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ABSTRACT
Outside sleep laboratory settings, peripheral arterial 
tonometry (PAT, eg, WatchPat) represents a validated 
modality for diagnosing obstructive sleep apnea 
(OSA). We have shown before that the accuracy of 
home sleep apnea testing by WatchPat 200 devices 
in diagnosing OSA is suboptimal (50%–70%). In 
order to improve its diagnostic performance, we 
built several models that predict the main functional 
parameter of polysomnography (PSG), Apnea 
Hypopnea Index (AHI). Participants were recruited 
in our Sleep Center and underwent concurrent 
in-laboratory PSG and PAT recordings. Statistical 
models were then developed to predict AHI by 
using robust functional parameters from PAT-based 
testing, in concert with available demographic and 
anthropometric data, and their performance was 
confirmed in a random validation subgroup of the 
cohort. Five hundred synchronous PSG and WatchPat 
sets were analyzed. Mean diagnostic accuracy of 
PAT was improved to 67%, 81% and 85% in mild, 
moderate-severe or no OSA, respectively, by several 
models that included participants’ age, gender, neck 
circumference, body mass index and the number of 
4% desaturations/hour. WatchPat had an overall 
accuracy of 85.7% and a positive predictive value of 
87.3% in diagnosing OSA (by predicted AHI above 
5). In this large cohort of patients with high pretest 
probability of OSA, we built several models based 
on 4% oxygen desaturations, neck circumference, 
body mass index and several other variables. These 
simple models can be used at the point-of-care, 
in order to improve the diagnostic accuracy of the 
PAT-based testing, thus ameliorating the high rates 
of misclassification for OSA presence or disease 
severity.

INTRODUCTION
Obstructive sleep apnea (OSA) is a very 
common disorder, affecting approximately 
1 billion people worldwide. The disease is asso-
ciated with a plethora of neurocognitive, meta-
bolic and major cardiovascular consequences.1 
Despite its high prevalence in the general popu-
lation, significant undiagnosed disease burden 

remains, and simple, widely available and cost-
effective diagnostic capabilities are imperatively 
needed.2

Polysomnography (PSG), the ‘gold standard’ 
diagnostic procedure for diagnosing OSA, is 
scarce, complex, costly and resource inten-
sive. The advent of home sleep apnea testing 
(HSAT), also known as portable monitoring,3 
out-of-center testing4 or oligosomnography,5 
introduces a simple technical solution for the 
diagnosis of OSA, with greater accessibility, 
lower cost and reasonable accuracy in subjects 
without other sleep or medical comorbidities. 
Most HSAT devices use airflow and effort 

Significance of this study

What is already known about this subject?
►► Peripheral arterial tonometry (PAT)-based 
technology (eg, WatchPat 200 device) is an 
available and validated modality for the 
diagnosis of obstructive sleep apnea (OSA).

►► We have shown before that the accuracy of 
the WatchPat 200 studies in diagnosing and 
stratifying OSA severity is suboptimal.

What does this study add?
►► In this study, we assess the use of PAT-
based signals in concert with available 
demographic and anthropometric data to 
predict the main functional parameter of 
polysomnography, Apnea Hypopnea Index 
(AHI).

►► Up to 73% of the AHI variability was 
explained in our models by participants’ 
age, gender, body mass index or neck 
circumference together with collected 
WatchPat 200 signals such as pODI4% or 
hypoxic burden.

How might these results change the focus 
of research or clinical practice?

►► Some of these simple models can help 
improve the diagnostic precision when 
using PAT-based out-of-center sleep testing.
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monitoring for the definition of respiratory events (apneas 
and hypopneas), while sleep or sleep stages are typically 
not assessed. Other technologies such as WatchPat 200 
devices (Itamar Medical, Caesarea, Israel) quantify respi-
ratory abnormalities and sleep stages by proprietary algo-
rithms and scoring systems that incorporate peripheral 
arterial tonometry (PAT) variability as a surrogate marker 
of changes in sympathetic autonomic tone.

We have shown recently in the Peripheal Arterial Tonom-
etry Evaluation of Reliability (PATER) study6 that WatchPat 
200 devices used without manual scoring have the poten-
tial to significantly misdiagnose the presence or the OSA 
severity. In this article, we explore several models that use 
signals from PAT recordings, demographic and anthropo-
metric data to predict Apnea Hypopnea Index (AHI)—as 
determined by synchronous in-laboratory PSG recordings 
and the presence of OSA.

METHODS
As described elsewhere,6 the study included 500 subjects 
evaluated in the Atlanta Veteran Affairs Sleep Medicine 
Center, who underwent PSG and concurrent wrist-worn 
PAT-based device (WatchPat 200) testing during prespeci-
fied periods of time between 08/01/2018 and 02/10/2020.

Definitions and criteria used in PSG interpretation were 
based on the International Classification of Sleep Disorders 
third edition (ICSD-3) and the American Academy of Sleep 
Medicine (AASM) practice parameters.7–10 Per AASM stan-
dard recommendations for PSG,7 nasal pressure transducer, 
oronasal thermistor and respiratory impedance plethys-
mography effort belts were used in all patients. Apnea 
was defined as near-complete cessation of airflow (>90% 
reduction from baseline) lasting at least 10 s. Hypopnea was 
defined in PSG as airflow or respiratory effort amplitude 
reductions of 30%–90% from baseline, lasting 10 s or longer 
and associated with either a >3% oxygen desaturation or an 
arousal. The WatchPat 200 devices define respiratory events 
by pulse oximetry desaturations (we analyzed both 3% and 
4% thresholds) and sympathetic discharges, the latter being 
defined by a PAT amplitude reduction and concomitant 
increases in heart rate. We used the proprietary and vali-
dated automated Itamar’s scoring and reporting, systems, 
that is, without any manual rescoring. The interpretation 
of all studies was blinded and done by experienced board-
certified sleep physicians. Neck circumference (NC) was 
measured with non-stretchable measuring tape at the level 
of the cricoid cartilage, roughly 1 cm below the thyroid 
cartilage (Adam’s apple). Participants were positioned 
upright or standing, and they looked straight ahead.11

Descriptive analyses of the study variables were 
performed. Categorical variables were presented as frequen-
cies or percentages. Continuous variables were described as 
medians, 25–75th IQR and ranges (R, whenever relevant). 
Distribution normality fitting was evaluated using Shapiro-
Wilk and Anderson-Darling tests. Student’s t test and anal-
ysis of variance were used to compare mean values, while 
categorical variables were compared using χ2 (likelihood 
ratio) test. Tukey-Kramer HSD and Games-Howell (Tukey-
Kramer HSD with Welch’s correction)12 tests were used to 
compare groups when variances were similar or dissimilar, 
respectively. Agreement between results derived from PAT 

and PSG was determined by Pearson’s correlation coeffi-
cients and by the Bland-Altman method.13 OSA severity 
classifications (absent, mild, moderate or severe) were eval-
uated using contingency tables and per cent agreement.

Univariate, simple linear and nominal logistic regres-
sions were performed first. We used available demographic 
characteristics (age, gender, race), anthropometric features 
(body mass index, BMI; NC), clinical data (Epworth Sleepi-
ness Scale, ESS; Insomnia Severity Scale, ISI as a continuous 
parameter or presence of insomnia as a nominal factor; 
Berlin Questionnaire, BQ as a binary variable) and PAT-based 
functional parameters (pODI4%, pAHI4%, pRDI4%, pAHI3%, 
pRDI3%, hypoxic burden or per cent of total sleep time with 
SpO2<90%, nadir, mean and maximum values for pulse and 
SpO2). These factors were correlated with the PSG-based 
AHI, which is the standard indicator for the presence (>5 
events/hour) and severity stratification of sleep disordered 
breathing (5–14 mild, 15–29 moderate and >30 severe 
OSA). The variables with a p value less than 0.10 were then 
selected and used in subsequent multivariate regression 
models. All models were developed on a random derivation 
set (75% of the entire cohort) and their performance veri-
fied on the remaining 25% of the cohort (validation set). 
Internal validation of the logistic regression model was also 
done by simple bootstrapping with 2500 samples. All vari-
ables included in the model demonstrated robust results, 
with small 95% bootstrapped CIs around the original coef-
ficients.14 Variables were included in the models together 
and then successively eliminated one-by-one, based on the 
highest two to three p values (in several pruning variations), 
until all remaining factors met the predefined threshold of 
statistical significance of 0.05, and the models’ adjusted R2 
values in the validation set were maximized. In order to 
assess for possible collinearities, variance inflation factors 
were computed (accepted level: <3) and factorial analyses 
performed for interactions between parameters used in the 
final models. We also assessed the relative importance of 
the factors used in each model, that is, the contribution of 
the predictive variables in a way that is independent of the 
model type and the fitting method. This type of report esti-
mates the variability in the predicted response based on a 
range of variation for each factor; if the factor’s variation 
causes a high variability in the response, then that effect 
is important relative to the model. We used the depen-
dent resampled inputs method, by which factor values are 
constructed from observed combinations using a k-nearest 
neighbors’ approach,15 16 in order to account for correlation 
(this method is preferred when one believes that the factors 
such as gender, age, BMI, pODI4% and hypoxic burden may 
be correlated). Analyses were performed using JMP Pro15 
statistical software (SAS Institute, Cary, North Carolina, 
USA).

Institutional research approvals were obtained to conduct 
the study (Emory University IRB 00049576; VA R&D 
0002).

RESULTS
Study participants (n=500) underwent PSG testing 
performed in the sleep laboratory with concurrent wrist-
worn WatchPat 200 device monitoring. Baseline char-
acteristics of the study participants are shown in table  1. 
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Median (IQR; R) age was 53 (42–63; 24–92) years. Eighty 
per cent of these military veteran participants were males 
and 20% were females. Approximately 26% were self-
identified White or Caucasian; 72% Black or African 
American;<1% as Hispanic, Latino or of Other extraction. 
Overall, participants were very symptomatic: 71% of them 
had complaints of excessive daytime sleepiness, that is, an 
ESS >10. Approximately three quarters of the participants 
had difficulty initiating or maintaining sleep, as suggested 
by an ISI>8; among those, nearly half had ISI-defined 
subthreshold insomnia, and the other half had moderate or 
severe insomnia. The BQ was classified as ‘positive’ when 
two of its three categories were categorized as ‘positive’, 
suggesting a high index of suspicion for OSA; this was 
found in 95% of the participants. The PSG-based diagnosis 
of OSA was present in 85%, while OSA syndrome (OSA 
and ESS >10) was found in 7 out of 10 subjects (table 1). 
The median (IQR; R) AHI and nadir SpO2 were 18 (8-37; 
0.4–146) events per hour and 83 (76–88; 51–95)%, respec-
tively; central apnea index was 0.2 (0–0.8; 0–53). Based on 
the standard cut-offs, approximately 27%, 27% and 31% 
of the subjects had mild, moderate and severe OSA, respec-
tively. Table  1 also shows the main PAT-based functional 
parameters.

Thirty research participants (6%) had a pre-existing diag-
nosis of congestive heart failure—14 (45%) with systolic 
dysfunction (last median (IQR) echocardiographic left 

ventricular ejection fraction of 40 (30–60) %) and 17 (55%) 
with isolated diastolic dysfunction. The ECG monitoring 
during PSG showed sinus rhythm in 98% of the subjects; 
atrial fibrillation was found in 2% of participants (89% 
characterized as permanent or persistent arrhythmia), all 
in the moderate-severe OSA. Only 3% of the participants 
had Central Apnea Index >10, while periodic breathing 
was found in eight individuals (1.6%). Other significant 
comorbidities or concurrent treatments in our study partic-
ipants were: asthma (4.6%), chronic obstructive pulmonary 
disease (5%), alpha (16.3%) and beta (17.3%) blocker medi-
cation use. Twenty-eight subjects (5.6%) were on at least 
one narcotic medication at the time of the study. None of 
these associated comorbidities (including congestive heart 
failure and atrial fibrillation) or pharmacological therapies 
influenced the performance of the PAT-based testing.

When we performed various bivariate analyses of the 
factors listed in the Methods section versus the PSG-based 
AHI, we found that the most significant portion of the AHI 
variance was explained by pODI4%, NC, BMI and Hypoxic 
burden (% pTST spent with SpO2<90%) (table 2). Demo-
graphic variables that were found relevant to our predictive 
models were: gender (with added risk for men and reduced 
risk for women), and subjects’ age (table 2).

In multivariate analyses that included the factors listed in 
table 2, we developed three potentially useful models, which 
aimed to predict PSG-generated AHI based on parameters 

Table 1  Baseline characteristics of the study group

Category Characteristic Measurement Results (n=500)

Demographic and clinical data Age (years) Median (IQR) 52.5 (41.8–62.5)

Gender Male (%) 80

Race White or Caucasian (%) 26

 �  Black or African American (%) 72

BMI (kg/m2) Median (IQR) 31.6 (28.0–35.9)

NC (cm) Median (IQR) 41.5 (38.5–43.9)

ESS Median (IQR) 13 (9–17)

ISI Median (IQR) 20 (15–25)

BQ Positive (%) 95

Polysomnographic data OSA (%) Present 85

OSA syndrome (%) Present 70

TST (min) Median (IQR) 327 (278–361)

AHI Median (IQR) 18.4 (7.6–36.7)

REM AHI Median (IQR) 26.0 (9.0–54.0)

ODI3% Median (IQR) 2.5 (0.4–10.2)

ODI4% Median (IQR) 0.5 (0.1–4.0)

Hypoxic burden (PSG) Median (IQR) 2 (0–10)

Pulse arterial tonometry data OSA (%) Present 92

OSA syndrome (%) Present 73

pTST (min) Median (IQR) 348 (309–378)

pAHI3% Median (IQR) 25.3 (11.9–46.2)

pAHI4% Median (IQR) 13.7 (3.6–29.6)

pODI4% Median (IQR) 10.8 (3.2–23.6)

Hypoxic burden (PAT) Median (IQR) 0.2 (0–2)

AHI, Apnea Hypopnea Index; AUROC, area under the receiving operating characteristic curve; BMI, body mass index; BQ, Berlin Questionnaire; ESS, Epworth 
Sleepiness Scale; HSD, honestly significant difference; ISI, Insomnia Severity Scale; NC, neck circumference; ODI, oxygen desaturation index; OSA, obstructive 
sleep apnea; PAT, peripheral arterial tonometry; pODI, peripheral arterial tonometry-based oxygen desaturation index; pRDI, peripheral arterial tonometry-based 
respiratory distress index; PSG, polysomnography; pTST, peripheral arterial tonometry-based total sleep time; REM, rapid eye movement; TST, total sleep time.
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such as pODI4%, NC, BMI, age, gender and/or Hypoxic 
burden (table 3). Almost three quarters of the AHI’s vari-
ability was explained by these models. Model 1 included 
pODI4%, participants’ age, gender and BMI (all significant, 
model R2 in the validation set: 0.69). In model 2, we intro-
duced the same factors as in model 1 plus Hypoxic burden 
and a factorial analysis exploring the interaction between 
the latter and pODI4%. Neither the Hypoxic burden, nor 
the interaction between pODI4% and Hypoxic burden were 
statistically significant, that is, they did not have additional 
contribution to the performance of the model. We included 
model 2 in the results section and in table  3 mostly to 
clarify the lack of contribution from the Hypoxic burden 
and the interaction between the latter and pODI4%. Simi-
larly, models that included both BMI and NC (and their 
factorial analysis for interaction) did not provide additional 
yield (data not shown). Last, in model 3, we simplified the 
predictive equation by including only pODI4% and subjects’ 
NC. This achieved comparable adjusted R2 (or percentage 
of the AHI’s variance), that is, 0.67. The performance of 
models 1 and 3 was so similar, that we describe further only 
results based on model 3, as it was found to be both simple 
and very robust. Based on a very simple logistic model that 
predicts AHI using as input variables NC and ODI4% (model 
3) and using a more conservative AHI threshold for OSA 
diagnosis (>15), the positive predictive value of the test 
was improved to 98.5%, while the overall test accuracy 
for OSA-No OSA dichotomization went down to 75% in 
the derivation set and to 73% in the internal validation set. 
The best accuracy by diagnostic categories was obtained in 
the No OSA (AUROC 0.87–0.86) and in the severe OSA 
(AUROC 0.88–0.87) groups. Mild OSA category had 
AUROC values of 0.74–0.72, while moderate OSA seemed 
to be the least precise disease categorization (AUROC 0.66–
0.64, ranges illustrating the dyads in the derivation and vali-
dation sets).

Figure  1 illustrates box plots of the AHI residuals’ Z 
scores by OSA severity when using the model 3, which 
predicts AHI based on pODI4% and NC. Cases with discor-
dant diagnoses of OSA (absent, mild, moderate and severe) 
between PSG and PAT-based testing are shown in red/dark 
color. We found that 67% of individuals without OSA had 
mild disease by WatchPat and 8% of those with actual mild 
OSA had no OSA by PAT. Additionally, among those with 
predicted severe OSA, there were no cases without OSA 
(0%) and only 6% had mild OSA by PSG; among subjects 
with model 3-predicted moderate disease, 3% and 26% had 
no OSA or mild disease, respectively.

Establishing a diagnosis of OSA by using predicted AHI 
>5 or >15 events/hour as threshold had an overall accuracy 
of 85.7% and 74.5% (equivalent to the C statistic or AUROC 
values, figure 2), while the positive predictive value of the 
test went up from 87.3% to 98.5%, respectively. When 
broken down by disease strata, AUROC was 0.86/0.85 for 
the No OSA category, 0.85/0.81 for moderate-severe OSA 
group, and only 0.69/0.67 in the mild OSA category in the 
derivation/validation sets, respectively.

DISCUSSION
In this study, we explored several models of prediction for 
OSA diagnosis by its main defining and disease severity 

stratifying measurement (AHI), based on demographic, 
anthropometric and functional WatchPat 200 data. These 
models were able to improve the diagnostic uncertainty 
linked to the inherent limitation of the testing tool used 
(PAT-based device), suggesting that simpler evaluations 
relying, for example, on pODI4% and NC alone could be 
useful.

Several prior studies had evaluated the reliability of 
WatchPat 200 testing, showing correlations up to 0.90 
between PSG AHI and PAT-based AHI (pAHI), while the 
practical implications of the large dispersion had been 
occasionally ignored or deemed negligible.17–27 Recently, 
in a point-of-care investigation, we have shown that auto-
matically scored WatchPat 200 tests could lead to signif-
icant misclassification rates (30%–50%) in the diagnosis 
of OSA and its severity against ‘gold standard’ PSG.6 In 
these new analyses of the same 500 participants evaluated 
with synchronous PSG and PAT-based HSAT devices, we 
found that the WatchPat 200-derived ODI4% and Hypoxic 
burden, in concert with various demographic (age, gender) 
or anthropometric (BMI, NC) data, can improve the diag-
nostic accuracy and severity classification of this disease up 
to 85%–86%.

The central tendency deviation and dispersion, large or 
small, may or may not impact the correct nosologic cate-
gorization (mild, moderate, severe OSA). To illustrate 
the point, we color-coded each marker in figure  1: red/
dark—discordant and grey/light color—concordant diag-
noses of no OSA, mild, moderate or severe OSA. While the 
Z values ((x – mean)/SD) of the residuals were statistically 
higher in the severe OSA group versus the other categories, 
significant misclassification remained in all groups. The red/
dark markers (diagnostic discordance) in the severe OSA 
group are represented mostly by cases of misclassification 
from severe to moderate OSA (23.5%) and only 2.2% from 
severe to mild (none from severe to no OSA). One could 
argue that the severe to moderate OSA reclassification 
does not have significant therapeutic implications, that is, 
both categories may end up being treated the same. When 
compared with our prior analyses of disease definitions 
based on pAHI,6 we have been able to ‘reduce’ the Z scores 
of the AHI residuals, that is, predicted AHI minus actual 
AHI, by disease category.

We found significant differences between automated 
pODI4% and postartifact processing, manually adjudicated 
PSG-based ODI4% (table  1), which may in fact explain 
the diagnostic inaccuracies resulting from HSAT with 
WatchPat200 devices, and the performance of the various 
models that are trying to predict PSG AHI from PAT signals.

Based on our previous analyses, we recommended that, 
if PAT devices find less than moderate OSA (no OSA or 
mild disease) in high pretest probability individuals, repeat 
testing with ‘gold standard’ PSG should be employed. 
Despite our present models’ performance and improved 
diagnostic accuracy, it is our opinion that the recommen-
dation still stands, even when the ‘conservative’ 4% desat-
uration threshold is used in defining the respiratory events.

Other groups also recognized the potential limitations of 
PAT-based sleep testing technology (such as PAT amplitude 
changes and heart rate changes independent of each other, 
arousals potentially leading to both or only one of them, 
the potential need to use different SpO2 thresholds in REM 
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Figure 1  Box plots of residual AHI Z scores versus OSA, as diagnosed by PSG (Absent, Mild, Moderate, Severe; p values: Games-Howell 
test). Next to the box plots (in blue) are shown the mean Z scores for each category. Codes—red/dark color: discordant diagnoses; grey/
light color: concordant diagnoses between PAT and PSG-based diagnoses. AHI, Apnea Hypopnea Index; OSA, obstructive sleep apnea; PAT, 
peripheral arterial tonometry; PSG, polysomnogram; residual AHI, predicted AHI – actual AHI; Z score, (x – SD)/mean.

Figure 2  Contingency analyses (shown as mosaic plots) illustrating the percentages of study participants with OSA by PSG (red/dark 
color: present; green/bright color: absent) among those with and without a diagnosis of the disease based on predicted AHI (using pODI4% 
and NC)>5 (panel A) and >15 (panel B). Diagnostic accuracy (concordant diagnoses) was found in 85.7% and 74.5% of partitions shown 
in panels A and B, respectively. AHI, Apnea Hypopnea Index; NC, neck circumference; OSA, obstructive sleep apnea; PSG, polysomnography.
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versus non-REM sleep, possible pulse oximetry biases such 
as motion artifacts or “penumbra effects,” and so on) and 
proposed “corrective” strategies for use in manual scoring.28 
In this analysis and in our previous investigation, we did 
not resort to manual rescoring of the WatchPat studies, as 
we were trying to optimize technological outputs without 
human factor intervention. While the AASM clinical guide-
lines3 clearly recommend sleep testing interpretation to be 
based on manual scoring and review, there is a growing, 
concurrent trend—that is, developing novel artificial 
intelligence-based capabilities to reduce the labor intensity 
and error propensity of our standard testing and interpre-
tation process, including that of an imperfect measurement 
(AHI).29 As such, and in order to further help the interpre-
tation of the PAT reports, we tried to build different models 
of AHI determination by PAT-based parameters. We found 
that pODI4%, hypoxic burden, pRDI or pAHI explain at 
best up to two thirds of the general AHI variability. Addi-
tional variables such as age, gender, BMI and NC may add 
slightly more to the diagnostic precision when added into 
the models, that is, up to 0.08 additional R2.

One main finding of this study was that simple models 
based on anthropometric measurements (eg, NC) and 
number of 4% desaturations per hour of recording (such 
as in model 3) could predict with reasonable accuracy the 
presence and severity of OSA. It is important to recog-
nize that this does not necessarily lead to the conclusion 
that pulse oximetry (even if ODI4% was universally avail-
able as a standard oximeter measurement) could replace 
the WatchPat device monitoring. The mean reason is the 
following: we noticed significant discrepancies between 
PSG-based and PAT-based pulse oximetry data; hence, an 
assertion that pulse oximetry data may substitute PAT tests 
cannot be made without further exploration of the causes, 
possible artifacts and further validation.

Another important point (perhaps less known to the 
device users, but discovered by our group during analyses 
and confirmed by Itamar’s representatives) is that WatchPat 
200 devices do not calculate pODI3% (ie, based on 3% 
threshold), but only pODI4%, despite the fact the one can 
create distinct reports using the two desaturation thresh-
olds; as such, pAHI and pRDI are calculated according 
to the predetermined desaturation level, while pODI will 
always be represented in the current, most up-to-date soft-
ware, by pODI4%.

Our study has several strengths. First, the investigation is 
part of a large point-of-care, clinic-based study which evalu-
ated systematically, without significant missingness and with 
blinded interpretations, synchronous PSG and PAT-based 
testing (without any night-to-night variability). Second, our 
cohort is much better represented by minority individuals of 
Black or African American extraction than other published 
investigations. Third, we assessed several robust, simple, 
internally validated statistical models that can be easily 
deployed at the point-of-care setting. Fourth, our investiga-
tion purposefully targeted functional measurements likely 
available on pulse oximetry, potentially expanding the use 
of the models when overnight pulse oximetry monitoring 
is employed. Potential weaknesses of our investigation are 
related to the single center and observational nature of the 
study, on mostly male military veterans with high comorbid 
burden, including prevalent complaints of insomnia, and 

lack of manual scoring and readjudication of the respiratory 
events or of the sleep stages, as generated by the WatchPat 
200 software.

CONCLUSION
We evaluated a large point-of-care, clinic-based cohort of 
participants with various sleep complaints, high pretest 
probability of OSA and with very high disease prevalence, 
by synchronous overnight PSG and WatchPat 200 devices. 
In these analyses, we built several, simple models based on 
4% oxygen desaturations, NC, BMI and several other vari-
ables. We cross-validated these models in internal subsets of 
our cohort. If confirmed in other sleep clinic patient popu-
lations, these tools provide hope that they can improve the 
diagnostic accuracy of the PAT-based testing, ameliorating 
the previously reported high rates of diagnostic misclassifi-
cation of OSA presence or disease severity.
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