions in the root apex of the tooth overlapping with 
other anatomical structures (0.1), and misdiagnosed them 
as DCs (0.03) or OKCs (0.04), especially in the maxilla. 
As a result, sensitivities for DCs and PCs were lower than 
that for OKCs as DCs, and PCs occur more commonly 
in the maxilla. Generally, sensitivity (false negative rate) 
for lesions located in the maxilla was lower (higher) than 
that for lesions in the mandible due to the overlap between 
lesions and other anatomical structures in the maxilla.

The classification specificity of 97.2% when using 
augmented data set was higher than the sensitivity of 
88.9% for all diseases. Specificity for ABs was the highest 
(lowest false positive rate) at 100% (0.00); no diseases were 
falsely diagnosed as ABs. Specificity for DCs and PCs was 
also high at 99.2%. Specificity for OKCs was lowest at 
92.3%. ABs were frequently misdiagnosed as OKCs, and 
the classification was least sensitive for ABs. This might 
be due to the smaller number of ABs used for learning 
compared with all the other cystic diseases in addition to 
the large variations in radiological appearance of ABs. 
Rectangular bounding boxes around the lesions should 
have included more normal anatomical structures to cover 
the larger boundary of ABs. As a result, our model showed 
poorer generalizability for ABs than the other cystic 
diseases. Nonetheless, our model showed high sensitivity 
for OKCs and high specificity for ABs. It is important to 
note that differential diagnosis between OKCs and ABs 
based on panoramic radiographs can be difficult even for 
experienced radiologists.

Overfitting of the training CNN model, which results 
in the model learning statistical regularity specific to the 
training data set, negatively impacts the model’s ability to 
generalize to a new data set.2 One solution to reduce over-
fitting is data augmentation, which is the process of modi-
fying data through flipping, moving, cropping, rotating, 
and grayscale transformation.40 Data augmentation can 
improve the performance of the CNN in medical image 

analysis.40 In this study, augmented technology increased 
the number of images in the dataset by 12-fold. Mean 
AP, precision, recall, and F1-score values for detection 
performance of the CNN generally increased after data 
augmentation. As the recall value increased, the preci-
sion value decreased more gradually with data augmen-
tation than without data augmentation, which resulted in 
a higher AP with data augmentation than without data 
augmentation. Classification performance of the CNN 
improved from 78.2% sensitivity, 93.9% specificity, 91.3% 
accuracy, and 0.86 AUC to 88.9% sensitivity, 97.2% speci-
ficity, 95.6% accuracy, and 0.94 AUC for the four diseases 
when augmented data set was used. As the false positive 
rates increased, the sensitivity increased more steeply with 
data augmentation than without data augmentation, 
which resulted in a higher AUC with data augmentation 
than without data augmentation. In particular, the perfor-
mance for diagnosing OKCs improved from 78.9% sensi-
tivity, 89.4% specificity, 87.8% accuracy, and 0.83 AUC 
to 98.4% sensitivity, 92.3% specificity, 94.0% accuracy, 
and 0.97 AUC, and the performance for ABs from 54.3% 
sensitivity, 99.1% specificity, 90.3% accuracy, and 0.77 
AUC to 71.7% sensitivity, 100% specificity, 94.3% accu-
racy, and 0.86 AUC.

To date, oral and maxillofacial medicine has bene-
fited little from advancements in CAD. Here, we devel-
oped a CNN model to automatically detect and classify 
cysts and tumors of both jaws on panoramic radio-
graphs with high accuracy using data augmentation. 
The developed CAD can help general dental clinicians 
diagnose and treat patients more efficiently, and thus 
improve diagnostic performance and patient care. In 
future studies, the use of a more complex annotation 
method, such as lesion segmentation rather than a rect-
angular bounding box, and the use of more images for 
training, especially images of the maxilla, will increase 
the classification performance of the CNN for diseases 
of both jaws.

Conclusion

The deep CNN method we developed for automatically 
diagnosing odontogenic cysts and tumors in both jaws 
on panoramic radiographs showed high sensitivity, 
specificity, accuracy, and AUC when using augmented 
data,despite the limited number of  panoramic images 
available.
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