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In recent years, the prevalence of carbapenem-resistant Entero-
bacteriaceae (CRE) has risen substantially, and the study of CRE
resistance mechanisms has become increasingly important for an-
tibiotic development. Although much research has focused on ge-
nomic resistance factors, relatively few studies have examined CRE
pathogens through changes in gene expression. In this study, we
examined the gene expression profile of a CRE Escherichia coli
clinical isolate that is sensitive to meropenem but resistant to
ertapenem to explore transcriptomic contributions to resistance
and to identify gene knockdown targets for carbapenem potenti-
ation. We sequenced total and short RNA to analyze the gene ex-
pression response to ertapenem or meropenem treatment and
found significant expression changes in genes related to motility,
maltodextrin metabolism, the formate hydrogenlyase complex, and
the general stress response. To validate these findings, we used our
laboratory’s Facile Accelerated Specific Therapeutic (FAST) plat-
form to create antisense peptide nucleic acids (PNAs), gene-
specific molecules designed to inhibit protein translation. PNAs
were designed to inhibit the pathways identified in our transcrip-
tomic analysis, and each PNA was then tested in combination
with each carbapenem to assess its effect on the antibiotics’ min-
imum inhibitory concentrations. We observed significant PNA–
antibiotic interaction with five different PNAs across six combi-
nations. Inhibition of the genes hycA, dsrB, and bolA potentiated
carbapenem efficacy in CRE E. coli, whereas inhibition of the
genes flhC and ygaC conferred added resistance. Our results iden-
tify resistance factors and demonstrate that transcriptomic anal-
ysis is a potent tool for designing antibiotic PNA.

carbapenem-resistant Escherichia coli | transcriptome | short RNA
sequencing | genome sequence | antibiotic resistance

In recent years, the emergence of carbapenem-resistant Enter-
obacteriaceae (CRE) has been marked by the World Health

Organization as a critical priority for antibiotic development (1).
Resistance to carbapenems, a subclass of the cell wall-targeting
β-lactams that are often termed antibiotics of last resort, has
become increasingly common in recent decades (2–4), resulting
in rising threats of infection mortality (5, 6). In 2017, the Centers
for Disease Control and Prevention estimated that, in the United
States, 13,100 infections and 1,100 deaths per year were caused
by CRE alone (7). Our study uses transcriptomics to better un-
derstand carbapenem resistance in a clinical isolate of multidrug-
resistant (MDR) Escherichia coli (referred to from here as E. coli
CUS2B), which is resistant to ertapenem but sensitive to dor-
ipenem and meropenem. Further, we use this transcriptomic
analysis to design methods to combat the development of resis-
tance. Each of these aims is facilitated by the application of our
Facile Accelerated Specific Therapeutic (FAST) platform, a
semiautomated pipeline for the design, synthesis, and testing of
antisense peptide nucleic acids (PNAs), which allow for the
sequence-specific knockdown of target genes. Here, PNAs allow
us to validate our conclusions from our transcriptomic analysis
and to restore carbapenem susceptibility to a CRE clinical isolate.
Many prior studies have sought to understand carbapenem

resistance via the analysis of protein binding, mutation, and

abundance. Structural modifications, particularly a trans-α-1-
hydroxylethyl substituent at position 6, are believed to endow
carbapenems with higher stability against β-lactamases and
broader observed efficacy compared with other β-lactam drugs
(8, 9). However, the increasing prevalence of carbapenemase
enzymes in Enterobacteriaceae—such as oxacillinase-48, metallo-
β-lactamases, and Klebsiella pneumoniae carbapenemases, which
have been disseminated widely via plasmid conjugation (10)—
provides mechanisms for the development of resistance, as these
enzymes possess broad hydrolyzing activity against numerous
β-lactams, including carbapenems (2, 4). Furthermore, multiple
studies have found that pathogenic bacteria that do not possess
carbapenemases may still acquire carbapenem resistance, and
ertapenem resistance in particular, through the overproduction
of extended-spectrum β-lactamases (ESBLs)—including both
plasmid-encoded ESBLs and extended-spectrum chromosomal
AmpC—when coupled with outer membrane porin deficiencies
that discourage drug uptake (8, 11–13). Prior research has also
shown that carbapenem resistance may be acquired through the
expression of low-affinity or mutated penicillin-binding proteins
(PBPs) (14, 15), the substrates for carbapenem action, or
through the overproduction of efflux pumps (16, 17), which ac-
tively remove antibiotics from the bacterial cytoplasm.
Although fewer in number, other studies have sought to under-

stand resistance by sequencing the transcriptome of carbapenem-
resistant pathogens. Two studies on the gene expression profile
of carbapenem-resistant Acinetobacter baumannii found significant
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up-regulation of transposable elements, recombinase, and other
mutation-encouraging factors, in addition to the expected up-
regulation of efflux pump and β-lactamase genes (18, 19). Four
recent studies that examined transcriptomic profiles of CRE—
Enterobacter cloacae, K. pneumoniae (two studies), and E. coli—
identified less consistent responses, although down-regulation of
porin genes and up-regulation of cell survival and β-lactamase
genes were observed (20–23). Of this prior research, only one
study (20) attempted to evaluate the transcriptomic response of a
resistant Enterobacteriaceae strain under antibiotic challenge, the
others examining only the constitutive gene expression levels of
an untreated resistant pathogen.
Antisense technology offers an avenue for progress in such

transcriptomic work, and likewise, transcriptomics offers targets
for antisense antibiotics. As bacterial genome sequencing has
become more accessible in recent years, nuclease-resistant anti-
sense technologies—such as PNA and phosphorodiamidate
morpholinos—have shown promise in targeting MDR pathogens,
by binding to messenger RNA (mRNA) to inhibit translation of
essential proteins for fatty acid synthesis (24) and cell division (25),
as well as known resistance factors like β-lactamases (26, 27).
However, a limitation of this approach, in which antisense mole-
cules are designed against established gene targets, is the require-
ment that the genome of the pathogen in question be well
characterized in terms of either gene essentiality or the presence of
resistance genes. Measuring changes in gene expression presents an
alternative semi-“black box” approach for finding such targets.
Although transcriptomic analysis has recently been used to design
antisense therapy against mammalian tumors (28), this approach
has yet to be used for inhibiting bacterial growth or antibiotic
resistance.
In this study, we demonstrate the utility of transcriptomics both

as a tool to understand the role of transient gene expression in
carbapenem resistance and as a strategy to discover gene tar-
gets to counter carbapenem resistance. To do this, we examined
the short-term (<1-h) transcriptomic response, using both total
and short RNA sequencing, of E. coli CUS2B to ertapenem and
meropenem treatment. We identified genes that were poten-
tially important to the phenotype and used our FAST platform

to design and synthesize PNA molecules that bind to each gene’s
corresponding mRNA and inhibit translation. Growth and cell
viability assays of PNA–carbapenem combination treatments
were used to validate each gene’s relevance to the resistance
phenotype and to determine whether PNA designed using
transcriptomics could make E. coli CUS2B susceptible to sub-
minimum inhibitory concentration (sub-MIC) of carbapenem
treatments.

Results
E. coli CUS2B: An MDR Enterobacteriaceae with Partial Carbapenem
Resistance. E. coli CUS2B was obtained from the University of
Colorado Hospital Clinical Microbiology Laboratory’s organism
bank. To validate the E. coli CUS2B resistance phenotype ob-
served in the clinic, we measured the isolate’s MICs for a variety
of antibiotics from different classes (Fig. 1A and SI Appendix,
Fig. S1). We found that E. coli CUS2B was resistant to almost all
antibiotics [based on break points defined by the Clinical and
Laboratory Standards Institute (29)], including multiple penicillins
and ertapenem. Two potent carbapenem antibiotics, mer-
openem and doripenem, were the only drugs to which the
clinical isolate was susceptible. To investigate this partial car-
bapenem resistance, we focused on the E. coli CUS2B response
to ertapenem and meropenem. The structures of meropenem
and ertapenem differ in the pyrrolidinyl ring’s position 2 side
chain (Fig. 1B). Meropenem’s substituent amide group is
thought to be responsible for increased potency against gram-
negative organisms in comparison with imipenem (30). At this
position, ertapenem has a benzoate substituent group, which
imbues the molecule with a net negative charge and increases
its lipophilicity, resulting in increased plasma half-life but de-
creased affinity for membrane porins (31).

Resistance Factor Identification via Whole-Genome Sequencing. We
performed whole-genome shotgun sequencing for two purposes:
1) to create a genome assembly that could be used for antisense
PNA design and 2) to search for genomic contributions to the
resistance phenotype. Using the Antibiotic Resistance Gene
ANNOTation (ARG-ANNOT) database (32), we found that the

A C

B

Fig. 1. Resistance profile and resistance genes of E. coli CUS2B. (A) MIC of E. coli CUS2B for 18 antibiotics. The concentrations are shown normalized to the
Clinical & Laboratory Standards Institute (CLSI) resistance break point for each of three replicates. Values greater than or equal to one indicate resistance,
while values less than one indicate intermediate resistance or susceptibility. (B) Structure of meropenem and ertapenem. (C) Antibiotic resistance genes
identified in CU2SB from whole-genome sequencing data. Solid lines: antibiotics to which the gene product confers resistance; dotted lines: antibiotics to
which the gene product binds but has not been shown to hydrolyze.
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strain encodes 15 genes related to antibiotic resistance (Fig. 1C),
including 6 associated with β-lactams either as PBPs or β-lactamase
enzymes. Four of these six—PBP2, PBP4B, ampH, and ampC—are
encoded chromosomally and have high similarity with their ho-
mologs in E. coli reference strain MG1655 (SI Appendix, Table S1).
PBP2 is known to bind both carbapenems tested and is the PBP
with which meropenem and ertapenem demonstrate greatest ac-
tivity (33–35). Neither PBP4B nor AmpH have been found to bind
with carbapenems. The gene ampC encodes a β-lactamase enzyme
that can contribute to an elevated carbapenem MIC when over-
expressed by Enterbacteriaceae strains (16). The E. coli CUS2B copy

of this gene has 10 altered amino acids from the reference sequence
(SI Appendix, Table S1), and its −35 to −10 promoter region has
four mismatched nucleotides from the same promoter region in
MG1655, which could affect its expression level relative to the basal
nonresistant levels in the reference strain. The remaining two
genes, β-lactamases TEM-135 and CMY-44, are plasmid encoded,
but neither have been associated with carbapenem resistance (36).
We did not identify any gene encoding a carbapenemase or ESBL.
E. coli CUS2B also encodes the outer membrane porins

OmpA, OmpC, and OmpF, the mutation or down-regulation of
which may influence carbapenem efficacy (21, 37). These three

A

B

C

D

Fig. 2. Total RNA sequencing uncovers ertapenem (ERT) response and identifies motility genes as resistance factors. (A) Overview of the sample collection
protocol for RNA sequencing. Exponential-phase cells were grown with no antibiotic (NT), meropenem (MER), or ERT and collected after 0 (NT only), 30, and
60 min of growth in CAMHB. Two biological replicates were sampled for each condition. (B) Hierarchical clustering of gene expression values in ERT- and MER-
treated E. coli CUS2B. Values are log2(fold change), with respect to the corresponding no treatment duplicates at the same time point. For visual clarity, the
heat map has been standardized such that the mean is zero and the SD is one across each gene (each row). (C) The Venn diagram shows the degree to which
significantly DE genes (expression levels compared with the no treatment condition at the given time point) overlapped across the four different conditions.
Smaller pop outs are shown below to indicate overlaps on the main diagram diagonals. tRNA: transfer RNA; MFS: major facilitator superfamily; FAD: flavin
adenine dinucleotide. (D) Time course of gene expression changes for the five transcripts that were explored further using PNA experiments. All conditions
are normalized to the 0-min time point expression levels for the respective replicate, measured in duplicate just before antibiotic treatments were introduced.
Asterisks indicate significant DE (q < 0.05) vs. the no treatment condition at the corresponding time point.
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proteins have 95, 90, and 90% nucleotide homology, respec-
tively, with the corresponding genes in E. coli MG1655.

Profiling Gene Expression in Response to Ertapenem and Meropenem
Treatment. To explore possible transcriptomic contributions to
the strain’s carbapenem resistance profile, we exposed expo-
nentially growing E. coli CUS2B to ertapenem and meropenem
and examined gene expression profiles after 30 and 60 min of
treatment (Fig. 2A). This exposure time was selected based on
observations from others that 30 to 60 min is favorable for lo-
cating gene expression changes specific to antibiotic exposure
(38, 39). The short time frame also greatly reduces the likelihood
that the gene expression signal will be confounded by the emer-
gence of one or more mutant genotypes. E. coli CUS2B was diluted
1:20 from overnight cultures and grown for 1 h to exponential phase
prior to treatment with 2 μg/mL of ertapenem or 1 μg/mL of
meropenem. Each carbapenem concentration is half of that re-
quired to eradicate E. coli CUS2B under these culture conditions
(conditions differ from Fig. 1A, MIC assay; SI Appendix, Fig. S2).
We identified differentially expressed (DE) genes by comparing

the RNA-sequencing data from ertapenem- and meropenem-
treated samples with an untreated control at the same time point
(Dataset S1A). The DESeq R package (40) was used to evaluate
significance and correct the significance statistic for multiple
hypothesis testing (Materials and Methods). DE genes were
identified using a q-value threshold of 0.05. General expression
trends were evaluated using hierarchical clustering across genes
and conditions (Fig. 2B and SI Appendix, Fig. S3). Conditions
were found to cluster by time point rather than antibiotic, which
suggests a generalized and transient antibiotic response. In our
analysis, we detected 41 transcripts that were DE in both treat-
ments after 30 min of exposure (Dataset S1H), 6 transcripts that
were DE in both antibiotics after 60 min of exposure (Dataset
S1I), and 6 transcripts that were DE in both treatments at 30 and
60 min (Fig. 2C).
Of these six genes with consistent differential expression, two,

flhC and flhD, code for components of the transcriptional regulator
FlhDC, which is responsible for regulating motility-associated
functions such as swarming and flagellum biosynthesis (41). Both
flhC and flhD genes were significantly down-regulated at 30 and
60 min (Fig. 2D). Perhaps relatedly, motility-associated gene
ontology (GO) terms (GO:0040011: locomotion; GO:0071918:
bacterial-type flagellum-dependent swarming motility) were sig-
nificantly overrepresented within the 30-min overlapping set,
accounting for 26 of the total 41 genes (SI Appendix, Table S2).
All 26 were down-regulated. This effect was diminished by 60 min,
with only flhC, flhD, and fliC [the gene encoding flagellin (42)]
remaining significantly down-regulated.
The gene ivy, an inhibitor of bactericidal vertebrate lysozymes

(43), was up-regulated in both treatments at 30 and 60 min. Both
lysozymes and carbapenems disrupt peptidoglycan polymeriza-
tion, although ivy is not known to interact with these antibiotics.
Three other transcripts of unknown function were up-regulated
in all conditions: BTW13_RS03610 (ymgD superfamily),
BTW13_RS11940 (DUF1176 superfamily), and a transcript an-
tisense to BTW13_RS17895 (putative lipoprotein, DUF1615
superfamily).
In the ertapenem response, we find many more DE genes than

in the meropenem response, including 38 DE genes shared be-
tween the two time points (compared with none shared across
both meropenem time points). Within this set, we observed
significant overrepresentation of genes related to maltodextrin
transport (mal operon, GO:0042956), under the control of the
malT regulator, and the ferredoxin hydrogenase complex (hyc
operon, GO:0009375), under the control of the hycA regulator
(Fig. 2D) (44). All of these overrepresented genes were found to
be up-regulated in ertapenem treatments, although the malT
regulator itself was not found to be significantly DE between

treatments (malG expression is shown in Fig. 2D as represen-
tative of the mal operon expression pattern). Only three genes
were down-regulated in ertapenem at both 30 and 60 min: lptG, a
member of the lipopolysaccharide transport system; phoH, an
adenosine triphosphate (ATP)-binding protein; and cstA, a
starvation-induced peptide transporter. Of the genes specific to
the meropenem response, only the flagellar biosynthesis proteins
fliQ and fliT are related, and the down-regulation of these genes
did not continue to the 60-min time point.
We also searched for differential expression in outer mem-

brane porin operon (omp) genes, previously linked to carbape-
nem resistance (21, 37), and resistance-related genes identified
by ARG-ANNOT. Of the omp operon, only ompF was found to
be significantly DE in any condition with respect to no treatment
(down-regulated in meropenem, 30 min) (SI Appendix, Fig. S4),
while ompA and ompC expression was not significantly different
from the control in any condition. When expression levels of the
ertapenem and meropenem experiments were directly compared
at each time point, none of the three genes were found to be
significantly DE. No resistance-related genes were DE in any
condition (Dataset S1A and SI Appendix, Fig. S5).
Based on these observations, we chose three genes to target

using PNA: hycA, malT, and flhC (Fig. 2D). The former two genes
were chosen to probe the hyc andmal operons for their importance
to resistance and their utility as antibiotic potentiation targets. The
gene flhC was chosen to validate the consistent down-regulation
of the FlhDC system and evaluate whether further knockout of
the gene would confer greater carbapenem resistance.

Differential Expression of Short RNA Transcripts. Next, we per-
formed RNA sequencing in which shorter transcripts were
enriched to search for resistance contributions and potential
FAST PNA targets among short nucleic acids and small RNA
(sRNA). sRNA have been previously shown to influence bacte-
rial stress and antibiotic response (45, 46). We used an RNA
isolation protocol designed to enrich for sRNA (Materials and
Methods) prior to sequencing, and sequencing data were aligned
to the E. coli UMN026 genome (the reference that maximized
alignment homology) using the Rockhopper (47) pipeline, which
allowed for identification of short RNA transcripts, as well as
documented sRNAs.
We observe more overlap of DE genes between single time

points than between respective antibiotic treatments, suggesting
a generalized and transient response similar to that of total RNA
expression (Fig. 3A and Dataset S2A). We find 22 short RNA
transcripts to be DE in at least two of the four conditions (Fig. 3B),
including known regulatory sRNAs (DicF, SsrA), annotated short
protein-coding genes (ilvB, acpP, bolA, csrA, ihfA, lspA), small pu-
tative protein-coding genes (dsrB, yahM, ybcJ, ygdI, ygdR, ytfK),
small transcripts antisense (AS) to coding genes [ygaC (AS), hemN
(AS), ECUMN_1534/5 (AS)], and predicted transcripts.
From these lists, we chose three genes to investigate with

FAST PNA: bolA, dsrB, and ygaC. bolA was chosen based on its
relation to PBPs, AmpC (48), and the cellular stress response
(49), whereas the latter two were chosen to discriminate between
the two carbapenem responses. The transient gene expression
for bolA and dsrB is presented in Fig. 3C. We found bolA to be
up-regulated in meropenem and ertapenem at 60 min, which
may indicate that both antibiotics are being detected and able to
activate bolA, but the subsequent response is only effective
against ertapenem. dsrB was up-regulated in ertapenem at both
time points but in meropenem, only at 30 min. Although the
function of dsrB is unknown, it is controlled by σS, the general
stress response and stationary-phase σ factor (50). Also shown in
Fig. 3C is the transient gene expression for the RNA transcript
antisense to ygaC (the gene itself was not found to be DE). This
antisense transcript was up-regulated in meropenem at both time
points but was not detected in ertapenem-treated populations.
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The function of ygaC is unknown, but it is controlled by the Fur
transcriptional dual regulator (51).

PNA Antisense Inhibition of RNA-Sequencing Targets. The FAST
platform comprises Design, Build, and Test modules for the
creation of antisense PNA (Fig. 4A). In this study, we began our
design process using transcriptomic data to generate a list of
target genes, which together with a whole-genome assembly and
genome annotation, were used as inputs for the FAST tool PNA
Finder. This tool was used to design multiple antisense PNA
candidates for each gene target, with 12-mer sequences—a length
that seeks to optimize both specificity (52, 53) and transmem-
brane transport (54)—that were complementary to mRNA
nucleotide sequences surrounding the translation start codon.
PNA Finder then filtered this set of candidates to minimize the
number of predicted off targets within the E. coli CUS2B ge-
nome, to maximize solubility, and to avoid self-complementing
sequences (Materials and Methods). For the FAST Build mod-
ule, a single PNA for each gene target was selected and syn-
thesized using fluorenylmethoxycarbonyl (Fmoc) chemistry,
with a cell-penetrating peptide (CPP) composed of lysine and
phenylalanine ((KFF)3K) attached at the N terminus to im-
prove transport across the bacterial membrane. These PNAs
were then tested in E. coli CUS2B cultures in combination with
each carbapenem (three replicates for each condition) to de-
termine whether the two treatments would interact as pre-
dicted. A two-way ANOVA test was used to assess interaction
significance, and normalized S values (Materials and Methods)

were used to compare the observed growth with the expected
growth, as predicted by the Bliss Independence Model for drug
combinations (55).
Based on the results of our transcriptomic analysis, we se-

lected three genes identified by our total RNA-sequencing
analysis (hycA, malT, and flhC) and three genes identified by
our short RNA-sequencing analysis (bolA, dsrB, and ygaC) to be
targeted by FAST PNA. Differential expression of flhC and bolA
was observed in both carbapenems, while differential expression
of hycA, dsrB, and the operon controlled by malT was prevalent
in the ertapenem response. The transcript antisense to ygaC was
up-regulated in both meropenem conditions, but the gene itself
was not DE. While we suspect that the ygaC antisense transcript
may regulate the gene ygaC, it has not been shown that PNA
binding can interfere with antisense regulation. With this in
mind, rather than attempt to inhibit transcription of the anti-
sense transcript, we instead designed a PNA to bind to the ygaC
sense transcript and inhibit protein translation to test the hy-
pothesis that ygaC inhibition may confer greater meropenem
resistance in a similar manner to the flhC-targeted PNA.
The genome assembly for the clinical isolate was used by

FAST to design multiple PNA for each selected gene, which
were then screened for high solubility, minimal self-complement,
and zero off-target gene inhibition in E. coli CUS2B (selection
criteria are detailed inMaterials and Methods; SI Appendix, Table
S4). PNAs were tested for binding specificity using an electro-
phoretic mobility shift assay (EMSA) gel shift assay and phe-
notypic knockdown specificity by assaying growth inhibition in

A B

C

Fig. 3. Short RNA sequencing identifies regulator genes and targets for PNA antibiotics. (A) Experimental setup was consistent between total RNA and short
RNA sampling (Fig. 2A). Two biological replicates were sampled for each condition. The Venn diagram shows the degree to which significantly DE genes
(expression levels compared with the no treatment [NT] condition at the given time point) overlapped across the four different conditions. Smaller pop outs
are shown below to indicate overlaps on the main diagram diagonals. tRNA: transfer RNA. (B) Detail on the 22 RNAs that were DE in at least two conditions;
log2(fold change) values here are with respect to the NT condition from the same time point. Bold italicized text indicates significant DE (q < 0.05) vs. the NT
condition at the corresponding time point. (C) Time course of gene expression for three short RNA transcripts of interest. All conditions are normalized to the
0-min time point expression levels, measured in duplicate just before antibiotic treatments were introduced. ERT, ertapenem; MER, meropenem. *Significant
DE (q < 0.05).
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corresponding Keio knockout strains (SI Appendix, Methods and
Figs. S6 and S7). In these experiments, each transcriptome-
derived PNA demonstrated two-mismatch discrimination in its
binding, while α-ampC showed a slight reduction in binding to a
two-mismatch oligonucleotide. No PNA significantly affected the
strain in which its target was knocked out. Further, an anti-green
fluorescent protein (GFP) PNA was designed and tested to con-
firm PNA direct inhibition of protein expression, and that inhi-
bition of protein expression failed when two mismatches were
introduced into the PNA sequence (SI Appendix, Fig. S8). Addi-
tionally, scrambled-sequence PNAs were designed and tested for
each inhibitory PNA to control for base composition and any
possible effects of the PNA or CPP independent of sequence. No
effects were found with scrambled-sequence PNA alone or in any

combination treatment between scrambled-sequence PNA and
carbapenem antibiotic (SI Appendix, Figs. S9 and S10).
We also designed a PNA to inhibit the translation of the

chromosomal β-lactamase AmpC (11, 12). This PNA was syn-
thesized to assess the relative effectiveness of PNA targets se-
lected using transcriptomic analysis, in comparison with those
selected on a genomic basis. We have previously shown the
ability to resensitize MDR bacteria by targeting β-lactamases
(27). To assess PNA and antibiotic efficacy, we measured the
optical density of bacterial cultures treated with each treatment
for 24 h, as well as the end point cell viability via resazurin assay,
which has been established both as a precise tool for measurement
of drug efficacy and as an alternative to colony-forming units (SI
Appendix, Fig. S15) (56, 57). In a combination of the PNA α-ampC
(10 μM) with ertapenem (1 μg/mL), we observe significant

B C

D

E F

A

Fig. 4. Application of the FAST platform to the gene targets identified in transcriptomic analysis. (A) Schematic of the FAST platform’s Design, Build, and Test
modules, as they were applied to the conclusions generated by our gene expression experiments. CPP: cell-penetrating peptide. (B–F) Growth curves and end
point cell viability assays for CRE E. coli PNA–antibiotic combinations, measured in triplicate. Curves are shown for experiments in which significant interaction
was observed (two-way ANOVA, P < 0.05): (B) α-hycA (10 μM) combined with ertapenem (ERT; 1 μg/mL); (C) α-dsrB (10 μM) combined with ERT (1 μg/mL); (D)
α-bolA (10 μM) combined with ERT (1 μg/mL) and α-bolA (15 μM) combined with meropenem (MER; 0.1 μg/mL); (E) α-flhC (10 μM) combined with MER (0.25 μg/
mL); and (F) α-ygaC (10 μM) combined with MER (0.25 μg/mL). *Two-way ANOVA interaction (antibiotic and PNA conditions) P < 0.05, corrected for multiple
hypothesis testing via the Benjamini–Hochberg procedure.
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synergistic interaction according to both metrics (Table 1 and SI
Appendix, Fig. S11A). E. coli CUS2B cultures treated with a
combination of 0.1 μg/mL meropenem with 10 μM α-ampC grew
similarly to cultures treated with meropenem alone, as expected.
Although the comparison of treatments in the cell viability assay
did demonstrate significant interaction, the data do not seem to
indicate a combinatorial effect, as the fluorescence level is virtu-
ally unchanged across the three treated conditions. Additionally,
increasing the concentration of α-ampC to 15 μM could not re-
solve any effect, as the PNA alone was lethal at this concentration
(SI Appendix, Fig. S11B).
To determine whether transcriptomic analysis could be used

by FAST to produce similar antibiotic potentiation effects,
E. coli CUS2B was treated with each of the six PNA at a con-
centration of 10 μM in combination with sub-MIC carbapenem
treatments (1 μg/mL ertapenem, 0.1 μg/mL meropenem). We
analyzed the cultures’ end point optical densities and cell via-
bilities (via resazurin assay) to assess interaction between the two
treatments, based on a comparison with each individual PNA
and carbapenem treatment. At these concentrations of PNA and
antibiotic, we observed significant synergy between the PNAs
α-hycA, α-dsrB, and α-bolA and ertapenem, with S values of 0.23,
0.85, and 0.83 for their end point optical densities, respectively
(Fig. 4 B–D and Table 1). With each of these three PNAs, we
performed additional interaction experiments at a PNA con-
centration of 15 μM with meropenem treatment to determine
whether increased inhibition of these genes would demonstrate
significant interaction. Of these combinations, only 15 μM α-bolA
demonstrated significant synergistic interaction (S = 0.61) with
meropenem (Fig. 4D, Table 1, and SI Appendix, Fig. S12). The
PNA α-ygaC, α-malT, and α-flhC at concentrations of 10 μM did
not exhibit significant interaction with ertapenem at 1 μg/mL or
meropenem at 0.1 μg/mL (SI Appendix, Figs. S13 and S14A).
As noted above, we hypothesized that a combination of the

PNA α-flhC or α-ygaC with carbapenem treatment would result
in a recovery of growth and increased resistance. However, in the
PNA–carbapenem combination treatments we did not observe
growth recovery relative to the carbapenem-only treatment for
the sub-MIC concentrations. We hypothesized that effects at
such concentrations could be difficult to resolve, given that the
growth curves of carbapenem-treated E. coli CUS2B reached
end points similar to the untreated condition (SI Appendix, Figs.
S11A and S14A). To examine this hypothesis, we treated the
clinical isolate with α-flhC or α-ygaC at 10 μM in combination
with ertapenem or meropenem at 2 and 0.25 μg/mL, respectively.
With antibiotic alone, we observe no growth in either condition.
However, we observed a recovery of growth when each PNA was
added to the meropenem treatment, with the combination

treatments showing significant antagonistic interaction (S = –0.9
for α-flhC and S = –0.93 for α-ygaC) (Fig. 4E and Table 1).
Combination of either PNA with ertapenem showed no growth
rescue (Table 1 and SI Appendix, Figs. S13A and S14B).

Discussion
In this study, we sought to combine transcriptomic analysis of
carbapenem resistance with our FAST platform, both to better
understand the partial carbapenem resistance profile of E. coli
CUS2B and to engineer carbapenem potentiation in the clinical
isolate. Our results identify genes that contribute to the strain’s
resistance and introduce a strategy for the design of antisense
molecules that does not rely on detailed genomic characteriza-
tion of a pathogenic bacterial strain.
To begin our analysis of the clinical isolate, we first used

whole-genome sequencing to search for any possible genomic
resistance factors. We identified 15 genes related to antibiotic
resistance, including 6 related to β-lactam antibiotics. None of
these genes are dedicated carbapenemases, although the chro-
mosomal E. coli AmpC β-lactamase is present. The basal ex-
pression of AmpC in wild-type E. coli is not enough to confer
resistance to β-lactams, but mutation-induced overproduction of
the chromosomal AmpC in Enterobacteriaceae has been shown to
promote antibiotic resistance (11, 12, 21). Furthermore, when
coupled with porin deficiencies, AmpC expression can increase
enterobacterial resistance to ertapenem while retaining suscep-
tibility to other carbapenems (12, 58, 59). Our genomic analysis
identified 10 codon mutations in the E. coli CUS2B AmpC
compared with E. coli MG1655, as well as four nucleotide mu-
tations in the −35 to −10 promoter region. Furthermore, we
identified numerous mutations of the E. coli CUS2B omp operon
porin genes. It is possible that these mutations contribute to the
ertapenem-resistant/meropenem-sensitive resistance profile that
we observe in this clinical isolate. Using the FAST platform, we
were able to design the PNA α-ampC to knock down the trans-
lation of the β-lactamase and determine whether it has a sig-
nificant role in resistance. As expected, we observed a strong
significant synergistic combination between α-ampC and erta-
penem but not between α-ampC and meropenem. These obser-
vations agree with prior work from our laboratory that establish
β-lactamases as viable potentiation targets and serve as a basis of
comparison for our transcriptomics-based PNA.
Transcriptomic analysis of carbapenem-challenged E. coli

CUS2B revealed a much greater gene expression change in re-
sponse to ertapenem than to meropenem: 485 DE genes were
unique to ertapenem treatment vs. 19 DE genes unique to mer-
openem. This may suggest the recognition of ertapenem and re-
sultant response activation, in addition to innate basal resistance
factors. In the DE analysis, we find no significant difference be-
tween the expression of outer membrane porin genes ompA,
ompC, and ompF in the ertapenem experiments when compared
with the meropenem experiments or the untreated conditions.
Although ompF was found to be slightly down-regulated in mer-
openem after 30 min with respect to untreated conditions, the lack
of differential expression in the ertapenem-treated conditions
leads us to conclude that transcriptomic control of this gene is not
a major resistance factor for E. coli CUS2B. As discussed above,
the down-regulation and deletion of these genes have previously
been linked to carbapenem resistance (21, 37), but if this mech-
anism is active in E. coli CUS2B, it does not appear to be regu-
lated by transient gene expression. Similarly, none of the
resistance-related genes identified in our genomic analysis were
found to be DE in any carbapenem treatment condition, and we
may conclude that transcriptomic control of these genes does not
contribute to the E. coli CUS2B resistance phenotype. Notably,
however, this does not rule out a constitutively higher expression
of the AmpC β-lactamase nor a constitutively lower expression of
porin genes as resistance factors.

Table 1. Summary of combination treatment significant
interactions

PNA

24-h growth 24-h cell viability

Ertapenem Meropenem Ertapenem Meropenem

α-ampC 10 μM 0.76 ± 0.11 −0.06 ± 0.18 0.44 ± 0.22 −0.2 ± 0.09
α-hycA 10 μM 0.23 ± 0.06 — 0.36 ± 0.20 —

Α-dsrB 10 μM 0.85 ± 0.06 — 0.73 ± 0.20 —

Α-bolA 10 μM 0.83 ± 0.02 — 0.75 ± 0.09 —

Α-bolA 15 μM — 0.61 ± 0.13 — 0.77 ± 0.12
Α-flhC 10 μM — −0.90 ± 0.02 — −1.11 ± 0.08
Α-ygaC 10 μM — −0.93 ± 0.00 — −0.90 ± 0.04

Normalized S values (Materials and Methods) are calculated relative to
drug combination predictions from the Bliss Independence Model. Plus/mi-
nus values represent SEs of the S values. Bold numbers indicate P < 0.05,
after adjustment for multiple hypothesis testing.
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To determine the transient gene expression changes that
contribute to the carbapenem resistance phenotype, we analyzed
differential expression overlaps between the each of the four
samples (two carbapenems, two time points each). The most ap-
parent trend was an overwhelming underexpression of motility-
related genes after 30 min of exposure to both antibiotics, an ef-
fect that lessened after 60 min of exposure. This response is
consistent with prior work that has noted a decreased expression
of motility genes in response to generalized environmental stres-
sors (60, 61). Two of these motility-related genes, flhC and flhD,
were consistently DE in both treatments at both time points, along
with the lysozyme inhibitor ivy, an RNA antisense to a putative
lipoprotein, and two transcripts of unknown function.
We used antisense PNA to probe the resistance contributions

of the flhDC operon. Interestingly, we observed significant an-
tagonistic interaction between PNA inhibition of FlhC transla-
tion and meropenem treatment but not ertapenem treatment.
The deletion of the FlhDC regulator has been shown in E. coli to
eliminate motility and has been shown to cause down-regulation
of a large number of genes that are primarily related to che-
motaxis/motility and flagellar surface structures (60). It is striking
that this resistance factor can be artificially induced to so effec-
tively rescue the E. coli CUS2B strain from carbapenem challenge
and that the effect is stronger than any response that the cell
naturally activates, even over the course of 24 h. Furthermore,
the dissonance between transcriptomic results (down-regulated
in all conditions) and PNA inhibition results shows that FlhC is
down-regulated as a general carbapenem response but does not
universally improve survival in resistant strains. These obser-
vations point to avenues by which enterobacteria may acquire
greater degrees of carbapenem resistance.
We next examined the ertapenem-specific response in an ef-

fort to use transcriptomics to engineer carbapenem potentiation.
We identified a total of 38 transcripts that were uniquely DE
in ertapenem-treated samples. In this set, we identified two
operons—themal operon (maltodextrin metabolism) and the hyc
(formate hydrogenlyase complex) operon—that are consistently
up-regulated. We designed and synthesized PNA inhibitors for
malT, which while not DE, is an activator of the up-regulated
mal operon, as well as the DE gene hycA, in order to evaluate
and interfere with the clinical isolate’s response to ertapenem.
We observed significant synergistic growth inhibition between
α-hycA and ertapenem but not meropenem, while combinations
of α-malT with the carbapenems did not produce significant
treatment interaction.
The genes of the hyc operon code for formate hydrogenlyase

complex, which mediates formate oxidation and has shown a
potential connection to ATP synthesis (62). However, previous
mutational analysis of hycA has provided evidence that the
protein HycA works as a negative regulator of this system, as
increased formate dehydrogenase activity was observed following
its deletion (63, 64). Based on our observations, the up-regulation
of the formate hydrogenlyase complex is likely important to the
E. coli CUS2B’s ertapenem resistance but requires commen-
surate up-regulation of the HycA regulator. The absence of this
regulator results in the observed synergistically toxic effect
when α-hycA is combined with ertapenem, an effect not ob-
served in the meropenem response because the system is not
activated by the antibiotic. These results validate the role of
formate metabolism in the carbapenem response and support
the conclusion that transcriptomic data are valuable for engi-
neering antibiotic potentiation in resistant enterobacteria.
In addition to applying FAST PNA to gene targets identified

by total RNA sequencing, we also analyzed differential expression
of short RNA transcripts in search of potential resistance fac-
tors. We identified 22 transcripts that were DE across one or
more of the treatment conditions and time points and selected
three genes to be targeted by FAST: dsrB, bolA, and ygaC. dsrB

and bolA are translated into short proteins, but no annotation
for the ygaC antisense complement has been identified, leading
to the hypothesis that the transcript serves as a regulatory RNA
for the gene.
Perhaps the most dramatic result of this study was the effec-

tiveness of α-dsrB and α-bolA in restoring carbapenem suscep-
tibility to E. coli CUS2B. At 10 μM, each PNA showed significant
synergistic interaction with sub-MIC ertapenem, and α-bolA
showed significant synergistic interaction with sub-MIC mer-
openem at a concentration of 15 μM. Surprisingly, each S value
for these three combinations (0.85, 0.83, and 0.61) was compa-
rable with the value of α-ampC (S = 0.76). Each of these results
is consistent with the predictions of the RNA sequencing: dsrB
was found to be up-regulated at both time points for ertapenem
but only at 30 min for meropenem, and bolA was found to be up-
regulated in both at 60 min. Although little is known about dsrB,
it is reported to be regulated by the general stress response σ
factor RpoS (50). Inhibition of DsrB translation abolished bacterial
growth in combination with ertapenem (S = 0.85) (Fig. 4), which is
consistent with previous research that has associated β-lactam anti-
biotics with induction of the RpoS general stress response regulon.
Importantly, our results confirm that activation of DsrB is

specific to the transcriptome of a resistance phenotype and that
its up-regulation is a necessary component of the CRE response
in this clinical isolate. BolA is known to be induced under a
variety of stress conditions (49) and is involved in biofilm in-
duction (65) and protective morphological changes (48) for
E. coli cells. Perhaps most important, however, is that BolA has
been shown to control expression of the proteins PBP5 and PBP6
in E. coli, as well as the β-lactamase AmpC (48). Although nei-
ther E. coli PBP5 nor PBP6 have been shown to bind mer-
openem or ertapenem—these antibiotics are known to bind
preferentially to PBP2 and PBP3 (14, 33)—our previous results
indicate that AmpC contributes to the observed ertapenem re-
sistance phenotype. The effect of α-bolA differs from that of
α-ampC, however, in its effect on meropenem efficacy. This
finding provides strong evidence that BolA is important to the
general carbapenem response in E. coli and is not merely inci-
dentally up-regulated in the meropenem response, as might be
concluded from transcriptomic analysis alone. Additionally, the
success of both the α-dsrB and α-bolA in PNA–carbapenem
combination treatments—in three experiments fully abolishing
growth (Fig. 4)—represents transcriptomic analysis that has been
used to design PNA antibiotics and importantly, shows equal if
not better efficacy than the genome-derived PNA α-ampC.
Further development of this strategy will aid in the design of
antisense inhibitors to target pathogenic species about which less
information—essential genes, genome annotation, etc.—is readily
available.
The final PNA for which we find interaction with carbapenem

treatment is α-ygaC. Similar to α-flhC, this PNA showed the
ability to rescue growth in E. coli CUS2B in cultures treated with
previously lethal meropenem concentrations but did not repli-
cate this effect in ertapenem-treated cultures. Although we ob-
served overexpression of the unannotated RNA transcript
antisense to ygaC, not the gene itself, the PNA demonstrated
surprising effectiveness at inducing resistance. These results af-
firm that the ygaC antisense transcript is likely controlling the
gene’s expression and suggest that ygaC down-regulation is as-
sociated with a more broadly resistant phenotype. The growth
rescue in meropenem-treated conditions by both α-ygaC and
α-flhC points to routes that resistant bacteria may take toward
developing broad resistance. Furthermore, the success of α-ygaC,
considering that it is a largely unstudied gene never before linked
to antibiotic resistance, demonstrates the specific utility of tran-
scriptomics in the design of PNA for antibiotic applications.
Resistance has been extensively studied at the genetic level,

which has helped researchers to understand many genetic factors
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that can contribute to resistance. However, carbapenem resis-
tance is infrequently studied at a transcriptomic level, and when
it is, the research almost exclusively examines basal expression
levels (18–23). In this work, we profiled the short-term transient
transcriptomic responses of a partially carbapenem-resistant
clinical isolate of E. coli and used our FAST platform to de-
sign PNA that uncovered the importance of multiple systems in
the development of this phenotype, including the regulators flhC,
hycA, and bolA. Furthermore, by inhibiting hycA, bolA, and dsrB
with FAST PNA, we were able to potentiate sub-MIC carbape-
nem concentrations in cultures of the clinical isolate. There are
no small molecules known to inhibit the action of any of these
gene targets, which demonstrates the value of PNA inhibitors to
fill in the gaps in modern antibiotic discovery. While much prior
research into antibiotic PNA has picked specific gene targets
based on well-established resistance factors or gene essentiality,
our study uses transcriptomic analysis to identify targets for an-
tibiotic PNA applications. The strategy shows a striking effec-
tiveness in its induction of carbapenem susceptibility in the CRE
E. coli clinical isolate: we find two such PNA–carbapenem
combinations that are more effective than even the anti–β-
lactamase PNA α-ampC. In future research, we will seek to de-
velop these results into a strategy to consistently and system-
atically design PNAs that potentiate carbapenem efficacy in
MDR pathogens and thus, maintain the efficacy of these anti-
biotics of last resort.

Materials and Methods
Strains and Culture Conditions. E. coli CUS2B was provided by Nancy Mad-
inger, University of Colorado Hospital Clinical Microbiology Laboratory’s
organism bank (Aurora, CO). The isolate was obtained via rectal swab from a
29-y-old pregnant female patient. This strain was streaked on solid medium
plates of cation-adjusted Mueller Hinton broth (CAMHB) with 100 μg/mL
ampicillin and 15 g/L agar and grown at 37 °C for 16 h to produce individual
colonies for biological replicates in growth experiments. For these growth
experiments, unless otherwise mentioned, E. coli CUS2B was propagated in
aerobic conditions at 37 °C in liquid cultures of CAMHB with shaking at 225 rpm.

For the knockout assays with PNA, six strains from the Keio collection
(66)—knockouts for the genes flhC, hycA, dsrB, bolA, ygaC, and ampC—were
streaked separately onto solid plates of Luria–Bertani (LB) broth with 50 μg/mL
kanamycin and 15 g/L agar and grown for 16 h at 37 °C. For the fluorescence
knockdown experiment, GFP (obtained from pAKgfp1; Addgene #14076)
was cloned into E. coli DH5αZ1 (Expressys) under control of a pLac promoter,
and this strain was streaked onto a solid plate of LB broth with 50 μg/mL
kanamycin and 15 g/L agar and grown for 16 h at 37 °C.

MIC Assays. Three colonies were picked from an E. coli CUS2B plate and used
to inoculate three separate overnight cultures in 1 mL CAMHB each. After 16
h, the cultures were diluted to a 0.5 McFarland standard in a 96-well plate
and were treated with each antibiotic (Fig. 1A) at a range of concentrations
(serially diluted in twofold increments) that spanned the Clinical and Labo-
ratory Standards Institute MIC resistance break point (29). Growth in the
plate was monitored with a Tecan GENios (Tecan Group Ltd.) running
Magellan software (v7.2) at an absorbance of 590 nm every 20 min for 16 h,
with shaking between measurements. The MIC was identified as the lowest
antibiotic concentration preventing growth.

Genome Sequencing. Five colonies were picked from an E. coli CUS2B plate
and resuspended in liquid culture. After 16 h, 1 mL of culture was used for
genomic DNA isolation with the Wizard DNA Purification Kit (Promega).
Approximately 2 μg of DNA was used to prepare a paired-end 250-bp se-
quencing library with the Nextera XT DNA library kit. The library was se-
quenced on an Illumina MiSeq, resulting in 407,910 reads (20× coverage).
The de novo assembly is 5,325,941 bp in length with a guanine/cytosine
content of 50.59%. The largest contig is 394,969 bp, and the N50
(length-weighted median) contig length is 100,215. The genome contains
5,360 protein-coding sequences, 114 RNA-coding sequences, 82 transfer
RNAs, 11 non-coding RNAs, 260 pseudogenes, and two CRISPR arrays.

The FASTQ files were filtered for quality using Trimmomatic (v0.32) (67) in
sliding window mode with a window size of 4 bases, a minimum average
window quality of 15 (phred 33 quality score), and a read length of at least
36 bases. For resequencing, reads were aligned to various E. coli RefSeq

reference genomes using Bowtie 2 (v2.2.3) (68). SAMTools (v0.1.19) (69) was
used to remove PCR duplicates and create indexed, sorted binary alignment/
map (BAM) files. Variants were called and filtered using the Genome
Analysis Toolkit (v2.4–9) (70). To pass the filter, a single-nucleotide poly-
morphism had to meet the following criteria: Qualby Depth (QD) < 2.0,
Fisher strand (FS)> 60, mapping quality < 40.0, ReadPosRankSum < −2.0, and
MappingQualityRankSum < −12.5. Filter criteria for indels was QD < 2.0,
FS > 60.0, and ReadPosRankSum < −2.0. A custom Python script was used to
annotate variant call files using the corresponding general feature format
(GFF) file from RefSeq. For de novo assembly, reads were assembled using
SPAdes (v 3.5.0) (71), and annotation was performed with the National
Center for Biotechnology Information (NCBI) Prokaryotic Genome Annota-
tion Pipeline (v4.0) (72). Quality of the assembly was assessed using QUAST
(73). The FASTA generated by SPAdes was used for multilocus sequence
typing (74), identification of resistance genes with ARG-ANNOT (32), and
locating plasmids with PlasmidFinder (75).

RNA Sequencing and Differential Expression Analysis. Two colonies were
picked from an E. coli CUS2B plate and resuspended in liquid culture. After
16 h of growth, the culture was diluted 1:20 into duplicate 15-mL cultures.
These were grown for 1 h; then, 3 mL from each were preserved in 2 vol of
RNAprotect. Each culture was divided into three equal parts. No antibiotic
was added to one part, and antibiotics were added to the other two for final
concentrations of 2 μg/mL of ertapenem or 1 μg/mL of meropenem, corre-
sponding to 50% of the MIC under these growth conditions (note that these
conditions are different from the procedures used to determine the MICs in
Fig. 1). After 30 and 60 min of growth, 1.5 mL of culture was collected from
each and stored in RNAprotect. Cultures were flash frozen in ethanol and
dry ice and stored at −80 °C until the time of RNA extraction.

To extract RNA, samples were thawed and resuspended in 100 μL Tris
ethylenediaminetetraacetic acid (EDTA) buffer with 0.4 mg/mL lysozyme and
proteinase K. After incubation at room temperature for 5 min, 300 μL of lysis
buffer with 20 μL/mL β-mercaptoethanol was added to each and vortexed to
mix. Each lysis solution was split in half, with one-half being processed for
total RNA isolation and the other for short RNA isolation. Total RNA was
isolated using the GeneJet RNA Purification kit (Thermo Scientific) followed
by deoxyribonuclease (DNase) treatment with the TURBO DNA-free kit
(Ambion). Short RNA was isolated using the mirVana miRNA isolation kit
(Thermo Scientific). Concentration and absorbance at 260 nm and 280 nm
were measured on a Nanodrop 2000 (Thermo Scientific). A minimum of
130 ng of RNA per sample was submitted for sequencing library preparation.
Quality was further assessed with a Bioanalyzer (Agilent). Libraries were
prepared using the RNAtag-Seq protocol (76), wherein individual samples
are bar coded and pooled prior to ribosomal RNA treatment and comple-
mentary DNA synthesis. Here, the total RNA samples were combined into
one pool, and the short RNA-enriched samples were combined into a sep-
arate pool. The total RNA pool was fragmented via incubation with FastAP
buffer at 94 °C. After another DNase treatment, bar-coded adapters were
ligated with T4 DNA ligase; then, the samples were pooled and subjected to
Ribo-Zero treatment. The prep for short RNA libraries was similar, without
the fragmentation or ribosomal RNA treatment steps. Total RNA libraries
were sequenced on a NextSeq 500 (Illumina) using a high-output cycle
75-cycle run. Short RNA libraries were sequenced on a NextSeq with a
medium-output run, halted after 75 cycles.

FASTQ files were demultiplexed with the bar-code splitter function from
the FastX toolbox (http://hannonlab.cshl.edu/fastx_toolkit; v0.0.13.2). The
first seven base calls (containing the bar code) were trimmed using FastX;
then, adapters were removed, and all reads were trimmed for quality using
the sliding window mode in Trimmomatic (v0.32) (67). Quality of the
resulting FASTQ files was validated with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). For total RNA data (including sense and
antisense transcripts) and differential expression analysis, reads were
aligned to the draft assembly of the CUS2B genome (available as RefSeq
GCF_001910475.1) with Bowtie 2 (v2.2.3). An average of 16.5 ± 3.2 million
reads was successfully mapped per sample. SAMTools (v0.1.19) was used to
create BAM files. HTSeq (v0.6.1) (77) was used to build count tables for sense
and antisense reads. DESeq 40 was used to determine DE genes, with a
pooled dispersion metric and a parametric fit. Genes were considered sig-
nificantly DE if the Benjamini–Hochberg-adjusted q value was less than 0.05.
For short RNA data, trimmed FASTQ files were submitted to Rockhopper
(47), which mapped to the E. coli UMN026 genome (90,152 ± 25,642 reads
mapped per sample) and performed differential expression analysis. Short
RNA transcripts were considered significantly DE if the q value was less
than 0.05.
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PNA Design. PNA design was carried out using our laboratory’s PNA Finder
toolbox. The toolbox is built using Python 2.7, the alignment program
Bowtie 2 (68), the read alignment processing program SAMtools (69), and
the feature analysis program BEDTools (78). The toolbox takes a user-
provided list of gene identifications and cross-references the identifica-
tions against a genome annotation file to determine the feature coordinates
for each identification. The toolbox then uses these coordinates to extract
PNA target sequences of a user-specified length (12 bases in this study) and
user-specified positions relative to the start codon from a genome assembly
FASTA file. PNA Finder provides a list of PNA candidates (the reverse com-
plements of the target sequences) and sequence warnings regarding solu-
bility and self-complement. Based on design rules previously established by
Gildea and Coull (79), PNAs were flagged as potentially insoluble and
rejected if, within any stretch of 10 bases, they contained five purines in a
row, four guanines in a row, or more than six total purines. PNAs were
flagged as potentially self-complementing and rejected if they contained a
stretch of more than seven bases that complemented another section of the
same PNA, by forward or reverse alignment. Finally, PNA Finder screens the
list of PNA candidates against a user-provided genome assembly (in this
study, the genome for E. coli CUS2B) to search for off targets. Potential off
targets for bacterial translation inhibition are defined as zero- or one-
mismatch alignments within 20 bases of the translation start codon, a cri-
terion that was developed in previous work (27). This analysis was used to
select the candidates with the fewest potential off targets and create a final
PNA list for synthesis. Scrambled-sequence versions of the selected PNA were
designed by using a PNA Finder script to produce 100 different randomly
shuffled sequences of the same base composition (respectively for each
PNA). These were similarly screened for solubility, self-complements, and
off targets.

PNA Synthesis. PNAs were synthesized using an Apex 396 peptide synthesizer
(AAPPTec, LLC) with solid-phase Fmoc chemistry at a 10-μmol scale on
4-methylbenzhydrylamine (MBHA) rink amide resin. Fmoc–PNA monomers
were obtained from PolyOrg Inc., with A, C, and G monomers protected with
Bhoc groups. PNAs were synthesized with the N-terminal cell-penetrating
peptide (KFF)3K. Cell-penetrating peptide Fmoc monomers were obtained
from AAPPTec, LLC, and lysine monomers were protected with Boc groups.
PNA products were precipitated in diethyl ether and purified as trifluoro-
acetic acid salts via reverse-phase high-performance liquid chromatography
using a C18 column. PNAs were stored at −20 °C dissolved in 5% vol/vol
dimethyl sulfoxide in water.

PNA–Antibiotic Growth Curve Interaction Assays. Three colonies were picked
from an E. coli CUS2B plate and used to inoculate three separate overnight
cultures in 1 mL CAMHB each. After 16 h, the culture was diluted 1:10,000 in
a 384-well microplate using three biological replicates per condition. The
total culture volume for each treatment was 50 μL. Growth in the plate was
monitored with a Tecan GENios (Tecan Group Ltd.) plate reader running
Magellan software (v 7.2) at an absorbance of 590 nm every 20 min for 24 h,
with shaking between measurements.

Resazurin Cell Viability Interaction Assays. Cell viability was measured at the
end point of each 24-h PNA–antibiotic interaction growth curve. Assay

conditions were optimized to improve sensitivity of fluorescence measure-
ment and to avoid saturation of the resazurin dye during the incubation
period. Cells were diluted 1:20 into a new plate and incubated with 22 μM
resazurin (Sigma-Aldrich) for 2 h. Fluorescence was measured at an excita-
tion wavelength of 485 nm and an emission wavelength of 610 nm using a
Tecan GENios (Tecan Group Ltd.) plate reader running Magellan software
(v 7.2).

Treatment Interaction Calculation. Interaction effects for both 24-h end point
optical density and cell viability (via resazurin) were evaluated for significance
using a two-way ANOVA test and the Benjamini–Hochberg procedure to
correct for multiple testing, and S values were calculated with respect for the
expected growth inhibition as calculated by the Bliss Independence Model
(55). The S value for a given time point was calculated as follows:

S = (ODAB

OD0
)(ODPNA

OD0
) − (ODAB,PNA

OD0
). [1]

For a given time point (24 h were used in our analyses), the variable ODAB

represents optical density with only carbapenem treatment, OD0 represents
the optical density without treatment, ODPNA represents optical density with
only antisense PNA treatment, and ODAB, PNA represents the optical density
with a combination treatment of antibiotic (AB) and PNA. Plus/minus values
for S values (Table 1) were calculated by propagating SE values for each term
in Eq. 1.

Other Software and Resources Utilized. The clustergram function from
MATLAB’s Bioinformatics toolbox was used for building heat maps and
dendrograms. A Euclidean distance metric, optimal leaf ordering, and av-
erage linkage function were used for clustering. Ecocyc (80) was used to gain
gene names and descriptions and to define functional classes. NCBI’s BLAST
(81) was used to predict gene function and to determine similarity of se-
quences in CUS2B to other bacterial strains. PANTHER (44) was used for
statistical overrepresentation tests, with a Bonferroni correction applied to
all reported P values for such tests.

Data Availability. The whole-genome shotgun sequencing data have been
deposited at DNAData Bank of Japan/European Nucleotide Archive/GenBank
(accession no. MSDR00000000.1) (82). The version described in this paper is
version MSDR01000000. The RNA-sequencing data have been deposited in
NCBI’s Sequence Read Archive (accession no. SRP101716) (83). PNA Finder
scripts can be downloaded from GitHub at https://github.com/taunins/pna_
finder.
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