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Planktonic microorganisms are ubiquitous in water, and their
population dynamics are essential for forecasting the behav-
ior of global aquatic ecosystems. Their population dynamics are
strongly affected by these organisms’ motility, which is gener-
ated by their hair-like organelles, called cilia or flagella. However,
because of the complexity of ciliary dynamics, the precise role
of ciliary flow in microbial life remains unclear. Here, we have
used ciliary hydrodynamics to show that ciliates acquire the
optimal propulsion efficiency. We found that ciliary flow highly
resists an organism’s propulsion and that the swimming veloc-
ity rapidly decreases with body size, proportional to the power
of minus two. Accordingly, the propulsion efficiency decreases
as the cube of body length. By increasing the number of cilia,
however, efficiency can be significantly improved, up to 100-fold.
We found that there exists an optimal number density of cilia,
which provides the maximum propulsion efficiency for all cili-
ates. The propulsion efficiency in this case decreases inversely
proportionally to body length. Our estimated optimal density
of cilia corresponds to those of actual microorganisms, includ-
ing species of ciliates and microalgae, which suggests that
now-existing motile ciliates and microalgae have survived by
acquiring the optimal propulsion efficiency. These conclusions
are helpful for better understanding the ecology of microorgan-
isms, such as the energetic costs and benefits of multicellularity
in Volvocaceae, as well as for the optimal design of artificial
microswimmers.
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S ince before humanity recognized the existence of microor-
ganisms about 300 y ago, microorganisms have played crucial

roles in the Earth’s ecosystem. For example, microorganisms
are at the bottom of the food chain, and phytoplankton pro-
duce nearly half of the world’s oxygen (1, 2). The population
dynamics of microorganisms can result from the interaction
between their motilities and ambient fluid flow (3–6). Motile
phytoplankton, for instance, exhibit shear-induced aggregation
in thin layers underwater (2), which causes the emergence
of red tide. Fluid mechanics also governs a wide range of
functions of aquatic microorganisms, from nutrient uptake to
fertilization (7–9). Microhydrodynamics is, thus, important for
establishing the population dynamics of aquatic microorganisms
(10–12).

On the scale of an individual, microorganisms live at low
Reynolds number (Re� 1), where inertia effects can be
neglected in describing their locomotion (13). Due to the
reversibility of low-Re flows, a reciprocal motion just results
in a change of sign in the velocity and cannot generate net
propulsion. Hence, ciliates use their hair-like organelles called
cilia and create an asymmetric waveform of individual cilia for
net propulsion (7). Cilia exhibit collective motions, so-called
metachronal waves, on the body surface (6), which enhance
the propulsion velocity (12). Because over 90% of energy dis-
sipation occurs within the ciliary envelope (14), metachronal
waves govern a ciliate’s propulsion velocity and its energetic
cost.

Motile microorganisms are morphologically diverse and have
a broad range of body sizes (1). For example, the green algae
Volvocaceae can live as individuals Chlamydomonas or multicel-
lular colonies Volvox (7, 15). The size of single-celled Chlamy-
domonas reinhardtii is less than 10 µm, and they swim by beating
two anterior flagella with a breaststroke motion. Multicellu-
lar Gonium forms an 8- to 16-celled convex plate colony with
a radius of 10 to 15 µm, while a spheroid of Volvox carteri
contains thousands of biflagellate somatic cells and is larger
than hundreds of micrometers. Larger ciliates tend to have a
larger number of motile cilia, but how is this number deter-
mined? Moreover, how are the multicellularity and evolution of
microorganisms affected by hydrodynamics? Due to the com-
plexity of ciliary dynamics, the precise roles of ciliary flow are
still unclear.

Here, we use ciliary hydrodynamics to show that ciliates
have optimal propulsion efficiency. We have developed a three-
dimensional model of motile ciliates incorporating individual
ciliary motions (14), which allows us to accurately calculate
hydrodynamics inside the ciliary envelope under free-swimming
conditions. We found that ciliary flow strongly resists an organ-
ism’s propulsion and that swimming velocity rapidly decreases
with body size: Velocity is proportional to size to the power of
minus two. Accordingly, propulsion efficiency decreases as the
cube of the body length. By increasing the number of cilia, how-
ever, the efficiency can be significantly improved, up to 100-fold.
We found that there exists an optimal number density of cilia,
which provides the maximum propulsion efficiency for all cili-
ates. The propulsion efficiency, in this case, decreases inversely
proportionally to the body length. Our estimated optimal density
of cilia corresponds to those of actual microorganisms, includ-
ing species of ciliates and microalgae (16–27), which suggests
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that now-existing motile ciliates and microalgae have survived by
acquiring optimal propulsion efficiency.

Flow around the Model Ciliate
Consider a ciliate swimming via individual ciliary motion in an
infinite fluid, which is otherwise at rest. Because Re scaled by
ciliary motion or swimming are much smaller than unity (Re ∼
10−2), we neglect the inertial effect. Details of the governing
equations and numerical method can be found in our published
paper (14) and SI Appendix. The time-dependent profile of each
ciliary motion vcilia is derived by the mathematical formula of Ful-
ford and Blake (28) (cf. Fig. 1A and SI Appendix). Neighboring
cilia beat collectively—i.e., a metachronal wave—and two types
of metachronal waves are employed (5, 10) (Fig. 1B): symplectic
(the beat direction and that of wave transmission coincide) and
antiplectic (the two directions are opposite). Cilia are located on
the vertices or element centers of the surface triangle meshes,
and they are distributed almost homogeneously (cf. Fig. 1B).
The surface triangles are made by repeatedly dividing the tri-
angles of icosahedron; one triangle was dividing into four small
triangles. The temporal velocity fields around a spherical cili-

ate with different metachronal waves are shown in Fig. 1C, for
2a/L= 20 and N = 636, where a is the body radius, L is the cil-
ium length, and N is the number of cilia (the results of in-phase
and prolate body cases are shown in SI Appendix). As shown
in the figure, undulating metachronal waves generate complex
fluid flows around the ciliate, and the ciliate exhibits oscillatory
motion (cf. Fig. 1 C and D). When the anterior-sided cilia beat
in effective strokes (t/T = 0.3 in the symplectic and t/T = 0.9
in the antiplectic waves), the swimming velocity becomes neg-
ative, while it is positive when the posterior-sided cilia have
effective strokes (t/T = 0.9 and t/T = 0.1, respectively). Dur-
ing the effective stroke, the mechanical power induced by the
ciliate also becomes large, as shown in Fig. 1E. Although the
ciliate shows back-and-forth motions, the time-integrated swim-
ming velocities are positive for both metachronal waves; thus, it
propels forward.

Here, we introduce a theory derived by Stone and Samuel (29)
in order to compare the swimming velocity. Let (v, q) be the
velocity and the traction force on the organism surface under
free-swimming condition. Also, let (v′, q′) be the solution for
translation of the same-shaped object with an external force F′.

Fig. 1. Swimming ciliate with two different metachronal waves. (A) Each cilium repeats effective and recovery strokes within the period (solid and dotted
lines, respectively). (B) A symplectic wave (Symp); the beat direction and that of wave transmission coincide, whereas the two directions are opposed in an
antiplectic wave (Anti). Red indicates the effective stroke. (C) Flow field around the ciliate (Lab frame); red represents the flow magnitude. (D and E) Time
change of swimming velocity and power with two different metachronal waves. For the comparison with Stone and Samuel (29), analytical predictions are
also plotted as square symbols in D. Time t is normalized by the period T .
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The reciprocal theorem provides a relationship between (v, q)
and (v′, q′), as follows:∫

q′ · vdS =

∫
q · v′dS , [1]

where S is the surface of the organism, including the ciliary sur-
face. The surface velocity of the organism can be decomposed
into a translational velocity U and a ciliary motion vcilia—i.e.,
v = U + vcilia. Using v′= U and the force-free condition, the
right-hand side of Eq. 1 can be vanished, and we have

F′ ·U =−
∫

q′ · vciliadS . [2]

Due to axisymmetry of the swimmer, force and velocity compo-
nents perpendicular to the swimming direction are zero; F ′y =
F ′z =Uy =Uz = 0, and Eq. 2 can be rewritten as

Ux =−
∫

q′ · vciliadS/F ′x . [3]

Analytical predictions of Eq. 3 are also plotted in Fig. 1D (square
symbols). We see that our numerical results always coincide with
the analytical predictions.

Swimming Efficiency with Constant Number of Cilia.
We next investigate the swimming velocity, power, and efficiency
for various body sizes, keeping L and N constant (cf. Fig. 2A).
As shown in Fig. 2B, drag coefficient F̄ Ū−1 is proportional to
the body radius a , where F is the drag force, U is the swimming
velocity, and the bar indicates the time average. The drag force,
thus, can be scaled as F ∝ aU , which corresponds to the Stokes’
drag law. However, by increasing a , swimming velocity rapidly
decreases, with slope of about minus two, as shown in Fig. 2C.
This result may be counterintuitive, because Stokes’ law states
that viscous drag is proportional to a , rather than a2. To clarify
the mechanism, we introduce a theoretical model of spherical
stress-given squirmer, which prescribes a mean tangential shear
stress slightly above the body surface to express the ciliary forces.
The model details can be found in appendix A in Ishikawa et al.
(30), so we explain them only briefly here.

There is a no-slip boundary at r = a , where a is the radius
of the body, and uniform tangential stress fθ is applied to the

Fig. 2. Scaling with the body length under the condition of constant number of cilia N. (A) The body length changes from 2a/L = 10 to 30. (B) Drag
coefficient. (C) Time-averaged swimming velocity. (D) Time-averaged power. (E) Swimming efficiency with different metachronal waves. a is the body radius,
F is the drag force, U is the swimming speed, L is the ciliary length, µ is the viscosity, and T is the period.
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fluid at radius a0 = a +L. The squirmer swims freely in the θ= 0
direction, so the force and torque exerted on it by the fluid are
zero, where θ is the polar angle relative to the squirmer. The
boundary condition at r = a are vr = vθ = 0, where vr and vθ are
the velocity in the r , θ directions, respectively. At r = a0, con-
tinuity of vr , vθ , and the normal stress −p +σrr are assumed,
where p is the pressure, and σ is the stress tensor. The stress
jump ∆σrθ at r = a0 is given by fθ . Then, the problem is solved
with respect to unknown U under given fθ condition. Con-
sider the flow in two regions; inside the ciliary layer, a < r <
a0, and outside the ciliary layer, a0< r <∞, and represent it
by stream functions ψ(i)(r , θ), i = 1 and 2, respectively. The
solution of the axisymmetric Stokes equation in each layer is
given by

ψ(1) =

∞∑
n=1

1

2
sin θVn(θ)

[
A(1)

n

(a0
r

)n−2

+B (1)
n

(a0
r

)n
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n
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,

and

ψ(2) =−1

2
Ur2 sin2 θ+

∞∑
n=1

1

2
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where Vn(θ) = 2
n(n+2)

sin θP ′n(cos θ), Pn is the Legendre poly-

nomial, and A
(i)
n , B

(i)
n , C

(i)
n , and D

(i)
n are constants of the

polynomial. U is the unknown swimming speed, and the first
term in Eq. 5 represents the uniform stream at infinity, relative
to the squirmer, and C

(2)
n and D

(2)
n are zero for all n , so the con-

tribution to the velocity at infinity tends to zero. Moreover, A(2)
1

is also zero, because this is the Stokeslet term, proportional to
the net force on the sphere, which is zero. The constant fθ can be
also expanded in a series of the Vn , where fθ is the same constant
on both sides and could be canceled.

fθ = fθ

∞∑
n=1

FnVn(θ), [6]

where F2m = 0, and F2m+1 = (4m + 3)Γ(m + 1
2
)Γ(m + 3

2
)/

4Γ(m + 1)Γ(m + 2). The swimming speed U is given by the first
mode of the equation; hence, we need to use only the n = 1
terms; for example, the relevant contribution to fθ is F1 = 3π/8.
The constants A

(1)
1 , B (1)

1 , C (1)
1 , D(1)

1 , and B
(2)
1 are determined

by the boundary conditions, and the result can be written as:

U =
πfθL

µ

4ε2 + 9ε+ 6

24(1 + ε)
, [7]

where ε=L/a . Taking the limit of ε→ 0, the swimming speed U
converges to a constant value, if the stress fθ is constant. How-
ever, when the number of cilia is constant, total ciliary force
is fixed, the density fθ decreases as the radius increases, and
the swimming speed should decay U ∝ a−2. Theoretical solu-
tion also predicts that swimming speed decreases as the power of
minus two when the total ciliary force is fixed: This agrees with
our numerical results.

Fig. 3. Effects of number of cilia. (A and B) Flow around the ciliate in effective stoke. The color represents the flow magnitude. (C) Averaged swimming
velocity; the body length is fixed to 2a/L = 20. C, Inset indicates the power as a function of N. (D and E) Swimming efficiency with various N and body radius
a. Filled symbols indicate the maximum efficiency. Anti, antiplectic; symp, symplectic.
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The mechanical power P in the free-swimming condition is
defined as (14):

P =

∫
q · (U +Ω∧ r̂)dA [8]

+

N∑
i

∫
f · (U +Ω∧ r̂ + vcilia)dsi ,

where A is the spherical body surface, s is the archlength along
with the cilium, q is the traction on the spherical surface, f is the
force density along the cilium, U and Ω are the translational and
angular velocities (Ω is zero due to axisymmetry of the problem),
vcilia is the prescribed velocity of cilia, and N is the number of
cilia. When the number of cilia is constant, the mechanical power
is almost invariant to the body radius a , as shown in Fig. 2D,
because the second term in Eq. 8 is ∼100 times larger than the
first term.

We then investigate the swimming efficiency of the model cil-
iate. The swimming efficiency is defined as η= F̄ Ū /P̄ , where F̄
and Ū are the time-averaged drag force and swimming speed,
respectively, and P̄ is the mechanical power input from the
ciliate to the fluid. With L and N constant, η decreases approx-
imately as FU /P ∝ aU 2∝ a−3 (Fig. 2E). This result indicates
that larger ciliates are disadvantageous in terms of propulsion
energy. Actual ciliates, however, have a broad range of body
sizes, despite large ones apparently being inefficient. This fact
raises another question: What kind of strategy do ciliates use
to increase their body size? In the next section, we attempt to
answer this question by varying N on the body surface.

Multiple Cilia Improve Efficiency
The effects of N on U and P are shown in Fig. 3C. The body
length is fixed to 2a/L= 20 in all cases (the results of different
body size and metachronal wave are displayed in SI Appendix).
By increasing N , both U and P increase with a slope of one in
the small-N regime, regardless of the metachronal wave mode.
In the large-N regime (> 103), however, with a symplectic wave,
U almost saturates to a constant value, while with an antiplec-
tic wave, it still shows a linear relationship. For an antiplectic
wave, neighboring cilia spread out during the effective stroke,
as shown in Fig. 3B. Thus, the ciliary force efficiently transmits
to the surrounding fluid, and U becomes large, even for large N .
However, with a symplectic wave, neighboring cilia come close to
each other during the effective stroke (Fig. 3A). The surrounding
cilia interfere with transmission of ciliary force to the fluid, and
flow in the ciliary layer is strongly disturbed. Cilia-induced flow
impedes the ciliate’s propulsion, and U is no longer proportional
to N for large values.

In Fig. 3 D and E, the efficiency η for various body sizes and
metachronal waves is shown (the results of prolate body is shown
in SI Appendix). We see that η has a peak at a particular value of
N , and the peak value of η tends to decrease with body size. The
optimal interciliary distances for different metachronal waves are
shown in Fig. 4C. Ciliary distance ∆r is defined as (4πa2/N )1/2,
where a is the radius, and N is the number of cilia. The opti-
mal interval ∆r opt is almost invariant with body size, although it
does depend on the wave mode: The interval for the antiplectic
wave is ∆r opt/L∼ 0.23, five times smaller than in the symplectic
case. Blake (31) analytically derived the optimal ciliary distance
and reported η to be maximum at ∆r opt/L= 0.25 for antiplectic
waves. Thus, our results agree with the theoretical predictions,
although the boundary conditions are different between the two

Fig. 4. Scaling of the optimal swimmer with the body length: optimal power (A), optimal swimming speed (B), and optimal interval between cilia (C), which
is defined as (4πa2/N)1/2, where a is the body radius, and N is the number of cilia. Anti, antiplectic; symp., symplectic.
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Fig. 5. Comparison with various types of swimmers. (A) Efficiency of sperm-
type swimmers, bacteria-type swimmers, and ciliates. Typical length ratio of
human sperm and E. coli are indicated. Filled symbols represent the results
of ciliates with optimal efficiency, while open symbols are the results of
sperm-type or bacteria-type swimmers. (B) Number of cilia as a function of
body length; optimal number of cilia (filled symbols) increases with (a/L)2,
which coincides with species of microalgae and ciliates found in nature
(open circles).

studies [the cilia are embedded on a moving rigid sphere in this
study, whereas they are on an infinite flat plane in Blake (31)].
These results suggest that the number of cilia N increases with
a2 in the optimal swimming. Accordingly, the optimal power
increases with a2 (cf. Fig. 4A), since the power is scaled by N . On
the other hand, optimal swimming speed is almost invariant with
the body size (cf. Fig. 4B). Such a tendency coincides with the
constant fθ condition in Ishikawa et al. (30). The optimal swim-
ming efficiency then can be scaled as a(U opt)2/Popt' a−1 (cf.
Fig. 5A), though η∝ a−3 in the fixed N conditions. These results
illustrate that the hydrodynamic interactions among motile cilia
govern the ciliate’s dynamics, and multiple cilia can enhance the
efficiency η.

We now compare η for various types of microswimmers: bac-
teria, sperm, and ciliate-type swimmers. The bacterial model has
a helical rigid flagellum, and it can propel by rotating the flag-

ellum (32), while the sperm model can swim forward by beating
a flagellum like a whip (33) (geometrical data are shown in SI
Appendix). In Fig. 5A, η of the three types of swimmers as a
function of their body size (head size for the sperm model) are
shown. Note that the optimal η of the ciliate model is also plot-
ted in the figure. In the small body-length regime (2a/L≤ 10−1),
η becomes large for both the bacteria and sperm models. Typi-
cal sizes of Escherichia coli and human sperm are also plotted
in the figure, which indicate that E. coli and human sperm exist
in the high-η regime. As body size increases, η of bacteria and
sperm rapidly decrease, approximately as (a/L)−3 in the large-a
regime. In the ciliate model, however, the optimal η is propor-
tional to (a/L)−1, even in the large-body regime. This result
suggests that η is dramatically enhanced by multiple cilia on the
body. Such a strategy should be helpful for ciliates to evolve into
larger forms.

We here compare mechanical power and physiological meta-
bolic rate. In Katsu-Kimura et al. (8), they investigated stan-
dard metabolic rate of an unicellular ciliate, Paramecium, by
measuring oxygen-consumption rate, which was estimated as
3.28 × 10−10 J·s−1·cell−1. We assume the body length to be
2a/L= 10, the cilium length L = 10 µm, the frequency 30 Hz,
and the viscosity 10−3 Pa·s, the optimum mechanical power
would be 1.26× 10−11 J·s−1. Thus, the power for locomotion
should be much smaller than the physiological metabolic rate;
3.8% of oxygen consumption may convert to the mechanical
power.

Lastly, we show the optimal number density of cilia, which
maximizes η, and compare the results with actual microorgan-
isms. Fig. 5B shows N for achieving the optimal η. Because
the optimal interciliary distance is almost constant in all cases,
the optimal value of N is proportional to (a/L)2, regardless
of the metachronal wave mode. The parameters of actual cili-
ates (Blepharisma, Loxodes, Paramecium, and Tetrahymena) and
Volvocaceae (Chlamydomonas, Gonium, Eudorina, Pleodorina,
and Volvox) are also plotted in Fig. 5B (morphological data are
taken from refs. 16–27). N of actual microorganisms increases
roughly with (a/L)2, so we can confirm quantitative agreement
between our prediction and actual microorganisms. Drescher
et al. (34) stated that V. carteri consists of thousands of
biflagellated somatic cells, and cilia are arranged in rows.
In other species—Tetrahymena, for instance—somatic cilia are
also arranged into longitudinal rows (25). To see the effect
of placement of cilia, we calculate the swimming efficiency
with cilia arranged in the spherical coordinate, and results are
shown in SI Appendix. We confirm that the maximum effi-
ciency is achieved when cilia are distributed homogeneously.
The resultant maximum efficiency is similar to Fig. 5A, and
the optimal number of cilia is proportional to (a/L)2, even
when cilia are arranged in the spherical coordinate. We con-
clude, therefore, that motile microorganisms in nature have
achieved the optimal η by acquiring the optimal N on their body
surfaces.

Data Availability. All study data are included in the article and SI Appendix.
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