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This paper explores the knowledge of linguistic structure learned
by large artificial neural networks, trained via self-supervision,
whereby the model simply tries to predict a masked word in a
given context. Human language communication is via sequences
of words, but language understanding requires constructing rich
hierarchical structures that are never observed explicitly. The
mechanisms for this have been a prime mystery of human
language acquisition, while engineering work has mainly pro-
ceeded by supervised learning on treebanks of sentences hand
labeled for this latent structure. However, we demonstrate that
modern deep contextual language models learn major aspects
of this structure, without any explicit supervision. We develop
methods for identifying linguistic hierarchical structure emer-
gent in artificial neural networks and demonstrate that com-
ponents in these models focus on syntactic grammatical rela-
tionships and anaphoric coreference. Indeed, we show that a
linear transformation of learned embeddings in these models
captures parse tree distances to a surprising degree, allowing
approximate reconstruction of the sentence tree structures nor-
mally assumed by linguists. These results help explain why these
models have brought such large improvements across many
language-understanding tasks.
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Human language communication is via sequences of words,
canonically produced as a mainly continuous speech stream

(1). Behind this linear organization is a rich hierarchical language
structure with additional links (such as coreference between
mentions) that needs to be understood by a hearer (or reader).
In Fig. 1, for instance, a hearer has to understand a sentence
structure roughly like the one shown to realize that the chef was
out of food rather than the store.* Language understanding, like
vision, can be seen as an inverse problem (3), where the hearer
has to reconstruct structures and causes from the observed
surface form.

In computational linguistics, the long dominant way of
addressing this structure induction problem has been to hand
design linguistic representations, broadly following proposals
from linguistics proper. Under one set of conventions, the sen-
tence in Fig. 1 would be annotated with the structure shown.
Humans then label many natural language sentences with their
underlying structure. Such datasets of annotated human lan-
guage structure, known as treebanks (4, 5), have fueled much
of the research in the field in the last 25 y. Researchers
train progressively better supervised machine-learning mod-
els on the treebank, which attempt to recover this structure
for any sentence (6–8). This approach has been very effec-
tive as an engineering solution, but beyond the high prac-
tical cost of human labeling, it gives no insight into how
children might approach structure induction from observed
data alone.

Recently, enormous progress has been made in natural lan-
guage representation learning by adopting a self-supervised
learning approach. In self-supervised learning, a system is given
no explicit labeling of raw data, but it is able to construct its

own supervised learning problems by choosing to interpret some
of the data as a “label” to be predicted.† The canonical case
for human language is the language-modeling task of trying
to predict the next word in an utterance based on the tempo-
rally preceding words (Fig. 2). Variant tasks include the masked
language-modeling task of predicting a masked word in a text
[a.k.a. the cloze task (11)] and predicting the words likely to
occur around a given word (12, 13). Autoencoders (14) can
also be thought of as self-supervised learning systems. Since no
explicit labeling of the data is required, self-supervised learning
is a type of unsupervised learning, but the approach of self-
generating supervised learning objectives differentiates it from
other unsupervised learning techniques such as clustering.

One might expect that a machine-learning model trained to
predict the next word in a text will just be a giant associa-
tional learning machine, with lots of statistics on how often the
word restaurant is followed by kitchen and perhaps some basic
abstracted sequence knowledge such as knowing that adjectives
are commonly followed by nouns in English. It is not at all clear
that such a system can develop interesting knowledge of the lin-
guistic structure of whatever human language the system is trained
on. Indeed, this has been the dominant perspective in linguis-
tics, where language models have long been seen as inadequate
and having no scientific interest, even when their usefulness in
practical engineering applications is grudgingly accepted (15, 16).

Starting in 2018, researchers in natural language process-
ing (NLP) built a new generation of much larger artificial
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Fig. 1. A hearer must reconstruct that the store is in a relative clause modi-
fying the chef to know that it is the chef who is out of food rather than the
linearly closer store.

neural network models, which construct rich, word-token spe-
cific deep contextual representations of human language as
numeric vectors (17, 18). In this paper, we examine how, at
this larger scale, there is a dramatic increase in what is mod-
eled by such networks. The simple task of word prediction is
a highly effective self-supervision signal: Neural networks can
and do improve on this task by inducing their own representa-
tions of sentence structure which capture many of the notions
of linguistics, including word classes (parts of speech), syntactic
structure (grammatical relations or dependencies), and coref-
erence (which mentions of an entity refer to the same entity,
such as, e.g., when “she” refers back to “Rachel”). We examine
learned attention structure in models and develop simple probes
to show that these models know about each of these types of
linguistic information. Indeed, the learned encoding of a sen-
tence to a large extent includes the information found in the
parse tree structures of sentences that have been proposed by
linguists.

This is a startling and intriguing result. Traditionally much
of the emphasis in NLP has been on using labels for part of
speech, syntax, etc., as an aid in other downstream tasks. This
result suggests that large-scale hand construction of syntactically
labeled training data may no longer be necessary for many tasks.
Despite its simple nature, the generality of word prediction,
as a task that benefits from syntactic, semantic, and discourse
information, leads to it being a very powerful multidimensional
supervision signal.

While the work presented here is interesting food for thought
about the starting point and process of human language acqui-
sition, we make no attempt to model human learning. These
models are operating in a quite different environment from that
of children, with exposure to much more linguistic input but
no real-world environment to aid learning. Nevertheless, this
work bears on the logical problem of language acquisition (19).
Importantly, it shows successful language structure learning from
positive evidence alone.

Bidirectional Encoder Representations from Transformers: A
Self-Supervised Artificial Neural Network
Current state-of-the-art NLP systems typically involve a deep
artificial neural network that was trained on a large corpus of
text using self-supervision. As an example, we describe Bidirec-
tional Encoder Representations from Transformers (BERT), a
recently proposed Transformer model and training procedure
that has gained prominence by dominating multiple key NLP
benchmarks (18, 20).

Fig. 2. The next word prediction (language-modeling) task (a) and the
cloze task (b).

Fig. 3. A high-level illustration of BERT. Words in the input sequence are
randomly masked out and then all words are embedded as vectors in Rd .
A Transformer network applies multiple layers of multiheaded attention
to the representations. The final representations are used to predict the
identities of the masked-out input words.

The self-supervision task used to train BERT is the masked
language-modeling or cloze task, where one is given a text in
which some of the original words have been replaced with a
special mask symbol. The goal is to predict, for each masked
position, the original word that appeared in the text (Fig. 3).
To perform well on this task, the model needs to leverage the
surrounding context to infer what that word could be.

BERT is a Transformer model (21), a neural network archi-
tecture, without any recurrent connections (22), which takes a
sequence of words (or other symbols) as input and produces
a contextualized vector representation of each word as its out-
put (Fig. 3). It contains many millions of trainable parameters
in a number of layers, typically requiring massive amounts of
data and computation to train. This makes Transformers dif-
ficult to train, but also highly expressive models that can out-
perform other contemporary neural networks when properly
optimized.

The key mechanism by which Transformers contextualize rep-
resentations is multiheaded attention (see Fig. 5). Attention
(23) dynamically assigns a weight to every pair of words in the
sequence, indicating how much the model should “pay attention
to” the first word when computing the representation of the sec-
ond one. Transformers use multiple attention heads in parallel,
where each head can potentially capture a completely differ-
ent word–word relation. Transformers aggregate the information
from each head to produce a single output vector representation
for each word in the sequence. We provide more mathematical
detail below.

Fig. 4. An example where implicitly modeling syntactic structure may
assist in predicting the missing word and improve language-modeling
performance.
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Fig. 5. An overview of the neural attention mechanism. NLP models often contain many attention mechanisms, each producing a different set of attention
weights.

The Syntax Sensitivity of Language Models
Models trained to predict words, such as BERT, receive just
a list of words as their input and do not explicitly represent
syntax. Are they nevertheless able to learn the hierarchical struc-
ture of language? One approach to investigating this question is
through examining the model’s predictions in syntax-dependent
scenarios.

For example, performing English subject–verb agreement
requires an understanding of hierarchical structure. In the sen-
tences “The chef is here” and “The chefs are here” the form of
the verb depends on whether the subject is singular or plural:
“is” agrees with “chef” but “are” does not. It is quite unsur-
prising that neural language models can learn statistics about
sequential co-occurrence, e.g., that a singular noun is often fol-
lowed by a singular verb. However, subject–verb agreement is
based not on the linear ordering of the words, but on the words’
syntactic relationship. For example, in “The chef who made the
pizzas is here,” the intervening phrase does not affect the correct
agreement of “is” despite the phrase containing an “attractor”
noun “pizzas,” which has the opposite number to the verb’s
subject (Fig. 4).

Linzen et al. (24) first evaluated neural language models on
their ability to perform such agreement tasks. Models were
asked to predict the next word for inputs with zero or more
intervening attractor nouns. Accuracy was measured as how
often the model assigns higher probability to the correct verb
form. To correctly perform this word form prediction task, the
model must ignore the attractor(s) (here, pizzas) and assign the
verb’s form based on its syntactic subject (chef), in accord with
the sentence’s implied hierarchical structure rather than linear
proximity.

Subsequent work has evaluated models on more challenging
sentences where potential confounds are removed (25), evalu-
ated models on other grammatical phenomena such as reflexive
anaphora (26), evaluated models that explicitly model hierar-
chy (27), and evaluated BERT on agreement across attractors
(28). The studies have found models like BERT to perform
well at these tasks; for example, ref. 28 finds that BERT makes
as many or fewer mistakes than humans for some types of
agreement.‡

Agreement relations highlight the richness of language mod-
eling as a pretraining task, perhaps explaining some of its recent
success in NLP. However, while this black box approach teaches
us that the model learns some form of syntax, it does not tell us
how. We therefore shift our discussion to analyze the internals
of BERT and demonstrate two separate mechanisms (attention

‡Psycholinguists have shown that attractors also cause humans to make agreement
errors (29, 30).

and structural probes) by which we can observe the structure the
model constructs from the input.

Attention Probes
Neural attention is a neural network component prevalent in
contemporary state-of-the-art NLP models such as BERT. Here,
we provide a precise description of attention and explain how
it can be interpreted linguistically. We then apply this inter-
pretation to BERT’s multiple-attention heads and show that
many heads are highly correlated with well-known concepts of
linguistic structure.

The Neural Attention Mechanism. Given a query q and a set of
n items {x1, . . . , xn}, the attention mechanism (23) induces a
probability distribution α over the item set and then produces
an expectation (weighted sum) of the items as the output. Intu-
itively, attention makes a soft selection of which item xi is the
best fit for the query q . More formally, each item xi is repre-
sented by two vectors: key ki and value vi . The key ki is used to
determine the distribution α via an inner product with the query
vector q , normalized by a softmax:

αi =
exp q>ki∑n
`=1 exp q

>k`
. [1]

The output y is then the expectation over the value vectors vi :

y =
∑n

i=1
αivi . [2]

Table 1. Well-performing BERT attention heads on WSJ SD
dependency parsing by dependency type

Attention Baseline
Relation precision precision

Microaverage across
dependency types

Best single head 34.5 26.3
Best head per dependency type 69.3 50.8

Single heads for individual
dependency types

Nominal subject 58.4 45.4
Direct object 86.8 40.0
Clausal complement 48.8 12.4
Object of preposition 76.3 34.6
Predeterminer 94.3 51.7
Marker 50.7 14.5
Passive auxiliary 82.5 40.5
Phrasal verb particle 99.1 91.4
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Fig. 6. Some BERT attention heads that appear sensitive to linguistic phenomena, despite not being explicitly trained on linguistic annotations. In the
example attention maps, the darkness of a line indicates the size of the attention weight. All attention to/from red words is colored red; these words are
chosen to highlight certain of the attention heads’ behaviors. [CLS] (classification) and [SEP] (separator) are special tokens BERT adds to the input during
preprocessing. Attention heads are numbered by their layer and index in BERT. Reprinted with permission from ref. 59, which is licensed under CC BY 4.0.

The Transformer network (21) uses a flavor of this mechanism
called self-attention, where each input word plays a dual role
as both a query and a selectable item. This is implemented by
passing the vector representation of every word xi through three
different linear transformations, resulting in query qi , key ki , and
value vi vectors. Each query qj can then attend over all of the
key-value pairs (ki , vi) in the sequence, producing a different
attention distribution αj (i.e., αj

i denotes the attention weight
toward position i from position j ) and output yj for each word,
as shown in Fig. 5.

Attention has been a highly successful neural network compo-
nent for processing text (31), video (32), image (33), and speech
(34) data. A Transformer network consists of multiple layers with
each layer containing multiple attention heads. Each head com-
putes its own independent attention weights and output vectors;
the output vectors across heads are concatenated together when
producing a layer’s output.

Method: Attention Heads as Simple Classifiers. We quantitatively
study the correspondence between attention heads and linguis-
tic phenomena by observing the behavior of attention heads on
corpora of annotated data. We focus on data where the anno-
tations assign each pair of words (wi ,wj ) a label l(wi ,wj ) that
is 1 if a particular linguistic relationship between words holds
(e.g., wi is wj ’s syntactic head) and is 0 if otherwise. To inter-
pret what an attention head in BERT is computing, we examine
the most-attended-to word at each position. More formally, if
α(w , h) denotes the attention distribution of head h when BERT
is run over the sequence of words w = [w1, . . . ,wn ], we find the
most-attended-to word wargmaxiα(w ,h)

j
i

for each position 1≤ j ≤
n . We then evaluate whether the attention head is expressing
a particular linguistic relationship by computing how often the
most-attended-to word is in that relationship with the input word

(i.e., how often the head “pays attention to” linguistically rele-
vant words). If Sl(w)= {j :

∑n
i=1 l(wi ,wj )> 0} is the subset of

the input expressing the annotated relationship, the precision
score for the head is computed as

precision(h)=
1

N

∑
w∈corpus

∑
j∈Sl (w)

l(wargmaxiα(w ,h)
j
i
,wj ), [3]

where N is the total number of words in the corpus expressing
the relationship. This score can be viewed as evaluating the atten-
tion head as a simple classifier that predicts the presence of the
linguistic relationship of interest.

Experiments. We use the original base-sized uncased BERT
model from Google, which consists of 12 layers each containing
12 attention heads and 768-dimensional hidden vectors. We use
“head 〈layer〉-〈index〉” to denote a particular attention head.

Our first evaluation is on syntactic dependencies, using the
Wall Street Journal (WSJ) portion of the Penn Treebank (4,
35) annotated with Stanford Dependencies (SD) (36) as the cor-
pus. In dependency syntax, typed directed edges connect words,
forming a tree structure describing the sentence’s syntax. In par-
ticular, the tree structure results from each word having exactly

Table 2. Precisions (%) of systems selecting a correct antecedent
for a coreferent mention in the CoNLL-2012 data by mention type

Model All Pronoun Proper Nominal

Nearest 15 23 9 11
Rule based 66 72 73 48
Head 5-4 70 68 76 64

Manning et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30049
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Fig. 7. (A–D) An overview of the structural probe method.

one incoming edge, from either another word (the “syntactic
head”) or a distinguished sentence root symbol, with a type indi-
cating the grammatical relation (e.g., prepositional object). The
tree can be expressed as word-pair labels where l(wi ,wj ) is 1
if wi is wj ’s head and 0 if otherwise. We also perform more
fine-grained analysis over specific grammatical relations by (for
example) restricting the label to 1 if wi is wj ’s direct object and 0
if otherwise.§ Some dependency relations are simpler to predict
than others; e.g., a noun’s determiner is often the immediately
preceding word. Therefore, as a point of comparison, we show
predictions from a simple fixed-offset baseline. A fixed offset of
−2 means the word two positions to the left of the dependent
is always considered to be the head; we report scores for the
best-performing offset in [−5, 5].

We also evaluate BERT attention heads at the semantic phe-
nomenon of coreference. Coreference occurs when two or more
mentions (text expressions referring to real-word entities) in a
document refer to the same entity (e.g., “London,” “the city,”
and “it” could be coreferent mentions). We evaluate the atten-
tion heads on coreference resolution using the Conference on
Natural Language Learning shared task (CoNLL-2012) dataset
(37). We report antecedent selection precision: how often the
head word of a coreferent mention most attends to the head
word of one of that mention’s antecedents, so l(wi ,wj )= 1
when wi and wj are head words of coreferent mentions and
0 if otherwise. We compare against two baselines for select-
ing an antecedent: first, picking the nearest other mention as
the antecedent, and second, using a rule-based coreference
system. It proceeds through four sieves: 1) full string match,
2) head word match, 3) number/gender/person match, and 4)
all other mentions. The nearest mention satisfying the earliest
sieve is returned. Although simple, these baselines can perform
surprisingly well at coreference (38).

Results. Results for dependency syntax are shown in Table 1.
No single attention head corresponds well to dependency syn-
tax overall; the best head gets 34.5% accuracy, which is not
much better than the right-branching baseline (26.3% accuracy).
However, we find that certain attention heads specialize to spe-
cific dependency relations, sometimes achieving high accuracy
and substantially outperforming the fixed-offset baseline. Qual-
itative examples of these attention heads are shown in Fig. 6.
Beyond looking at individual attention heads, we also report the
combined score when taking the best attention head for each
dependency type and find it achieves around 70% precision,
substantially higher than the baseline. Explicitly incorporating

§Intuitively, the precision score in this case measures what percent of the time the most-
attended-to word of a verb is that verb’s direct object.

syntactic information to improve attention has been an active
area of NLP research (39–41). Our results suggest that self-
supervised training can cause learned syntax-aware attention to
arise in NLP models.

We note that heads can disagree with annotation conventions
while still performing syntactic behavior. For example, head 7-
6 marks the ’s as the dependent (e.g., Fig. 6, Bottom Left) for
the noun possessive relation, while gold-standard labels mark the
complement of an ’s as the dependent. There is significant arbi-
trariness and variation in the annotation conventions of different
treebanks and linguistic theories, and such behavior is not clearly
wrong. The disagreement highlights how these syntactic behav-
iors in BERT emerge as a by-product of self-supervised training,
not by copying a human design.

Results for coreference are shown in Table 2. One of BERT’s
attention heads achieves quite strong performance, outscoring
the rule-based system. It is particularly effective on nominal men-
tions, perhaps because neural representations are well suited to
fuzzy matching between synonyms (e.g., Fig. 6, Bottom Right).

Finding Syntax Trees in Word Representations
Since many of BERT’s attention heads encode individual syn-
tactic relations, it is natural to wonder whether the representa-
tion, that is, the vectors that represent the words in each layer
of BERT, embed syntax trees. More generally, a fundamental
question when investigating linguistic structure in neural net-
works is whether the internal representations of networks are
reconcilable with the tree structures of sentences. At face value,
this seems unlikely; trees are discrete structures, not immediately
compatible with the high-dimensional real-valued Rd spaces of
neural representations.

In this section, we explain the structural probe method (42)
for finding trees embedded in the internal representations of
a network and demonstrate the surprising extent to which syn-
tax trees are linearly extractable from internal representations.
At a high level, this method finds a single distance metric on
Rd which, when applied to any two word representations con-
structed by the model for the same sentence, approximates the
result of the distance metric defined by the syntax tree of that
sentence (Fig. 7).

The Structural Probe Method. To test whether trees are embedded
in an Rd representation, we require common ground between
trees and vector spaces. We observe that the set of nodes in an
undirected tree T is a metric space, where the metric dT (i , j )
between nodes i and j is defined as the number of edges in
the path between i and j . Given only a path metric, one can
reconstruct the tree itself by indicating that all elements i , j with
dT (i , j ) equal to 1 are connected by an edge. So, instead of
attempting to find trees in Rd , we can look for a distance metric,

30050 | www.pnas.org/cgi/doi/10.1073/pnas.1907367117 Manning et al.
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Fig. 8. Minimum-spanning trees resultant from structural probes on BERT and a random control representation Proj0 compared to the human-annotated
parse tree. In the text sentence, “S+L” refers to American savings and loans banks and “RTC” refers to the Resolution Trust Corporation. Reprinted with
permission from ref. 42, which is licensed under CC BY 4.0.

a more natural notion for a vector space. “Looking for a distance
metric” means defining a distance metric with tunable parame-
ters and using supervised data to find the parameters that best fit
the data.

Intuitively, we want to construct a distance metric that focuses
on certain aspects of the space; we expect only some aspects
of the representation to encode syntax, since most will encode
sentence meaning. We note that L2 distance on Rd can be param-
eterized with a positive semidefinite¶ matrix A∈ Sd×d

+ . All such
matrices can in turn be represented as A=B>B for some matrix
B ∈Rk×d , leading to a distance of the following form:

dA(hi , hj )
2 =(hi − hj )

>A (hi − hj )

= (B (hi − hj ))
>(B(hi − hj ))

= ‖B(hi − hj )‖22. [4]

The above distance focuses on the aspects of Rd that have high
dot product with the rows of B .

We want to find a linear transformation B such that syn-
tax trees’ path metrics are best approximated by the squared#

distance ‖ · ‖2B , on internal representations. We approximate this
by finding B such that it best recreates all pairs of distances for
sentences in a dataset of sentences annotated with syntax trees
by humans. We consider each sentence s`, which has tree struc-
ture T `. This tree defines a distance dT`(w `i ,w

`
j ) for each pair of

words (w `i ,w
`
j ) in the sentence. Recalling that the internal rep-

resentations of w `i and w `j are denoted h`i and h`j , we want the
difference between dT`(w `i ,w

`
j ) and ‖B(h`i , h

`
j )‖

2

2
to be as small

as possible in expectation. We implement this by averaging over
all sentences s` in the human-parsed corpus and normalize each
sentence’s influence by the number of pairs of words in the sen-
tence, |s`|2. This leads to the following optimization problem for
finding B :

argmin
B

∑
`

1

|s`|2
∑
i,j

∣∣∣dT`(w
`
i ,w

`
j )−‖B(h`i , h`j )‖

2

2

∣∣∣ . [5]

We approximate this objective through gradient descent to
find B .

Once we have a distance metric that approximates tree dis-
tance, we can predict trees on new sentences and compare them

¶Strictly, since A is positive semidefinite instead of positive definite, the result is a
semimetric.

#We found that squared L2 distance performs substantially better than the true distance
at approximating tree distance (42), an observation explored in more depth by ref. 43.
If a valid distance metric is desired, using the square root of all predictions results in the
same relative distances.

to human-annotated trees. Recall that given the true tree dis-
tances dT , we can reconstruct the tree by constructing an edge
between each pair of words with distance 1. This is equivalent to
taking the minimum spanning tree of words in the distance space.
To construct trees for a new sentence, we similarly predict dis-
tances for all pairs of words and construct the minimum-spanning
tree according to the predicted distances (Fig. 7C).

So far in this section, we have discussed syntax trees as being
undirected, an assumption we make so that we can view them as
distance metrics. However, dependency syntax trees are rooted,
and all edges are directed such that every edge moves from the
word closer to the root to the word farther away. The directions
of these edges reflect which word is governed by the other.

Since distances are unordered functions, we cannot use them
to model directed edges; to do this we use a slight variation on the
distance probe. We first connect edge orderings and vector spaces
through the concept of a norm—a notion of length in a space.
Edge orderings in a rooted tree follow the depth norm ‖wi‖depth,
equal to the number of edges between a word and the root of the
tree. Given that two words have an edge between them, then the
word with the greater norm has the edge pointing to it.

Viewing edge orderings as resulting from a norm again helps
us connect tree structures to the vector space that internal rep-
resentations reside in. Like distance metrics, norms are a natural
way to look at global properties of a vector space. Our goal is
now to find a norm on Rd such that the norm on the vector
space approximates the tree depth norm. From here the method
is similar to finding the distance metric. We consider an L2 norm
parameterized by a matrix B , that is, ‖Bhi‖, and attempt to find
B to make the norm best fit the tree norm in expectation over
the corpus:

argmin
B

∑
`

1

|s`|
∑
i

∣∣∣‖w `i ‖depth−‖Bh`i ‖
2

2

∣∣∣ . [6]

Experiments. We analyze the internal representations of BERT,
keeping the same dataset as our analysis of attention weights.
Because of the supervised nature of the approach, we train our
distance metric on the training split of the dataset (sections 2 to
21) and report all tree reconstruction accuracies on the testing
split (section 23) of ref. 35.

We evaluate the syntactic distances predicted by the dis-
tance structural probe in two ways. The first metric is the
undirected unlabeled attachment score (UUAS), which is the
fraction of edges in the true syntax tree that are also in the pre-
dicted minimum-spanning tree. The second one is the distance
Spearman correlation (DSpr.), which measures how close the
predicted distances are to recreating the ordering of distances
between all pairs of words. We evaluate the syntax depths
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Fig. 9. (Left) Matrix showing gold tree distances between all pairs of words in a sentence, whose linear order runs top to bottom and left to right.
Darker colors indicate closer words. (Right) The same distances as embedded by BERT (squared). Reprinted with permission from ref. 42, which is licensed
under CC BY 4.0.

predicted by a depth structural probe by evaluating the root%,
the percentage of tree roots predicted to be the least deep. We
also evaluate the norm Spearman correlation (NSpr.), which
measures how close the predicted depths are to recreating the
ordering of depths defined by the tree.

Because structural probes are supervised models, we want
to ensure that the probes themselves are not simply learning
to parse on top of BERT, instead of revealing properties of
BERT. To do this, we define Proj0 (projection of layer 0), a
neural network with random weights that takes in a sequence
of noncontextual word representations and outputs a sequence
of contextual word representations like the ones we evaluate in
BERT. We train and evaluate structural probes on this model’s
representations as a baseline against which to compare BERT.‖

Results. We find that dependency tree structures are embedded
in BERT representations to a striking extent.**

These results are visualized in Figs. 8 and 9. In Table 3, we
report our evaluation metrics for BERT, which significantly out-
perform in terms of UUAS (82.5) compared to our random
representation control (59.8) and a baseline that attaches each
adjacent word from left to right (48.9).

Likewise for parse depth, we find that the structural probe norm
reconstructs the dependency tree edge directions to a substantial
extent. Fig. 10 shows how predicted depths according to the probe
recreate the depths in a true parse tree. Quantitatively (Table 3),
the structural probe on BERT correctly identifies the root of the
sentence 90.1% of the time, above the baseline of 64.4%.

Related Emergent Properties
Our work here studying syntax and coreference is part of a grow-
ing body of work exploring what linguistic properties emerge in
BERT and related representations. Recent work on deep contex-
tual word representations follows an earlier literature examining
distributed representations of word types, with models including
latent semantic analysis (44) and neural network models such as
word2vec (12) and GloVe (Global Vectors) (13). These models
and investigation of them focused much more on lexical seman-
tics. In this section, we focus on probing methods, where a simple
supervised model is trained to predict a linguistic property from a
fixed representation being examined. We review insights gained
not only about BERT, but also about similar neural networks
such as ELMo (Embeddings from Language Models) (17).

‖See ref. 42 for more details on these evaluation metrics and Proj0.

**We determined and report the best results, taken from the 16th layer of the orig-
inal Google BERT large cased model (24 layers, 1,024-dimensional hidden layers, 16
attention heads per layer).

Syntax. Predating our attention and structural probes, early work
by Shi et al. (45) introduced the probing task of predicting the
label of the smallest phrasal constituent above each word in
the tree using its representation (similar to “Is this word in a
noun phrase, a verb phrase, or other?”). This method has been
extended (46, 47) to predicting the label of the dependency edge
governing a word (e.g., nominal subject, direct object, etc.), the
label of the edge governing the word’s parent, and so on. Pre-
dicting these labels requires information about how a word takes
part in the meaning of a sentence at multiple levels of hierar-
chy. Separately, it has been shown that the presence of individual
dependency edges can be predicted from probes on pairs of word
representations (47, 48).

Parts of Speech. Word tokens are categorized into classes like
nouns, adjectives, and adverbs. The same word can have differ-
ent parts of speech depending on context, as in “the guard sounds
(verb) the alarm upon hearing sounds (noun).” Several studies use
part-of-speech tagging as a probing task (48–51) and demonstrate
that BERT and related models encode information necessary for
predicting the part of speech of each word in context from its vec-
tor representation. Considerable part-of-speech information was
also available from context-free, word type-level embeddings like
word2vec and GloVe (12, 13), as shown by earlier probing work
(52), but the more recent studies additionally demonstrate the
ability of contextual word representations to encode information
about the rest of the sequence useful for disambiguating the part
of speech in context, as needed for the above example.

Morphology. Morphology concerns how the form and meaning
of words are derived from subword components, like how “runs”
is an inflected form of run, or “silversmith” can be decom-
posed into silver + smith. Morphological tagging requires the
prediction of properties like singular and third person for runs.
Such tagging is prevalent in languages with rich morphology like
Turkish, where one would predict definite, locative, singular for
garajın (of the garage). Conneau et al. (53) found that NLP sys-
tems encode information about the number (singular, plural)

Table 3. Results of structural probes on the WSJ SD test set
(baselines in the top half, models hypothesized to encode
syntax below)

Distance Depth

Method UUAS (%) DSpr. Root% NSpr.

Linear 48.9 0.58 2.9 0.27
Proj0 59.8 0.73 64.4 0.75
BERT 81.7 0.87 90.1 0.89
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Fig. 10. A sentence with human-annotated parse depths (gray circles) and BERT-predicted parse depths (blue squares). Reprinted with permission from ref.
42, which is licensed under CC BY 4.0.

of the subjects and objects of a sentence even when one repre-
sents the whole sentence as a single vector (as opposed to using
the vector representation of the subject and object to do so).
Belinkov et al. (54) ran probing experiments on neural machine
translation systems (like Google Translate), showing that they
implicitly learn a considerable amount of information about the
morphology of both the input language and the output language.

Semantics. Semantics refers to how language structures encode
information about events and ideas. Probing work has shown
that BERT and similar systems encode in each word represen-
tation information about the semantic role of each word in the
sentence, like agent (the “doer” of an action) and patient (the
thing the action is done to) (47, 48). There is also evidence that
finer-grained attributes, like whether a doer was aware it did the
action, also seem to be encoded (48).‡‡

Named entity recognition (NER) is a word-tagging task (like
part-of-speech tagging) which labels words as being part of a type
of named entity or not. For example, Apple would be labeled
organization, while Tim and Cook would be labeled person. Mul-
tiple studies have shown that the word representations of BERT
encode information about the category of words in NER (47, 48).

‡‡Results cover semantic dependencies (57), semantic role labeling, and semantic
protoroles (58).

Conclusion
We have demonstrated the surprising extent to which BERT, an
NLP representation learner trained via self-supervision on word
prediction tasks, implicitly learns to recover the rich latent struc-
ture of human language. This result has been demonstrated in
attention: how BERT looks at sentential context for encoding
a word. Separately, we found a similar result through struc-
tural probes on internal vector representations, showing that
the hierarchical tree structures of language emerge in BERT
vector space. That such rich information emerges through self-
supervision is surprising and exciting, with intriguing implications
for both NLP research and the logical problem of language
acquisition.

Data Availability. Code and most of the data to reproduce the
analyses in this paper are freely available at https://github.com/
clarkkev/attention-analysis and https://github.com/john-hewitt/
structural-probes (55, 56); the BERT models are freely avail-
able at https://github.com/google-research/bert (20). The syn-
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available under license from the Linguistic Data consortium at
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Natural Language Processing, L. Màrquez, C. Callison-Burch, J. Su, Eds. (Association
for Computational Linguistics, Stroudsburg, PA, 2015), pp. 1412–1421.

32. S. Sharma, R. Kiros, R. Salakhutdinov, Action recognition using visual attention.
arxiv:1511.04119 (14 February 2016).

33. K. Xu et al., “Show, attend and tell: Neural image caption generation with visual
attention” in Proceedings of the International Conference on Machine Learning,
F. Bach, D. Blei, Eds. (Proceedings of Machine Learning Research, Brookline, MA,
2015), pp. 2048–2057.

34. J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, Y. Bengio, “Attention-based mod-
els for speech recognition” in Advances Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett, Eds. (Curran Associates,
Red Hook, NY, 2015), pp. 577–585.

35. M. P. Marcus, B. Santorini, M. A. Marcinkiewicz, A. Taylor, Treebank-3. Linguistic
Data Consortium LDC99T42. https://catalog.ldc.upenn.edu/LDC99T42. Accessed 14
May 2020.

36. M. C. de Marneffe, B. MacCartney, C. D. Manning, “Generating typed dependency
parses from phrase structure parses” in LREC International Conference on Language
Resources and Evaluation, N. Calzolari et al., Eds. (European Language Resources
Association, Paris, France, 2006), pp. 449–454.

37. S. Pradhan, A. Moschitti, N. Xue, O. Uryupina, Y. Zhang, “CoNLL-2012 shared task:
Modeling multilingual unrestricted coreference in Ontonotes” in Joint Conference on
EMNLP and CoNLL – Shared Task, S. Pradhan, A. Moschitti, N. Xue, Eds. (Association
for Computational Linguistics, Stroudsburg, PA, 2012), pp. 1–40.

38. H. Lee et al., “Stanford’s multi-pass sieve coreference resolution system at the CoNLL-
2011 shared task” in Proceedings of the Conference on Computational Natural
Language Learning: Shared Task, S. Pradhan, Ed. (Association for Computational
Linguistics, Stroudsburg, PA, 2011), pp. 28–34.

39. A. Eriguchi, K. Hashimoto, Y. Tsuruoka, “Tree-to-sequence attentional neural machine
translation” in Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, K. Erk,
N. A. Smith, Eds. (Association for Computational Linguistics, Stroudsburg, PA, 2016),
pp. 823–833.

40. K. Chen, R. Wang, M. Utiyama, E. Sumita, T. Zhao, “Syntax-directed attention for
neural machine translation” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI Press, Palo Alto, CA, 2018), pp. 4792–4799.

41. E. Strubell, P. Verga, D. Andor, D. I. Weiss, A. McCallum, “Linguistically-informed
self-attention for semantic role labeling” in Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, E. Riloff, D. Chiang,
J. Hockenmaier, J. Tsujii, Eds. (Association for Computational Linguistics, Stroudsburg,
PA, 2018), pp. 5027–5038.

42. J. Hewitt, C. D. Manning, “A structural probe for finding syntax in word rep-
resentations” in Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
J. Burstein, C. Doran, T. Solorio, Eds. (Association for Computational Linguistics,
Stroudsburg, PA, 2019), pp. 4129–4138.

43. E. Reif et al., “Visualizing and measuring the geometry of BERT” in Advances in Neu-
ral Information Processing Systems 32, H. Wallach et al., Eds. (Curran Associates, Red
Hook, NY, 2019), pp. 8594–8603.

44. T. K. Landauer, S. T. Dumais, A solution to Plato’s problem: The latent semantic anal-
ysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev.
104, 211–240 (1997).

45. X. Shi, I. Padhi, K. Knight, “Does string-based neural MT learn source syntax?” in
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, J. Su, K. Duh, X. Carreras, Eds. (Association for Computational Linguistics,
Stroudsburg, PA, 2016), pp. 1526–1534.

46. T. Blevins, O. Levy, L. Zettlemoyer, “Deep RNNs encode soft hierarchical syntax” in
Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, I. Gurevych, Y. Miyao,
Eds. (Association for Computational Linguistics, Stroudsburg, PA, 2018), pp. 14–19.

47. N. F. Liu, M. Gardner, Y. Belinkov, M. E. Peters, N. A. Smith, “Linguistic knowledge
and transferability of contextual representations” in Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, J. Burstein, C. Doran, T. Solorio, Eds. (Association for
Computational Linguistics, Stroudsburg, PA, 2019), pp. 1073–1094.

48. I. Tenney et al., “What do you learn from context? Probing for sentence structure
in contextualized word representations.” https://openreview.net/pdf?id=SJzSgnRcKX.
Accessed 21 May 2020.

49. M. Peters, M. Neumann, L. Zettlemoyer, W. T. Yih, “Dissecting contextual word
embeddings: Architecture and representation” in Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, E. Riloff, D. Chiang, J.
Hockenmaier, J. Tsujii, Eds. (Association for Computational Linguistics, Stroudsburg,
PA, 2018), pp. 1499–1509.

50. N. Saphra, A. Lopez, “Understanding learning dynamics of language models with
SVCCA” in Proceedings of the Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, J. Burstein, C.
Doran, T. Solorio, Eds. (Association for Computational Linguistics, Stroudsburg, PA,
2019), pp. 3257–3267.

51. K. W. Zhang, S. R. Bowman, “Language modeling teaches you more syntax than trans-
lation does: Lessons learned through auxiliary task analysis” in Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, E. Riloff,
D. Chiang, J. Hockenmaier, J. Tsujii, Eds. (Association for Computational Linguistics,
Stroudsburg, PA, 2018), pp. 359–361.
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